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1 Introduction

1.1 Introduction to the course

Course aims: To explore a number of statistical principles, such as the likelihood principle

and sufficiency principle, and their logical implications for statistical inference. To consider

the nature of statistical parameters, the different viewpoints of Bayesian and Frequentist

approaches and their relationship with the given statistical principles. To introduce the

idea of inference as a statistical decision problem. To understand the meaning and value of

ubiquitous constructs such as p-values, confidence sets, and hypothesis tests.

Course learning outcomes: An appreciation for the complexity of statistical inference,

recognition of its inherent subjectivity and the role of expert judgement, the ability to critique

familiar inference methods, knowledge of the key choices that must be made, and scepticism

about apparently simple answers to difficult questions.

The course will cover three main topics:

1. Principles of inference: the Likelihood Principle, Birnbaum’s Theorem, the Stopping

Rule Principle, implications for different approaches.

2. Decision theory: Bayes Rules, admissibility, and the Complete Class Theorems. Im-

plications for point and set estimation, and for hypothesis testing.

3. Confidence sets, hypothesis testing, and p-values. Good and not-so-good choices. Level

error, and adjusting for it. Interpretation of small and large p-values.

These notes could not have been prepared without, and have been developed from, those

prepared by Jonathan Rougier (University of Bristol) who lectured this course previously. I

thus acknowledge his help and guidance though any errors are my own.
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1.2 Statistical endeavour

Efron and Hastie (2016, pxvi) consider statistical endeavour as comprising two parts: al-

gorithms aimed at solving individual applications and a more formal theory of statistical

inference: “very broadly speaking, algorithms are what statisticians do while inference says

why they do them.” Hence, it is that the algorithm comes first: “algorithmic invention is a

more free-wheeling and adventurous enterprise, with inference playing catch-up as it strives

to assess the accuracy, good or bad, of some hot new algorithmic methodology.” This though

should not underplay the value of the theory: as Cox (2006; pxiii) writes “without some sys-

tematic structure statistical methods for the analysis of data become a collection of tricks

that are hard to assimilate and interrelate to one another . . . the development of new prob-

lems would become entirely a matter of ad hoc ingenuity. Of course, such ingenuity is not to

be undervalued and indeed one role of theory is to assimilate, generalise and perhaps modify

and improve the fruits of such ingenuity.”

1.3 Statistical models

A statistical model is an artefact to link our beliefs about things which we can measure,

or observe, to things we would like to know. For example, we might suppose that X denotes

the value of things we can observe and Y the values of the things that we would like to

know. Prior to making any observations, both X and Y are unknown, they are random

variables. In a statistical approach, we quantify our uncertainty about them by specifying

a probability distribution for (X,Y ). Then, if we observe X = x we can consider the

conditional probability of Y given X = x, that is we can consider predictions about Y .

In this context, artefact denotes an object made by a human, for example, you or me.

There are no statistical models that don’t originate inside our minds. So there is no arbiter

to determine the “true” statistical model for (X,Y ): we may expect to disagree about the

statistical model for (X,Y ), between ourselves, and even within ourselves from one time-

point to another. In common with all other scientists, statisticians do not require their

models to be true: as Box (1979) writes ‘it would be very remarkable if any system existing

in the real world could be exactly represented by any simple model. However, cunningly

chosen parsimonious models often do provide remarkably useful approximations . . . for such

a model there is no need to ask the question “Is the model true?”. If “truth” is to be the

“whole truth” the answer must be “No”. The only question of interest is “Is the model

illuminating and useful?”’ Statistical models exist to make prediction feasible.

Maybe it would be helpful to say a little more about this. Here is the usual procedure in
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“public” Science, sanitised and compressed:

1. Given an interesting question, formulate it as a problem with a solution.

2. Using experience, imagination, and technical skill, make some simplifying assumptions

to move the problem into the mathematical domain, and solve it.

3. Contemplate the simplified solution in the light of the assumptions, e.g. in terms of

robustness. Maybe iterate a few times.

4. Publish your simplified solution (including, of course, all of your assumptions), and

your recommendation for the original question, if you have one. Prepare for criticism.

MacKay (2009) provides a masterclass in this procedure. The statistical model represents a

statistician’s “simplifying assumptions”.

A statistical model for a random variable X is created by ruling out many possible probability

distributions. This is most clearly seen in the case when the set of possible outcomes is finite.

Example 1 Let X = {x(1), . . . , x(k)} denote the set of possible outcomes of X so that the

sample space consists of |X | = k elements. The set of possible probability distributions for

X is

P =

{
p ∈ Rk : pi ≥ 0 ∀i,

k∑
i=1

pi = 1

}
,

where pi = P(X = x(i)). A statistical model may be created by considering a family of dis-

tributions F which is a subset of P. We will typically consider families where the functional

form of the probability mass function is specified but a finite number of parameters θ are

unknown. That is

F =
{
p ∈ P : pi = fX(x(i) | θ) for some θ ∈ Θ

}
.

We shall proceed by assuming that our statistical model can be expressed as a parametric

model.

Definition 1 (Parametric model)

A parametric model for a random variable X is the triple E = {X ,Θ, fX(x | θ)} where only

the finite dimensional parameter θ ∈ Θ is unknown.

Thus, the model specifies the sample space X of the quantity to be observed X, the parameter

space Θ, and a family of distributions, F say, where fX(x | θ) is the distribution for X when θ

is the value of the parameter. In this general framework, both X and θ may be multivariate

and we use fX to represent the density function irrespective of whether X is continuous

or discrete. If it is discrete then fX(x | θ) gives the probability of an individual value x.

Typically, θ is continuous-valued.
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The method by which a statistician chooses the chooses the family of distributions F
and then the parametric model E is hard to codify, although experience and precedent

are obviously relevant; Davison (2003) offers a book-length treatment with many useful

examples. However, once the model has been specified, our primary focus is to make an

inference on the parameter θ. That is we wish to use observation X = x to update our

knowledge about θ so that we may, for example, estimate a function of θ or make predictions

about a random variable Y whose distribution depends upon θ.

Definition 2 (Statistic; estimator)

Any function of a random variable X is termed a statistic. If T is a statistic then T = t(X)

is a random variable and t = t(x) the corresponding value of the random variable when

X = x. In general, T is a vector. A statistic designed to estimate θ is termed an estimator.

Typically, estimators can be divided into two types.

1. A point estimator which maps from the sample space X to a point in the parameter

space Θ.

2. A set estimator which maps from X to a set in Θ.

For prediction, we consider a parametric model for (X,Y ), E = {X × Y,Θ, fX,Y (x, y | θ)}
from which we can calculate the predictive model E∗ = {Y,Θ, fY |X(y |x, θ)} where

fY |X(y |x, θ) =
fX,Y (x, y | θ)
fX(x | θ)

=
fX,Y (x, y | θ)∫
Y fX,Y (x, y | θ) dy

. (1.1)

1.4 Some principles of statistical inference

In the first half of the course we shall consider principles for statistical inference. These

principles guide the way in which we learn about θ and are meant to be either self-evident,

or logical implications of principles which are self-evident. In this section we aim to motivate

three of these principles: the weak likelihood principle, the strong likelihood principle, and

the sufficiency principle. The first two principles relate to the concept of the likelihood and

the third to the idea of a sufficient statistic.

1.4.1 Likelihood

In the model E = {X ,Θ, fX(x | θ)}, fX is a function of x for known θ. If we have instead

observed x then we could consider viewing this as a function, termed the likelihood, of θ for

known x. This provides a means of comparing the plausibility of different values of θ.

Definition 3 (Likelihood)

The likelihood for θ given observations x is

LX(θ;x) = fX(x | θ), θ ∈ Θ

regarded as a function of θ for fixed x.
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If LX(θ1;x) > LX(θ2;x) then the observed data x were more likely to occur under θ = θ1

than θ2 so that θ1 can be viewed as more plausible than θ2. Note that we choose to make

the dependence on X explicit as the measurement scale affects the numerical value of the

likelihood.

Example 2 Let X = (X1, . . . , Xn) and suppose that, for given θ = (α, β), the Xi are

independent and identically distributed Gamma(α, β) random variables. Then,

fX(x | θ) =
βnα

Γn(α)

(
n∏
i=1

xi

)α−1

exp

(
−β

n∑
i=1

xi

)
(1.2)

if xi > 0 for each i ∈ {1, . . . , n} and zero otherwise. If, for each i, Yi = X−1
i then the Yi are

independent and identically distributed Inverse-Gamma(α, β) random variables with

fY (y | θ) =
βnα

Γn(α)

(
n∏
i=1

1

yi

)α+1

exp

(
−β

n∑
i=1

1

yi

)

if yi > 0 for each i ∈ {1, . . . , n} and zero otherwise. Thus,

LY (θ; y) =

(
n∏
i=1

1

yi

)2

LX(θ;x).

If we are interested in inferences about θ = (α, β) following the observation of the data, then

it seems reasonable that these should be invariant to the choice of measurement scale: it

should not matter whether x or y was recorded.1

More generally, suppose that X is a continuous vector random variable and Y = g(X) a

one-to-one transformation of X with non-vanishing Jacobian ∂x/∂y then the probability

density function of Y is

fY (y | θ) = fX(x | θ)
∣∣∣∣∂x∂y

∣∣∣∣ , (1.3)

where x = g−1(y) and | · | denotes the determinant. Consequently, as Cox and Hinkley (1974;

p12) observe, if we are interested in comparing two possible values of θ, θ1 and θ2 say, using

the likelihood then we should consider the ratio of the likelihoods rather than, for example,

the difference since

fY (y | θ = θ1)

fY (y | θ = θ2)
=

fX(x | θ = θ1)

fX(x | θ = θ2)

so that the comparison does not depend upon whether the data was recorded as x or as

y = g(x). It seems reasonable that the proportionality of the likelihoods given by equation

(1.3) should lead to the same inference about θ.

1In the course, we will see that this idea can developed into an inference principle called the Transformation

Principle.
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The likelihood principle

Our discussion of the likelihood function suggests that it is the ratio of the likelihoods for

differing values of θ that should drive our inferences about θ. In particular, if two likelihoods

are proportional for all values of θ then the corresponding likelihood ratios for any two values

θ1 and θ2 are identical. Initially, we consider two outcomes x and y from the same model:

this gives us our first possible principle of inference.

Definition 4 (The weak likelihood principle)

If X = x and X = y are two observations for the experiment EX = {X ,Θ, fX(x | θ)} such

that

LX(θ; y) = c(x, y)LX(θ;x)

for all θ ∈ Θ then the inference about θ should be the same irrespective of whether X = x or

X = y was observed.

A stronger principle can be developed if we consider two random variables X and Y cor-

responding to two different experiments, EX = {X ,Θ, fX(x | θ)} and EY = {Y,Θ, fY (y | θ)}
respectively, for the same parameter θ. Notice that this situation includes the case where

Y = g(X) (see equation (1.3)) but is not restricted to that.

Example 3 Consider, given θ, a sequence of independent Bernoulli trials with parameter

θ. We wish to make inference about θ and consider two possible methods. In the first, we

carry out n trials and let X denote the total number of successes in these trials. Thus,

X | θ ∼ Bin(n, θ) with

fX(x | θ) =

(
n

x

)
θx(1− θ)n−x, x = 0, 1, . . . , n.

In the second method, we count the total number Y of trials up to and including the rth

success so that Y | θ ∼ Nbin(r, θ), the negative binomial distribution, with

fY (y | θ) =

(
y − 1

r − 1

)
θr(1− θ)y−r, y = r, r + 1, . . . .

Suppose that we observe X = x = r and Y = y = n. Then in each experiment we have

seen x successes in n trials and so it may be reasonable to conclude that we make the same

inference about θ from each experiment. Notice that in this case

LY (θ; y) = fY (y | θ) =
x

y
fX(x | θ) =

x

y
LX(θ;x)

so that the likelihoods are proportional.

Motivated by this example, a second possible principle of inference is a strengthening of the

weak likelihood principle.
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Definition 5 (The strong likelihood principle)

Let EX and EY be two experiments which have the same parameter θ. If X = x and Y = y

are two observations such that

LY (θ; y) = c(x, y)LX(θ;x)

for all θ ∈ Θ then the inference about θ should be the same irrespective of whether X = x or

Y = y was observed.

1.4.2 Sufficient statistics

Consider the model E = {X ,Θ, fX(x | θ)}. If a sample X = x is obtained there may be cases

when, rather than knowing each individual value of the sample, certain summary statistics

could be utilised as a sufficient way to capture all of the relevant information in the sample.

This leads to the idea of a sufficient statistic.

Definition 6 (Sufficient statistic)

A statistic S = s(X) is sufficient for θ if the conditional distribution of X, given the value

of s(X) (and θ) fX|S(x | s, θ) does not depend upon θ.

Note that, in general, S is a vector and that if S is sufficient then so is any one-to-one function

of S. It should be clear from Definition 6 that the sufficiency of S for θ is dependent upon

the choice of the family of distributions in the model.

Example 4 Let X = (X1, . . . , Xn) and suppose that, for given θ, the Xi are independent

and identically distributed Po(θ) random variables. Then

fX(x | θ) =

n∏
i=1

θxi exp(−θ)
xi!

=
θ
∑n

i=1 xi exp(−nθ)∏n
i=1 xi!

,

if xi ∈ {0, 1, . . .} for each i ∈ {1, . . . , n} and zero otherwise. Let S =
∑n
i=1Xi then S ∼

Po(nθ) so that

fS(s | θ) =
(nθ)s exp(−nθ)

s!

for s ∈ {0, 1, . . .} and zero otherwise. Thus, if fS(s | θ) > 0 then, as s =
∑n
i=1 xi,

fX|S(x | s, θ) =
fX(x | θ)
fS(s | θ)

=
(
∑n
i=1 xi)!∏n
i=1 xi!

n−
∑n

i=1 xi

which does not depend upon θ. Hence, S =
∑n
i=1Xi is sufficient for θ. Similarly, the sample

mean 1
nS is also sufficient.

Sufficiency for a parameter θ can be viewed as the idea that S captures all of the information

about θ contained in X. Having observed S, nothing further can be learnt about θ by

observing X as fX|S(x | s, θ) has no dependence on θ.
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Definition 6 is confirmatory rather than constructive: in order to use it we must somehow

guess a statistic S, find the distribution of it and then check that the ratio of the distribution

of X to the distribution of S does not depend upon θ. However, the following theorem2 allows

us to easily find a sufficient statistic.

Theorem 1 (Fisher-Neyman Factorisation Theorem)

The statistic S = s(X) is sufficient for θ if and only if, for all x and θ,

fX(x | θ) = g(s(x), θ)h(x)

for some pair of functions g(s(x), θ) and h(x).

Example 5 We revisit Example 2 and the case where the Xi are independent and identically

distributed Gamma(α, β) random variables. From equation (1.2) we have

fX(x | θ) =
βnα

Γn(α)

(
n∏
i=1

xi

)α
exp

(
−β

n∑
i=1

xi

)(
n∏
i=1

xi

)−1

= g

(
n∏
i=1

xi,

n∑
i=1

xi, θ

)
h(x)

so that S = (
∏n
i=1Xi,

∑n
i=1Xi) is sufficient for θ.

Notice that S defines a data reduction. In Example 4, S =
∑n
i=1Xi is a scalar so that all

of the information in the n-vector x = (x1, . . . , xn) relating to the scalar θ is contained in

just one number. In Example 5, all of the information in the n-vector for the two dimen-

sional parameter θ = (α, β) is contained in just two numbers. Using the Fisher-Neyman

Factorisation Theorem, we can easily obtain the following result for models drawn from the

exponential family.

Theorem 2 Let X = (X1, . . . , Xn) and suppose that the Xi are independent and identically

distributed from the exponential family of distributions given by

fXi
(xi | θ) = h(xi)c(θ) exp

 k∑
j=1

aj(θ)bj(xi)

 ,

where θ = (θ1, . . . , θd) for d ≤ k. Then

S =

(
n∑
i=1

b1(Xi), . . . ,

n∑
i=1

bk(Xi)

)

is a sufficient statistic for θ.

Example 6 The Poisson distribution, see Example 4, is a member of the exponential family

where d = k = 1 and b1(xi) = xi giving the sufficient statistic S =
∑n
i=1Xi. The Gamma

distribution, see Example 5, is also a member of the exponential family with d = k = 2 and

b1(xi) = xi and b2(xi) = log xi giving the sufficient statistic S = (
∑n
i=1Xi,

∑n
i=1 logXi)

which is equivalent to the pair (
∑n
i=1Xi,

∏n
i=1Xi).

2For a proof see, for example, Casella and Berger (2002, p276).
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The sufficiency principle

Following Section 2.2(iii) of Cox and Hinkley (1974), we may interpret sufficiency as fol-

lows. Consider two individuals who both assert the model E = {X ,Θ, fX(x | θ)}. The first

individual observes x directly. The second individual also observes x but in a two stage

process:

1. They first observe a value s(x) of a sufficient statistic S with distribution fS(s | θ).

2. They then observe the value x of the random variable X with distribution fX|S(x | s)
which does not depend upon θ.

It may well then be reasonable to argue that, as the final distribution for X for the two

individuals are identical, the conclusions drawn from the observation of a given x should be

identical for the two individuals. That is, they should make the same inference about θ.

For the second individual, when sampling from fX|S(x | s) they are sampling from a fixed

distribution and so, assuming the correctness of the model, only the first stage is informative:

all of the knowledge about θ is contained in s(x). If one takes these two statements together

then the inference to be made about θ depends only on the value s(x) and not the individual

values xi contained in x. This leads us to a third possible principle of inference.

Definition 7 (The sufficiency principle)

If S = s(X) is a sufficient statistic for θ and x and y are two observations such that s(x) =

s(y), then the inference about θ should be the same irrespective of whether X = x or X = y

was observed.

1.5 Schools of thought for statistical inference

There are two broad approaches to statistical inference, generally termed the classical

approach and the Bayesian approach . The former approach is also called frequentist .

In brief the difference between the two is in their interpretation of the parameter θ. In

a classical setting, the parameter is viewed as a fixed unknown constant and inferences are

made utilising the distribution fX(x | θ) even after the data x has been observed. Conversely,

in a Bayesian approach parameters are treated as random and so may be equipped with a

probability distribution. We now give a short overview of each school.

1.5.1 Classical inference

In a classical approach to statistical inference, no further probabilistic assumptions are made

once the parametric model E = {X ,Θ, fX(x | θ)} is specified. In particular, θ is treated as

an unknown constant and interest centres on constructing good methods of inference.

To illustrate the key ideas, we shall initially consider point estimators. The most familiar

classical point estimator is the maximum likelihood estimator (MLE). The MLE θ̂ = θ̂(X)
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satisfies, see Definition 3,

LX(θ̂(x);x) ≥ LX(θ;x)

for all θ ∈ Θ. Intuitively, the MLE is a reasonable choice for an estimator: it’s the value

of θ which makes the observed sample most likely. In general, the MLE can be viewed as

a good point estimator with a number of desirable properties. For example, it satisfies the

invariance property3 that if θ̂ is the MLE of θ then for any function g(θ), the MLE of g(θ) is

g(θ̂). However, there are drawbacks which come from the difficulties of finding the maximum

of a function.

Efron and Hastie (2016) consider that there are three ages of statistical inference: the pre-

computer age (essentially the period from 1763 and the publication of Bayes’ rule up until the

1950s), the early-computer age (from the 1950s to the 1990s), and the current age (a period of

computer-dependence with enormously ambitious algorithms and model complexity). With

these developments in mind, it is clear that there exist a hierarchy of statistical models.

1. Models where fX(x | θ) has a known analytic form.

2. Models where fX(x | θ) can be evaluated.

3. Models where we can simulate X from fX(x | θ).

Between the first case and the second case exist models where fX(x | θ) can be evaluated up

to an unknown constant, which may or may not depend upon θ.

In the first case, we might be able to derive an analytic expression for θ̂ or to prove that

fX(x | θ) has a unique maximum so that any numerical maximisation will converge to θ̂(x).

Example 7 We revisit Examples 2 and 5 and the case when θ = (α, β) are the parameters

of a Gamma distribution. In this case, the maximum likelihood estimators θ̂ = (α̂, β̂) satisfy

the equations

β̂ =
α̂

X
,

0 = n log α̂− n logX − nΓ′(α̂)

Γ(α̂)
+

n∑
i=1

logXi.

Thus, numerical methods are required to find θ̂.

In the second case, we could still numerically maximise fX(x | θ) but the maximiser may

converge to a local maximum rather than the global maximum θ̂(x). Consequently, any

algorithm utilised for finding θ̂(x) must have some additional procedures to ensure that

all local maxima are ignored. This is a non-trivial task in practice. In the third case, it

is extremely difficult to find the MLE and other estimators of θ may be preferable. This

3For a proof of this property, see Theorem 7.2.10 of Casella and Berger (2002).
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example shows that the choice of algorithm is critical: the MLE is a good method of inference

only if:

1. you can prove that it has good properties for your choice of fX(x | θ) and

2. you can prove that the algorithm you use to find the MLE of fX(x | θ) does indeed do

this.

The second point arises once the choice of estimator has made. We now consider how to

assess whether a chosen point estimator is a good estimator. One possible attractive feature

is that the method is, on average, correct. As estimator T = t(X) is said to be unbiased if

bias(T | θ) = E(T | θ)− θ

is zero for all θ ∈ Θ. This is a superficially attractive criterion but it can lead to unexpected

results (which are not sensible estimators) even in simple cases.

Example 8 (Example 8.1 of Cox and Hinkley (1974))

Let X denote the number of independent Bernoulli(θ) trials up to and including the first

success so that X ∼ Geom(θ) with

fX(x | θ) = (1− θ)x−1θ

for x = 1, 2, . . . and zero otherwise. If T = t(X) is an unbiased estimator of θ then

E(T | θ) =

∞∑
x=1

t(x)(1− θ)x−1θ = θ.

Letting φ = 1− θ we thus have

∞∑
x=1

t(x)φx−1(1− φ) = 1− φ.

Thus, equating the coefficients of powers of φ, we find that the unique unbiased estimate of

θ is

t(x) =

{
1 x = 1,

0 x = 2, 3, . . . .

This is clearly not a sensible estimator.

Another drawback with the bias is that it is not, in general, transformation invariant. For

example, if T is an unbiased estimator of θ then T−1 is not, in general, an unbiased estimator

of θ−1 as E(T−1 | θ) 6= 1/E(T | θ) = θ−1. An alternate, and better, criterion is that T has

small mean square error (MSE),

MSE(T | θ) = E((T − θ)2 | θ)

= E({(T − E(T | θ)) + (E(T | θ)− θ)}2 | θ)

= V ar(T | θ) + bias(T | θ)2.
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Thus, estimators with a small mean square error will typically have small variance and bias

and it’s possible to trade unbiasedness for a smaller variance. What this discussion does make

clear is that it is properties of the distribution of the estimator T , known as the sampling

distribution , across the range of possible values of θ that are used to determine whether or

not T is a good inference rule. Moreover, this assessment is made not for the observed data

x but based on the distributional properties of X. In this sense, we determine the method

of inference by calibrating how they would perform were they to be used repeatedly. As Cox

(2006; p8) notes “we intend, of course, that this long-run behaviour is some assurance that

with our particular data currently under analysis sound conclusions are drawn.”

Example 9 Let X = (X1, . . . , Xn) and suppose that the Xi are independent and identically

distribution normal random variables with mean θ and variance 1. Letting X = 1
n

∑n
i−1Xi

then

P
(
θ − 1.96√

n
≤ X ≤ θ +

1.96√
n

∣∣∣∣ θ) = P
(
X − 1.96√

n
≤ θ ≤ X +

1.96√
n

∣∣∣∣ θ) = 0.95.

Thus, (X − 1.96√
n
, X + 1.96√

n
) is a set estimator for θ with a coverage probability of 0.95. We

can consider this as a method of inference, or algorithm. If we observe X = x corresponding

to X = x then our algorithm is

x 7→
(
x− 1.96√

n
, x+

1.96√
n

)
which produces a 95% confidence interval for θ. Notice that we report two things: the re-

sult of the algorithm (the actual interval) and the justification (the long-run property of the

algorithm) or certification of the algorithm (95% confidence interval).

As the example demonstrates, the certification is determined by the sampling distribution

(X is a normal distribution with mean θ and variance 1/n) whilst the choice of algorithm

is determined by the certification (in this case, the coverage probability of 0.954). This is

an inverse problem in the sense that we work backwards from the required certificate to the

choice of algorithm. Notice that we are able to compute the coverage for every θ ∈ Θ as

we have a pivot :
√
n(X − θ) is a normal distribution with mean 0 and variance 1 and so

parameter free. For more complex models it will not be straightforward to do this.

We can generalise the idea exhibited in Example 9 into a key principle of the classical

approach that

1. Every algorithm is certified by its sampling distribution, and

2. The choice of algorithm depends on this certification.

4For example, if we wanted a coverage of 0.90 then we would amend the algorithm by replacing 1.96 in

the interval calculation with 1.645.
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Thus, point estimators of θ may be certified by their mean square error function; set esti-

mators of θ may be certified by their coverage probability; hypothesis tests may be certified

by their power function. The definition of each of these certifications is not important here,

though they are easy to look up. What is important to understand is that in each case

an algorithm is proposed, the sampling distribution is inspected, and then a certificate is

issued. Individuals and user communities develop conventions about certificates they like

their algorithms to possess, and thus they choose an algorithm according to its certification.

For example, in clinical trials, it is for a hypothesis test to have a type I error below 5% with

large power.

We now consider prediction in a classical setting. As in Section 1.3, see equation (1.1), from a

parametric model for (X,Y ), E = {X ×Y,Θ, fX,Y (x, y | θ)} we can calculate the predictive

model

E∗ = {Y,Θ, fY |X(y |x, θ)}.

The difficulty here is that E∗ is a family of distributions and we seek to reduce this down to

a single distribution; effectively, to “get rid of” θ. If we accept, as our working hypothesis,

that one of the elements in the family of distributions is true, that is that there is a θ∗ ∈ Θ

which is the true value of θ then the corresponding predictive distribution fY |X(y |x, θ∗) is

the true predictive distribution for Y . The classical solution is to replace θ∗ by plugging-in

an estimate based on x.

Example 10 If we use the MLE θ̂ = θ̂(x) then we have an algorithm

x 7→ fY |X(y |x, θ̂(x)).

The estimator does not have to be the MLE and so we see that different estimators produce

different algorithms.

1.5.2 Bayesian inference

In a Bayesian approach to statistical inference, we consider that, in addition to the parametric

model E = {X ,Θ, fX(x | θ)}, the uncertainty about the parameter θ prior to observing X

can be represented by a prior distribution π on θ. We can then utilise Bayes’s theorem

to obtain the posterior distribution π(θ |x) of θ given X = x,

π(θ |x) =
fX(x | θ)π(θ)∫

Θ
fX(x | θ)π(θ) dθ

.

We make the following definition.

Definition 8 (Bayesian statistical model)

A Bayesian statistical model is the collection EB = {X ,Θ, fX(x | θ), π(θ)}.
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As O’Hagan and Forster (2004; p5) note, “the posterior distribution encapsulates all that is

known about θ following the observation of the data x, and can be thought of as comprising

an all-embracing inference statement about θ.” In the context of algorithms, we have

x 7→ π(θ |x)

where each choice of prior distribution produces a different algorithm. In this course, our

primary focus is upon general theory and methodology and so, at this point, we shall merely

note that both specifying a prior distribution for the problem at hand and deriving the

corresponding posterior distribution are decidedly non-trivial tasks. Indeed, in the same

way that we discussed a hierarchy of statistical models for fX(x | θ) in Section 1.5.1, an

analogous hierarchy exists for the posterior distribution π(θ |x).

In contrast to the plug-in classical approach to prediction, the Bayesian approach can be

viewed as integrate-out . If EB = {X × Y,Θ, fX,Y (x, y | θ), π(θ)} is our Bayesian model for

(X,Y ) and we are interested in prediction for Y given X = x then we can integrate out θ

to obtain the parameter free conditional distribution fY |X(y |x):

fY |X(y |x) =

∫
Θ

fY |X(y |x, θ)π(θ |x) dθ. (1.4)

In terms of an algorithm, we have

x 7→ fY |X(y |x)

where, as equation (1.4) involves integrating out θ according to the posterior distribution,

then each choice of prior distribution produces a different algorithm.

Whilst the posterior distribution expresses all of knowledge about the parameter θ given the

data x, in order to express this knowledge in clear and easily understood terms we need to

derive appropriate summaries of the posterior distribution. Typical summaries include point

estimates, interval estimates, probabilities of specified hypotheses.

Example 11 Suppose that θ is a univariate parameter and we consider summarising θ by a

number d. We may compute the posterior expectation of the squared distance between t and

θ.

E((d− θ)2 |X) = E(d2 − 2dθ + θ2 |X)

= d2 − 2dE(θ |X) + E(θ2 |X)

= (d− E(θ |X))2 + V ar(θ |X).

Consequently d = E(θ |X), the posterior expectation, minimises the posterior expected square

error and the minimum value of this error is V ar(θ |X), the posterior variance.
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In this way, we have a justification for E(θ |X) as an estimate of θ. We could view d as

a decision, the result of which was to occur an error t − θ. In this example we choose to

measure how good or bad a particular decision was by the squared error suggesting that

we were equally happy to overestimate θ as underestimate it and that large errors are more

serious than they would be if an alternate measure such as |d− θ| was used.

1.5.3 Inference as a decision problem

In the second half of the course we will study inference as a decision problem. In this context

we assume that we make a decision d which acts as an estimate of θ. The consequence of

this decision in a given context can be represented by a specific loss function L(θ, d) which

measures the quality of the choice d when θ is known. In this setting, decision theory allows

us to identify a best decision. As we will see, this approach has two benefits. Firstly, we

can form a link between Bayesian and classical procedures, in particular the extent to which

classical estimators, confidence intervals and hypothesis tests can be interpreted within a

Bayesian framework. Secondly, we can provide Bayesian solutions to the inference questions

addressed in a classical approach.
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2 Principles for Statistical Inference

2.1 Introduction

We wish to consider inferences about a parameter θ given a parametric model

E = {X ,Θ, fX(x | θ)}.

We assume that the model is true so that only θ ∈ Θ is unknown. We wish to learn about

θ from observations x so that E represents a model for this experiment . Our inferences

can be described in terms of an algorithm involving both E and x. In this chapter, we shall

assume that X is finite; Basu (1975, p4) argues that “this contingent and cognitive universe

of ours is in reality only finite and, therefore, discrete . . . [infinite and continuous models] are

to be looked upon as mere approximations to the finite realities.”

Statistical principles guide the way in which we learn about θ. These principles are meant

to be either self-evident, or logical implications of principles which are self-evident. What

is really interesting about Statistics, for both statisticians and philosophers (and real-world

decision makers) is that the logical implications of some self-evident principles are not at

all self-evident, and have turned out to be inconsistent with prevailing practices. This was

a discovery made in the 1960s. Just as interesting, for sociologists (and real-world decision

makers) is that the then-prevailing practices have survived the discovery, and continue to be

used today.

This chapter is about statistical principles, and their implications for statistical inference.

It demonstrates the power of abstract reasoning to shape everyday practice.

2.2 Reasoning about inferences

Statistical inferences can be very varied, as a brief look at the ‘Results’ sections of the papers

in an Applied Statistics journal will reveal. In each paper, the authors have decided on a

different interpretation of how to represent the ‘evidence’ from their dataset. On the surface,

it does not seem possible to construct and reason about statistical principles when the notion

of ‘evidence’ is so plastic. It was the inspiration of Allan Birnbaum1 (Birnbaum, 1962) to

1Allan Birnbaum (1923-1976)
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see—albeit indistinctly at first—that this issue could be side-stepped. Over the next two

decades, his original notion was refined; key papers in this process were Birnbaum (1972),

Basu (1975), Dawid (1977), and the book by Berger and Wolpert (1988).

The model E is accepted as a working hypothesis. How the statistician chooses her

statements about the true value θ is entirely down to her and her client: as a point or a set

in Θ, as a choice among alternative sets or actions, or maybe as some more complicated,

not ruling out visualisations. Dawid (1977) puts this well - his formalism is not excessive,

for really understanding this crucial concept. The statistician defines, a priori , a set of

possible ”inferences about θ”, and her task is to choose an element of this set based on E
and x. Thus the statistician should see herself as a function ‘Ev’: a mapping from (E , x)

into a predefined set of ‘inferences about θ’, or

(E , x)
statistician, Ev7−→ Inference about θ.

Thus, Ev(E , x) is the inference about θ made if E is performed and X = x is observed.

For example, Ev(E , x) might be the maximum likelihood estimator of θ or a 95% confidence

interval for θ. Birnbaum called E the ‘experiment’, x the ‘outcome’, and Ev the ‘evidence’.

Birnbaum (1962)’s formalism, of an experiment, an outcome, and an evidence function,

helps us to anticipate how we can construct statistical principles. First, there can be different

experiments with the same θ. Second, under some outcomes, we would agree that it is self-

evident that these different experiments provide the same evidence about θ. Thus, we can

follow Basu (1975, p3) and define the equality or equivalence of Ev(E1, x1) and Ev(E2, x2)

as meaning that

1. The experiments E1 and E2 are related to the same parameter θ.

2. ‘Everything else being equal’, the outcome x1 from E1 ‘warrants the same inference’

about θ as does the outcomes x2 from E2.

As we will show, these self-evident principles imply other principles. These principles all have

the same form: under such and such conditions, the evidence about θ should be the same.

Thus they serve only to rule out inferences that satisfy the conditions but have different

evidences. They do not tell us how to do an inference, only what to avoid.

2.3 The principle of indifference

We now give our first example of a statistical principle, using the name conferred by Basu

(1975).

Principle 1 (Weak Indifference Principle, WIP)

Let E = {X ,Θ, fX(x | θ)}. If fX(x | θ) = fX(x′ | θ) for all θ ∈ Θ then Ev(E , x) = Ev(E , x′).

As Birnbaum (1972) notes, this principle, which he termed mathematical equivalence, asserts

that we are indifferent between two models of evidence if they differ only in the manner of
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the labelling of sample points. For example, if X = (X1, . . . , Xn) where the Xis are a

series of independent Bernoulli trials with parameter θ then fX(x | θ) = fX(x′ | θ) if x and x′

contain the same number of successes. We will show that the WIP logically follows from the

following two principles, which I would argue are self-evident, for which we use the names

conferred by Dawid (1977).

Principle 2 (Distribution Principle, DP)

If E = E ′, then Ev(E , x) = Ev(E ′, x).

As Dawid (1977, p247) writes “informally, this says that the only aspects of an experiment

which are relevant to inference are the sample space and the family of distributions over it.”

Principle 3 (Transformation Principle, TP)

Let E = {X ,Θ, fX(x | θ)}. For the bijective g : X → Y, let Eg = {Y,Θ, fY (y | θ)}, the same

experiment as E but expressed in terms of Y = g(X), rather than X. Then Ev(E , x) =

Ev(Eg, g(x)).

This principle states that inferences should not depend on the way in which the sample space

is labelled.

Example 12 Recall Example 2. Under TP, inferences about θ are the same if we observe

x = (x1, . . . , xn) where each independent Xi ∼ Gamma(α, β) or X−1 = (1/x1, . . . , 1/xn)

where each independent X−1
i ∼ Inverse-Gamma(α, β).

We have the following result, see Basu (1975), Dawid (1977).

Theorem 3 (DP ∧ TP )→WIP.

Proof: Fix E , and suppose that x, x′ ∈ X satisfy fX(x | θ) = fX(x′ | θ) for all θ ∈ Θ, as in

the condition of the WIP. Now consider the transformation g : X → X which switches x for

x′, but leaves all of the other elements of X unchanged. In this case E = Eg. Then

Ev(E , x′) = Ev(Eg, x′) (2.1)

= Ev(Eg, g(x)) (2.2)

= Ev(E , x), (2.3)

where equation (2.1) follows by the DP and (2.3) follows from (2.2) by the TP. We thus have

the WIP. 2

Therefore, if I accept the principles DP and TP then I must also accept the WIP. Conversely,

if I do not want to accept the WIP then I must reject at least one of the DP and TP. This is

the pattern of the next few sections, where either I must accept a principle, or, as a matter

of logic, I must reject one of the principles that implies it.
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2.4 The Likelihood Principle

Suppose we have experiments Ei = {Xi,Θ, fXi
(xi | θ)}, i = 1, 2, . . ., where the parameter

space Θ is the same for each experiment. Let p1, p2, . . . be a set of known probabilities so

that pi ≥ 0 and
∑
i pi = 1. The mixture E∗ of the experiments E1, E2, . . . according to

mixture probabilities p1, p2, . . . is the two-stage experiment

1. A random selection of one of the experiments: Ei is selected with probability pi.

2. The experiment selected in stage 1. is performed.

Thus, each outcome of the experiment E∗ is a pair (i, xi), where i = 1, 2, . . . and xi ∈ Xi,
and family of distributions

f∗((i, xi) | θ) = pifXi(xi | θ). (2.4)

The famous example of a mixture experiment is the ‘two instruments’ (see Section 2.3 of

Cox and Hinkley (1974)). There are two instruments in a laboratory, and one is accurate, the

other less so. The accurate one is more in demand, and typically it is busy 80% of the time.

The inaccurate one is usually free. So, a priori, there is a probability of p1 = 0.2 of getting

the accurate instrument, and p2 = 0.8 of getting the inaccurate one. Once a measurement

is made, of course, there is no doubt about which of the two instruments was used. The

following principle asserts what must be self-evident to everybody, that inferences should be

made according to which instrument was used and not according to the a priori uncertainty.

Principle 4 (Weak Conditionality Principle, WCP)

Let E∗ be the mixture of the experiments E1, E2 according to mixture probabilities p1, p2 =

1− p1. Then Ev (E∗, (i, xi)) = Ev(Ei, xi).

Thus, the WCP states that inferences for θ depend only on the experiment performed. As

Casella and Berger (2002, p293) state “the fact that this experiment was performed rather

than some other, has not increased, decreased, or changed knowledge of θ.”

In Section 1.4.1, we motivated the strong likelihood principle, see Definition 5. We now

reassert this principle.2

Principle 5 (Strong Likelihood Principle, SLP)

Let E1 and E2 be two experiments which have the same parameter θ. If x1 ∈ X1 and x2 ∈ X2

satisfy fX1
(x1 | θ) = c(x1, x2)fX2

(x2 | θ), that is

LX1(θ;x1) = c(x1, x2)LX2(θ;x2)

for some function c > 0 for all θ ∈ Θ then Ev(E1, x1) = Ev(E2, x2).

2The SLP is self-attributed to G. Barnard, see his comment to Birnbaum (1962) , p. 308. But it is alluded

to in the statistical writings of R.A. Fisher, almost appearing in its modern form in Fisher (1956).
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The SLP thus states that if two likelihood functions for the same parameter have the same

shape, then the evidence is the same. As we shall discuss in Section 2.8, many classical sta-

tistical procedures violate the SLP and the following result was something of the bombshell,

when it first emerged in the 1960s. The following form is due to Birnbaum (1972) and Basu

(1975).3

Theorem 4 (Birnbaum’s Theorem)

(WIP ∧WCP )↔ SLP.

Proof: Both SLP → WIP and SLP → WCP are straightforward. The trick is to prove

(WIP∧WCP )→ SLP. So let E1 and E2 be two experiments which have the same parameter,

and suppose that x1 ∈ X1 and x2 ∈ X2 satisfy fX1
(x1 | θ) = c(x1, x2)fX2

(x2 | θ) where the

function c > 0. As the value c is known (as the data has been observed) then consider the

mixture experiment with p1 = 1/(1 + c) and p2 = c/(1 + c). Then, using equation (2.4),

f∗((1, x1) | θ) =
1

1 + c
fX1

(x1 | θ)

=
c

1 + c
fX2

(x2 | θ) (2.5)

= f∗((2, x2) | θ) (2.6)

where equation (2.6) follows from (2.5) by (2.4). Then the WIP implies that

Ev (E∗, (1, x1)) = Ev (E∗, (2, x2)) .

Finally, applying the WCP to each side we infer that

Ev(E1, x1) = Ev(E2, x2),

as required. 2

Thus, either I accept the SLP, or I explain which of the two principles, WIP and WCP, I

refute. Methods which violate the SLP face exactly this challenge.

2.5 The Sufficiency Principle

In Section 1.4.2 we considered the idea of sufficiency. From Definition 6, if S = s(X) is

sufficient for θ then

fX(x | θ) = fX|S(x | s, θ)fS(s | θ) (2.7)

where fX|S(x | s, θ) does not depend upon θ. Consequently, we consider the experiment

ES = {s(X ),Θ, fS(s | θ)}.
3Birnbaum’s original result (Birnbaum, 1962), used a stronger condition than WIP and a slightly weaker

condition than WCP. Theorem 4 is clearer.
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Principle 6 (Strong Sufficiency Principle, SSP)

If S = s(X) is a sufficient statistic for the experiment E = {X ,Θ, fX(x | θ)} then Ev(E , x) =

Ev(ES , s(x)).

A weaker, Basu (1975) terms it ‘perhaps a trifle less severe’, but more familiar version which

is in keeping with Definition 7 is as follows.

Principle 7 (Weak Sufficiency Principle, WSP)

If S = s(X) is a sufficient statistic for the experiment E = {X ,Θ, fX(x | θ)} and s(x) = s(x′)

then Ev(E , x) = Ev(E , x′).

Theorem 5 SLP→ SSP→WSP→WIP.

Proof: From equation (2.7), fX(x | θ) = cfS(s | θ) where c = fX|S(x | s, θ) does not depend

upon θ. Thus, from the SLP, Principle 5, Ev(E , x) = Ev(ES , s(x)) which is the SSP, Principle

6. Note, that from the SSP,

Ev(E , x) = Ev(ES , s(x)) (2.8)

= Ev(ES , s(x′)) (2.9)

= Ev(E , x′) (2.10)

where (2.9) follows from (2.8) as s(x) = s(x′) and (2.10) from (2.9) from the SSP. We thus

have the WSP, Principle 7. Finally, notice that if fX(x | θ) = fX(x′ | θ) as in the statement of

WIP, Principle 1, then s(x) = x′ is sufficient for x and so from the WSP, Ev(E , x) = Ev(E , x′)
giving the WIP. 2

Finally, we note that if we put together Theorem 4 and Theorem 5 we get the following

corollary.

Corollary 1 (WIP ∧WCP)→ SSP.

2.6 Stopping rules

Suppose that we consider observing a sequence of random variables X1, X2, . . . where the

number of observations is not fixed in advanced but depends on the values seen so far. That

is, at time j, the decision to observe Xj+1 can be modelled by a probability pj(x1, . . . , xj).

We can assume, resources being finite, that the experiment must stop at specified time m, if it

has not stopped already, hence pm(x1, . . . , xm) = 0. The stopping rule may then be denoted

as τ = (p1, . . . , pm). This gives an experiment Eτ with, for n = 1, 2, . . ., fn(x1, . . . , xn | θ)
where consistency requires that

fn(x1, . . . , xn | θ) =
∑
xn+1

· · ·
∑
xm

fm(x1, . . . , xn, xn+1, . . . xm | θ).
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We utilise the following example from Basu (1975, p42) to motivate the stopping rule princi-

ple. Consider four different coin-tossing experiments (with some finite limit on the number

of tosses).

E1 Toss the coin exactly 10 times;

E2 Continue tossing until 6 heads appear;

E3 Continue tossing until 3 consecutive heads appear;

E4 Continue tossing until the accumulated number of heads exceeds that of tails by exactly

2.

One could easily adduce more sequential experiments which gave the same outcome. Notice

that E1 corresponds to a binomial model and E2 to a negative binomial. Suppose that all

four experiments have the same outcome x = (T,H,T,T,H,H,T,H,H,H).

In line with Example 3, we may feel that the evidence for θ, the probability of heads, is

the same in every case. Once the sequence of heads and tails is known, the intentions of the

original experimenter (i.e. the experiment she was doing) are immaterial to inference about

the probability of heads, and the simplest experiment E1 can be used for inference. We can

consider the following principle which Basu (1975) claims is due to George Barnard.4

Principle 8 (Stopping Rule Principle, SRP)

In a sequential experiment Eτ , Ev (Eτ , (x1, . . . , xn)) does not depend on the stopping rule τ .

The SRP is nothing short of revolutionary, if it is accepted. It implies that that the intentions

of the experimenter, represented by τ , are irrelevant for making inferences about θ, once the

observations (x1, . . . , xn) are available. Once the data is observed, we can ignore the sampling

plan. Thus the statistician could proceed as though the simplest possible stopping rule were

in effect, which is p1 = · · · = pn−1 = 1 and pn = 0, an experiment with n fixed in advance.

Obviously it would be liberating for the statistician to put aside the experimenter’s intentions

(since they may not be known and could be highly subjective), but can the SRP possibly be

justified? Indeed it can.

Theorem 6 SLP→ SRP.

Proof: Let τ be an arbitrary stopping rule, and consider the outcome (x1, . . . , xn), which

we will denote as x1:n. We take the first observation with probability one and, for j =

1, . . . , n − 1, the (j + 1)th observation is taken with probability pj(x1:j), and we stop after

the nth observation with probability 1 − pn(x1:n). Consequently, the probability of this

4George Barnard (1915-2002)
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outcome under τ is

fτ (x1:n | θ) = f1(x1 | θ)


n−1∏
j=1

pj(x1:j) fj+1(xj+1 |x1:j , θ)

 (1− pn(x1:n))

=


n−1∏
j=1

pj(x1:j)

 (1− pn(x1:n)) f1(x1 | θ)
n∏
j=2

fj(xj |x1:(j−1), θ)

=


n−1∏
j=1

pj(x1:j)

 (1− pn(x1:n)) fn(x1:n | θ).

Now observe that this equation has the form

fτ (x1:n | θ) = c(x1:n)fn(x1:n | θ) (2.11)

where c(x1:n) > 0. Thus the SLP implies that Ev(Eτ , x1:n) = Ev(En, x1:n) where En =

{Xn,Θ, fn(x1:n | θ)}. Since the choice of stopping rule was arbitrary, equation (2.11) holds

for all stopping rules, showing that the choice of stopping rule is irrelevant. 2

The Stopping Rule Principle has become enshrined in our profession’s collective memory

due to this iconic comment from L.J. Savage5, one of the great statisticians of the Twentieth

Century:

May I digress to say publicly that I learned the stopping rule principle from Pro-

fessor Barnard, in conversation in the summer of 1952. Frankly, I then thought it

a scandal that anyone in the profession could advance an idea so patently wrong,

even as today I can scarcely believe that some people resist an idea so patently

right. (Savage et al., 1962, p76)

This comment captures the revolutionary and transformative nature of the SRP.

2.7 A stronger form of the WCP

The new concept in this section is ‘ancillarity’. This has several different definitions in the

Statistics literature; the one we use is close to that of Cox and Hinkley (1974, Section 2.2).

Definition 9 (Ancillarity)

Y is ancillary in the experiment E = {X ×Y,Θ, fX,Y (x, y | θ)} exactly when fX,Y factorises

as

fX,Y (x, y | θ) = fY (y)fX|Y (x | y, θ).
5Leonard Jimmie Savage (1917-1971)
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In other words, the marginal distribution of Y is completely specified. Not all families of

distributions will factorise in this way, but when they do, there are new possibilities for

inference, based around stronger forms of the WCP.

Here is an example, which will be familiar to all statisticians. We have been given a

sample x = (x1, . . . , xn) to evaluate. In fact n itself is likely to be the outcome of a random

variable N , because the process of sampling itself is rather uncertain. However, we seldom

concern ourselves with the distribution of N when we evaluate x; instead we treat N as

known. Equivalently, we treat N as ancillary and condition on N = n. In this case, we

might think that inferences drawn from observing (n, x) should be the same as those for x

conditioned on N = n.

When Y is ancillary, we can consider the conditional experiment

EX | y = {X ,Θ, fX |Y (x | y, θ)},

This is an experiment where we condition on Y = y, i.e. treat Y as known, and treat X as

the only random variable. This is an attractive idea, captured in the following principle.

Principle 9 (Strong Conditionality Principle, SCP)

If Y is ancillary in E, then Ev (E , (x, y)) = Ev(EX|y, x).

As a second example, consider a regression of Y on X appears to make a distinction between

Y , which is random, and X, which is not. This distinction is insupportable, given that the

roles of Y and X are often interchangeable, and determined by the hypothèse du jour. What

is really happening is that (X,Y ) is random, but X is being treated as ancillary for the

parameters in fY |X , so that its parameters are auxiliary in the analysis. Then the SCP is

invoked (implicitly), which justifies modelling Y conditionally on X, treating X as known.

Clearly the SCP implies the WCP, with the experiment indicator I ∈ {1, 2} being ancillary,

since p is known. It is almost obvious that the SCP comes for free with the SLP. Another

way to put this is that the WIP allows us to ‘upgrade’ the WCP to the SCP.

Theorem 7 SLP→ SCP.

Proof: Suppose that Y is ancillary in E = {X × Y,Θ, fX,Y (x, y | θ)}. Thus, for all θ ∈ Θ,

fX,Y (x, y | θ) = fY (y)fX|Y (x | y, θ)

= c(y)fX|Y (x | y, θ)

Then the SLP implies that

Ev (E , (x, y)) = Ev(EX|y, x),

as required. 2
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2.8 The Likelihood Principle in practice

Now we should pause for breath, and ask the obvious questions: is the SLP vacuous? Or

trivial? In other words, Is there any inferential approach which respects it? Or do all

inferential approaches respect it? We shall focus on the classical and Bayesian approaches,

as outlined in Section 1.5.1 and Section 1.5.2 respectively.

Recall from Definition 8 that a Bayesian statistical model is the collection

EB = {X ,Θ, fX(x | θ), π(θ)}.

The posterior distribution

π(θ |x) = c(x)fX(x | θ)π(θ) (2.12)

where c(x) is the normalising constant,

c(x) =

{∫
Θ

fX(x | θ)π(θ) dθ

}−1

.

From a Bayesian perspective, all knowledge about the parameter θ given the data x are rep-

resented by π(θ |x) and any inferences made about θ are derived from this distribution. If we

have two Bayesian models with the same prior distribution, EB,1 = {X1,Θ, fX1(x1 | θ), π(θ)}
and EB,2 = {X2,Θ, fX2

(x2 | θ), π(θ)} and fX1
(x1 | θ) = c(x1, x2)fX2

(x2 | θ) then

π(θ |x1) = c(x1)fX1
(x1 | θ)π(θ)

= c(x1)c(x1, x2)fX2(x2 | θ)π(θ)

= π(θ |x2) (2.13)

so that the posterior distributions are the same. Consequently, the same inferences are drawn

from either model and so the Bayesian approach satisfies the SLP. Notice that this assumes

that the prior distribution exists independently of the outcome, that is the prior does not

depend upon the form of the data. In practice, though, is hard to do. Some methods for

making default choices for π depend on fX , notably Jeffreys priors and reference priors, see

for example, Bernardo and Smith (2000, Section 5.4). These methods violate the SLP.

The classical approach however violates the SLP. As we noted in Section 1.5.1, algorithms

are certified in terms of their sampling distributions, and selected on the basis of their certi-

fication. For example, the mean square error of an estimator T , MSE(T | θ) = V ar(T | θ) +

bias(T | θ)2 depends upon the first and second moments of the distribution of T | θ. Conse-

quently, they depend on the whole sample space X and not just the observed x ∈ X .

Example 13 (Example 1.3.5 of Robert (2007)

Suppose that X1, X2 are iid N(θ, 1) so that

f(x1, x2 | θ) ∝ exp
{
−(x− θ)2

}
.
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Now, consider the alternate model for the same parameter θ

g(x1, x2 | θ) = π−
3
2

exp
{
−(x− θ)2

}
1 + (x1 − x2)2

We thus observe that f(x1, x2 | θ) ∝ g(x1, x2 | θ) as a function of θ. If the SLP is applied,

then inference about θ should be the same in both models. However, the distribution of g is

quite different from that of f and so estimators of θ will have different classical properties

if they do not depend only on x. For example, g has heavier tails than f and so respective

confidence intervals may differ between the two.

We can extend the idea of this example by showing that if Ev(E , x) depends on the value of

fX(x′ | θ) for some x′ 6= x then we can create an alternate experiment E1 = {X ,Θ, f1(x | θ)}
where f1(x | θ) = fX(x | θ) for the observed x but f1(x | θ) 6= fX(x | θ) for all x ∈ X . In

particular, we can ensure that f1(x′ | θ) 6= fX(x′ | θ). Then, typically, Ev does not respect

the SLP.

To do this, let x̃ 6= x, x′ and set

f1(x′ | θ) = αfX(x′ | θ) + βfX(x̃ | θ)

f1(x̃ | θ) = (1− α)fX(x′ | θ) + (1− β)fX(x̃ | θ)

with f1 = fX elsewhere. Clearly f1(x′ | θ) + f1(x̃ | θ) = fX(x′ | θ) + fX(x̃ | θ) and so f1 is a

probability distribution. By suitable choice of α, β we can redistribute the mass to ensure

f1(x′ | θ) 6= fX(x′ | θ). Consequently, whilst f1(x | θ) = fX(x | θ) for the observed x we will

not have that Ev(E , x) = Ev(E1, x) and so will violate the SLP.

This illustrates that classical inference typically does not respect the SLP because the

sampling distribution of the algorithm depends on values of fX other than L(θ;x) = fX(x | θ).
The two main difficulties with violating the SLP are:

1. To reject the SLP is to reject at least one of the WIP and the WCP. Yet both of these

principles seem self-evident. Therefore violating the SLP is either illogical or obtuse.

2. In their everyday practice, statisticians use the SCP (treating some variables as ancil-

lary) and the SRP (ignoring the intentions of the experimenter). Neither of these is

self-evident, but both are implied by the SLP. If the SLP is violated, then they both

need an alternative justification.

Alternative formal justifications for the SCP and the SRP have not been forthcoming.

2.9 Reflections

The statistician takes delivery of an outcome x. Her standard practice is to assume the

truth of a statistical model E , and then turn (E , x) into an inference about the true value of

the parameter θ. As remarked several times already (see Chapter 1), this is not the end of
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her involvement, but it is a key step, which may be repeated several times, under different

notions of the outcome and different statistical models. This chapter concerns this key step:

how she turns (E , x) into an inference about θ.

Whatever inference is required, we assume that the statistician applies an algorithm to

(E , x). In other words, her inference about θ is not arbitrary, but transparent and repro-

ducible - this is hardly controversial, because anything else would be non-scientific. Following

Birnbaum, the algorithm is denoted Ev. The question now becomes: how does she choose

her Ev?

As discussed in Smith (2010, Chapter 1), there are three players in an inference problem,

although two roles may be taken by the same person. There is the client, who has the

problem, the statistician whom the client hires to help solve the problem, and the auditor

whom the client hires to check the statistician’s work. The statistician needs to be able to

satisfy an auditor who asks about the logic of their approach. This chapter does not explain

how to choose Ev; instead it describes some properties that ‘Ev’ might have. Some of these

properties are self-evident, and to violate them would be hard to justify to an auditor. These

properties are the DP (Principle 2), the TP (Principle 2), and the WCP (Principle 4). Other

properties are not at all self-evident; the most important of these are the SLP (Principle 5),

the SRP (Principle 8) and the SCP (Principle 9). These not self-evident properties would be

extremely attractive, were it possible to justify them. And as we have seen, they can all be

justified as logical deductions from the properties that are self-evident. This is the essence

of Birnbaum’s Theorem (Theorem 4).

For over a century, statisticians have been proposing methods for selecting algorithms

for Ev, independently of this strand of research concerning the properties that such algo-

rithms ought to have (remember that Birbaum’s Theorem was published in 1962). Bayesian

inference, which turns out to respect the SLP, is compatible with all of the properties given

above, but classical inference, which turns out to violate the SLP, is not. The two main

consequences of this violation are described in Section 2.8.

Now it is important to be clear about one thing. Ultimately, an inference is a single

element in the space of ‘possible inferences about θ’. An inference cannot be evaluated

according to whether or not it satisfies the SLP. What is being evaluated in this chapter is

the algorithm, the mechanism by which E and x are turned into an inference. It is quite

possible that statisticians of quite different persuasions will produce effectively identical

inferences from different algorithms. For example, if asked for a set estimate of θ, a Bayesian

statistician might produce a 95% High Density Region, and a classical statistician a 95%

confidence set, but they might be effectively the same set. But it is not the inference that

is the primary concern of the auditor: it is the justification for the inference, among the

uncountable other inferences that might have been made but weren’t. The auditor checks

the ‘why’, before passing the ‘what’ on to the client.

So the auditor will ask: why do you choose algorithm Ev? The classical statistician

will reply, “Because it is a 95% confidence procedure for θ, and, among the uncountable
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number of such procedures, this is a good choice [for some reasons that are then given].”

The Bayesian statistician will reply “Because it is a 95% High Posterior Density region for θ

for prior distribution π(θ), and among the uncountable number of prior distributions, π(θ)

is a good choice [for some reasons that are then given].” Let’s assume that the reasons are

compelling, in both cases. The auditor has a follow-up question for the classicist but not

for the Bayesian: “Why are you not concerned about violating the Likelihood Principle?”

A well-informed auditor will know the theory of the previous sections, and the consequences

of violating the SLP that are given in Section 2.8. For example, violating the SLP is either

illogical or obtuse - neither of these properties are desirable in an applied statistician.

This is not an easy question to answer. The classicist may reply “Because it is important

to me that I control my error rate over the course of my career”, which is incompatible with

the SLP. In other words, the statistician ensures that, by always using a 95% confidence

procedure, the true value of θ will be inside at least 95% of her confidence sets, over her

career. Of course, this answer means that the statistician puts her career error rate before

the needs of her current client. I can just about imagine a client demanding “I want a

statistician who is right at least 95% of the time.” Personally, though, I would advise a

client against this, and favour instead a statistician who is concerned not with her career

error rate, but rather with the client’s particular problem.
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3 Statistical Decision Theory

3.1 Introduction

The basic premise of Statistical Decision Theory is that we want to make inferences about

the parameter of a family of distributions in the statistical model

E = {X ,Θ, fX(x | θ)},

typically following observation of sample data, or information, x. We would like to under-

stand how to construct the ‘Ev’ function from Chapter 2, in such a way that it reflects our

needs, which will vary from application to application, and which assesses the consequences

of making a good or bad inference.

The set of possible inferences, or decisions, is termed the decision space , denoted D.

For each d ∈ D, we want a way to assess the consequence of how good or bad the choice of

decision d was under the event θ.

Definition 10 (Loss function)

A loss function is any function L from Θ×D to [0,∞).

The loss function is measures the penalty or error, L(θ, d) of the decision d when the param-

eter takes the value θ. Thus, larger values indicate worse consequences.

The three main types of inference about θ are (i) point estimation, (ii) set estimation, and

(iii) hypothesis testing. It is a great conceptual and practical simplification that Statistical

Decision Theory distinguishes between these three types simply according to their decision

spaces, which are:

Type of inference Decision space D

Point estimation The parameter space, Θ. See Section 3.4.

Set estimation A set of subsets of Θ. See Section 3.5.

Hypothesis testing A specified partition of Θ, denoted H. See

Section 3.6.
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3.2 Bayesian statistical decision theory

In a Bayesian approach, a statistical decision problem [Θ,D, π(θ), L(θ, d)] has the following

ingredients.

1. The possible values of the parameter: Θ, the parameter space.

2. The set of possible decisions: D, the decision space.

3. The probability distribution on Θ, π(θ). For example,

(a) this could be a prior distribution, π(θ) = f(θ).

(b) this could be a posterior distribution, π(θ) = f(θ |x) following the receipt of some

data x.

(c) this could be a posterior distribution π(θ) = f(θ |x, y) following the receipt of

some data x, y.

4. The loss function L(θ, d).

In this setting, only θ is random and we can calculate the expected loss, or risk.

Definition 11 (Risk)

The risk of decision d ∈ D under the distribution π(θ) is

ρ(π(θ), d) =

∫
θ

L(θ, d)π(θ) dθ. (3.1)

We choose d to minimise this risk.

Definition 12 (Bayes rule and Bayes risk)

The Bayes risk ρ∗(π) minimises the expected loss,

ρ∗(π) = inf
d∈D

ρ(π, d)

with respect to π(θ). A decision d∗ ∈ D for which ρ(π, d∗) = ρ∗(π) is a Bayes rule against

π(θ).

The Bayes rule may not be unique, and in weird cases it might not exist. Typically, we solve

[Θ,D, π(θ), L(θ, d)] by finding ρ∗(π) and (at least one) d∗.

Example 14 Quadratic Loss. Suppose that Θ ⊂ R. We consider the loss function

L(θ, d) = (θ − d)2.

From (3.1), the risk of decision d is

ρ(π, d) = E{L(θ, d) | θ ∼ π(θ)}

= E(π){(θ − d)2}

= E(π)(θ
2)− 2dE(π)(θ) + d2,
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where E(π)(·) is a notational device to define the expectation computed using the distribution

π(θ). Differentiating with respect to d we have

∂

∂d
ρ(π, d) = −2E(π)(θ) + 2d.

So, the Bayes rule d∗ = E(π)(θ). The corresponding Bayes risk is

ρ∗(π) = ρ(π, d∗) = E(π)(θ
2)− 2d∗E(π)(θ) + (d∗)2

= E(π)(θ
2)− 2E2

(π)(θ) + E2
(π)(θ)

= E(π)(θ
2)− E2

(π)(θ)

= V ar(π)(θ)

where V ar(π)(θ) is the variance of θ computed using the distribution π(θ).

1. If π(θ) = f(θ), a prior for θ, then the Bayes rule of an immediate decision is d∗ = E(θ)

with corresponding Bayes risk ρ∗ = V ar(θ).

2. If we observe sample data x then the Bayes rule given this sample information is

d∗ = E(θ |X) with corresponding Bayes risk ρ∗ = V ar(θ |X) as π(θ) = f(θ |x).

Typically we can solve [Θ,D, f(θ), L(θ, d)], the immediate decision problem, and solve [Θ,D,

f(θ |x), L(θ, d)], the decision problem after sample information. Often, we may be interested

in the risk of the sampling procedure , before observing the sample, to decide whether

or not to sample. For each possible sample, we need to specify which decision to make. This

gives us the idea of a decision rule .

Definition 13 (Decision rule)

A decision rule δ(x) is a function from X into D,

δ : X → D.

If X = x is the observed value of the sample information then δ(x) is the decision that will be

taken. The collection of all decision rules is denoted by ∆ so that δ ∈ ∆⇒ δ(x) ∈ D ∀x ∈ X.

In this case, we wish to solve the problem [Θ,∆, f(θ, x), L(θ, δ(x))]. In analogy to Definition

12, we make the following definition.

Definition 14 (Bayes (decision) rule and risk of the sampling procedure)

The decision rule δ∗ is a Bayes (decision) rule exactly when

E{L(θ, δ∗(X))} ≤ E{L(θ, δ(X))} (3.2)

for all δ(x) ∈ D. The corresponding risk ρ∗ = E{L(θ, δ∗(X))} is termed the risk of the

sampling procedure.

If the sample information consists of X = (X1, . . . , Xn) then ρ∗ will be a function of n and

so can be used to help determine sample size choice.
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Theorem 8 (Bayes rule theorem, BRT)

Suppose that a Bayes rule exists1 for [Θ,D, f(θ |x), L(θ, d)]. Then

δ∗(x) = arg min
d∈D

E(L(θ, d) |X = x). (3.3)

Proof: Let δ be arbitrary. Then

E{L(θ, δ(X))} =

∫
x

∫
θ

L(θ, δ(x))f(θ, x) dθdx

=

∫
x

∫
θ

L(θ, δ(x))f(θ |x)f(x) dθdx

=

∫
x

{∫
θ

L(θ, δ(x))f(θ |x) dθ

}
f(x) dx

=

∫
x

E{L(θ, δ(x)) |X}f(x) dx (3.4)

where, from (3.1), E{L(θ, δ(x)) |X} = ρ(f(θ |x), δ(x)), the posterior risk. We want to find

the Bayes decision function δ∗ for which

E{L(θ, δ∗(X))} = inf
δ∈∆

E{L(θ, δ(X))}.

From (3.4), as f(x) ≥ 0, δ∗ may equivalently be found as

ρ(f(θ), δ∗) = inf
δ(x)∈D

E{L(θ, δ(x)) |X}, (3.5)

giving equation (3.3). 2

This astounding result indicates that the minimisation of expected loss over the space of all

functions from X to D can be achieved by the pointwise minimisation over D of the expected

loss conditional on X = x. It converts an apparently intractable problem into a simple one.

We could consider ∆, the set of decision rules, to be our possible set of inferences about θ

when the sample is observed so that Ev(E , x) is δ∗(x). We thus have the following result.

Theorem 9 The Bayes rule for the posterior decision respects the strong likelihood principle.

Proof: If we have two Bayesian models with the same prior distribution, EB,1 = {X1,Θ,

fX1
(x1 | θ), π(θ)} and EB,2 = {X2,Θ, fX2

(x2 | θ), π(θ)} then, as in (2.13), if fX1
(x1 | θ) =

c(x1, x2)fX2
(x2 | θ) then the corresponding posterior distributions π(θ |x1) and π(θ |x2) are

the same and so the corresponding Bayes rule (and risk) is the same. 2

3.3 Admissible rules

Bayes rules rely upon a prior distribution for θ: the risk, see Definition 11, is a function of d

only. In classical statistics, there is no distribution for θ and so another approach is needed.

This involves the classical risk.
1Finiteness of D ensures existence. Similar but more general results are possible, but they require more

topological conditions to ensure a minimum occurs within D.

34



Definition 15 (The classical risk)

For a decision rule δ(x), the classical risk for the model E = {X ,Θ, fX(x | θ)} is

R(θ, δ) =

∫
X

L(θ, δ(x))fX(x | θ) dx.

The classical risk is thus, for each δ, a function of θ.

Example 15 Let X = (X1, . . . , Xn) where Xi ∼ N(θ, σ2) and σ2 is known. Suppose that

L(θ, d) = (θ− d)2 and consider a conjugate prior θ ∼ N(µ0, σ
2
0). Possible decision functions

include:

1. δ1(x) = x, the sample mean.

2. δ2(x) = med{x1, . . . , xn} = x̃, the sample median.

3. δ3(x) = µ0, the prior mean.

4. δ4(x) = µn, the posterior mean where

µn =

(
1

σ2
0

+
n

σ2

)−1(
µ0

σ2
0

+
nx

σ2

)
,

the weighted average of the prior and sample mean accorded to their respective preci-

sions.

The respective classical risks are

1. R(θ, δ1) = σ2

n , a constant for θ, since X ∼ N(θ, σ2/n).

2. R(θ, δ2) = πσ2

2n , a constant for θ, since X̃ ∼ N(θ, πσ2/2n) (approximately).

3. R(θ, δ3) = (θ − µ0)2 = σ2
0

(
θ−µ0

σ0

)2

.

4. R(θ, δ4) =
(

1
σ2
0

+ n
σ2

)−2
{

1
σ2
0

(
θ−µ0

σ0

)2

+ n
σ2

}
.

Which decision do we choose? We observe that R(θ, δ1) < R(θ, δ2) for all θ ∈ Θ but other

comparisons depend upon θ.

The accepted approach for classical statisticians is to narrow the set of possible decision rules

by ruling out those that are obviously bad.

Definition 16 (Admissible decision rule)

A decision rule δ0 is inadmissible if there exists a decision rule δ1 which dominates it, that

is

R(θ, δ1) ≤ R(θ, δ0)

for all θ ∈ Θ with R(θ, δ1) < R(θ, δ0) for at least one value θ0 ∈ Θ. If no such δ1 exists then

δ0 is admissible.
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If δ0 is dominated by δ1 then the classical risk of δ0 is never smaller than that of δ1 and

δ1 has a smaller risk for θ0. Thus, you would never want to use δ0.2 Hence, the accepted

approach is to reduce the set of possible decision rules under consideration by only using

admissible rules. It is hard to disagree with this approach, although one wonders how big

the set of admissible rules will be, and how easy it is to enumerate the set of admissible

rules in order to choose between them. It turns out that admissible rules can be related to

a Bayes rule δ∗ for a prior distribution π(θ) (as given by Definition 13).

Theorem 10 If a prior distribution π(θ) is strictly positive for all Θ with finite Bayes risk

and the classical risk, R(θ, δ), is a continuous function of θ for all δ, then the Bayes rule δ∗

is admissible.

Proof: We follow Robert (2007, p75). Suppose that δ∗ is inadmissible and dominated by δ1

so that in an open set C of θ, R(θ, δ1) < R(θ, δ∗) with R(θ, δ1) ≤ R(θ, δ∗) elsewhere. Then,

in an analogous way to the proof of Theorem 8 but now writing f(θ, x) = fX(x | θ)π(θ), for

any decision rule δ,

E{L(θ, δ(X))} =

∫
Θ

R(θ, δ)π(θ) dθ.

Thus, if δ1 dominates δ∗ then E{L(θ, δ1(X))} < E{L(θ, δ∗(X))} which is a contradiction to

δ∗ being the Bayes rule. 2

The relationship between a Bayes rule with prior π(θ) and an admissible decision rule is

even stronger and described in the following very beautiful result, originally due to an iconic

figure in Statistics, Abraham Wald.3

Theorem 11 (Wald’s Complete Class Theorem, CCT)

In the case where the parameter space Θ and sample space X are finite, a decision rule δ

is admissible if and only if it is a Bayes rule for some prior distribution π(θ) with strictly

positive values.

An illuminating blackboard proof of this result can be found in Cox and Hinkley (1974,

Section 11.6). There are generalisations of this theorem to non-finite decision sets, parameter

spaces, and sample spaces but the results are highly technical. See Schervish (1995, Chapter

3), Berger (1985, Chapters 4, 8), and Ghosh (1997, Chapter 2) for more details and references

to the original literature. In the rest of this section, we will assume the more general result,

which is that a decision rule is admissible if and only if it is a Bayes rule for some prior

distribution π(θ), which holds for practical purposes.

So what does the CCT say? First of all, admissible decision rules respect the SLP.

This follows from the fact that admissible rules are Bayes rules which respect the SLP: see

2Here I am assuming that all other considerations are the same in the two cases: e.g. for all x ∈ X , δ1(x)

and δ0(x) take about the same amount of resource to compute.
3Abraham Wald (1902-1950)
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Theorem 9. Insofar as we think respecting the SLP is a good thing, this provides support for

using admissible decision rules, because we cannot be certain that inadmissible rules respect

the SLP. Second, if you select a Bayes rule according to some positive prior distribution π(θ)

then you cannot ever choose an inadmissible decision rule. So the CCT states that there is

a very simple way to protect yourself from choosing an inadmissible decision rule.

But here is where you must pay close attention to logic. Suppose that δ′ is inadmissible

and δ is admissible. It does not follow that δ dominates δ′. So just knowing of an admissible

rule does not mean that you should abandon your inadmissible rule δ′. You can argue that

although you know that δ′ is inadmissible, you do not know of a rule which dominates it.

All you know, from the CCT, is the family of rules within which the dominating rule must

live: it will be a Bayes rule for some positive π(θ). Statisticians sometimes use inadmissible

rules. They can argue that yes, their rule δ′ is or may be inadmissible, which is unfortunate,

but since the identity of the dominating rule is not known, it is not wrong to go on using δ′.

Do not attempt to explore this rather arcane line of reasoning with your client!

3.4 Point estimation

For point estimation the decision space is D = Θ, and the loss function L(θ, d) represents

the (negative) consequence of choosing d as a point estimate of θ. There will be situations

where an obvious loss function L : Θ×Θ→ R presents itself. But not very often. Hence

the need for a generic loss function which is acceptable over a wide range of situations. A

natural choice in the very common case where Θ is a convex subset of Rp is a convex loss

function,

L(θ, d) = h(d− θ)

where h : Rp → R is a smooth non-negative convex function with h(0) = 0. This type

of loss function asserts that small errors are much more tolerable than large ones. One

possible further restriction would be that h is an even function, h(d− θ) = h(θ − d) so that

L(θ, θ + ε) = L(θ, θ − ε) so that under-estimation incurs the same loss as over-estimation.

As we saw in Example 14, the (univariate) quadratic loss function L(θ, d) = (θ− d)2 has

attractive features and is also, in terms of the classical risk, related to the MSE. As we will

see, this result generalises to Rp in a similar way.

There are many situations where this is not appropriate and the loss function should be

asymmetric and a generic loss function should be replaced by a more specific one.

Example 16 (Bilinear loss)

The bilinear loss function for Θ ⊂ R is, for α, β > 0,

L(θ, d) =

 α(θ − d) if d ≤ θ,

β(d− θ) if d ≥ θ.

The Bayes rule is a α
α+β -fractile of π(θ).
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Note that if α = β = 1 then L(θ, d) = |θ − d|, the absolute loss which gives a Bayes rule

of the median of π(θ). |θ − d| is smaller that (θ − d)2 for |θ − d| > 1 and so absolute loss

is smaller than quadratic loss for large deviations. Thus, it takes less account of the tails of

π(θ) leading to the choice of the median. The choice of α and β can account for asymmetry.

If α > β, so α
α+β > 0.5, then under-estimation is penalised more than over-estimation and

so that Bayes rule is more likely to be an over-estimate.

Example 17 (Example 2.1.2 of Robert (2007))

Suppose X is distributed as the p-dimensional normal distribution with mean θ and known

variance matrix Σ which is diagonal with diagonal elements σ2
i for each i = 1, . . . , p. Then

D = Rp. We might consider a loss function of the form

L(θ, d) =

p∑
i=1

(
di − θi
σi

)2

so that the total loss is the sum of the squared component-wise errors.

In this case, we observe that if Q = Σ−1 then the loss function is a form of quadratic loss

which we generalise in the following example.

Example 18 If Θ ∈ Rp, the Bayes rule δ∗ associated with the prior distribution π(θ) and

the quadratic loss

L(θ, d) = (d− θ)TQ (d− θ)

is the posterior expectation E(θ |X) for every positive-definite symmetric p× p matrix Q.

Thus, as the Bayes rule does not depend upon Q, it is the same for an uncountably large

class of loss functions. If we apply the Complete Class Theorem, Theorem 11, to this result

we see that for quadratic loss, a point estimator for θ is admissible if and only if it is the

conditional expectation with respect to some positive prior distribution π(θ). The value,

and interpretability, of the quadratic loss can be further observed by noting that, from

a Taylor series expansion, an even, differentiable and strictly convex loss function can be

approximated by a quadratic loss function.

Stein’s paradox showed that under quadratic loss, the maximum likelihood estimator

(MLE) is not always admissible in the case of a multivariate normal distribution with known

variance, by producing an estimator which dominated it. This result caused such consterna-

tion when first published that it might be termed ‘Stein’s bombshell’. See Efron (1977) for

more details, and Samworth (2012) for an accessible proof. Although its admissibility under

quadratic loss is questionable, the MLE remains the dominant point estimator in applied

statistics.

3.5 Set estimation

For set estimation the decision space is a set of subsets of Θ so that each d ⊂ Θ. There are

two contradictory requirements for set estimators of Θ. We want the sets to be small, but
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we also want them to contain θ. There is a simple way to represent these two requirements

as a loss function, which is to use

L(θ, d) = |d|+ κ(1− 1θ∈d) (3.6)

for some κ > 0 where |d| is the volume of d. The value of κ controls the trade-off between the

two requirements. If κ ↓ 0 then minimising the expected loss will always produce the empty

set. If κ ↑ ∞ then minimising the expected loss will always produce Θ. For κ in-between,

the Bayes rule will depend on beliefs about X and the value x. For loss functions of the

form (3.6) there is a a simple necessary condition for a rule to be a Bayes rule. A set d ⊂ Θ

is a level set of the posterior distribution exactly when d = {θ : π(θ |x) ≥ k} for some k.

Theorem 12 (Level set property, LSP)

If δ∗ is a Bayes rule for the loss function in (3.6) then it is a level set of the posterior

distribution.

Proof: For fixed x, we show that if d is not a level set of the posterior distribution then

there is a d′ 6= d which has a smaller expected loss so that δ∗(x) 6= d. Note that

E{L(θ, d) |X} = |d|+ κP(θ /∈ d |X). (3.7)

Suppose that d is not a level set of π(θ |x). Then there is a θ ∈ d and θ′ /∈ d for which

π(θ′ |x) > π(θ |x). Let d′ = d∪ dθ′ \ dθ where dθ is the tiny region of Θ around θ and dθ′ is

the tiny region of Θ around θ′ for which |dθ| = |dθ′|. Then |d′| = |d| but

P(θ /∈ d′ |X) < P(θ /∈ d |X)

Thus, from equation (3.7), E{L(θ, d′) |X} < E{L(θ, d) |X} showing that δ∗(x) 6= d. 2

Now relate this result to the CCT (Theorem 11). First, Theorem 12 asserts that δ having

the LSP is necessary (but not sufficient) for δ to be a Bayes rule for loss functions of the form

(3.6). Second, the CCT asserts that being a Bayes rule is a necessary (but not sufficient)

condition for δ to be admissible. So, being a level set of a posterior distribution for some

prior distribution π(θ) is a necessary condition for being admissible for loss functions of the

form (3.6). Bayesian HPD regions satisfy the necessary condition for being a set estimator

whilst classical set estimators achieve a similar outcome if they are level sets of the likeli-

hood function, because the posterior is proportional to the likelihood under a uniform prior

distribution.4

3.6 Hypothesis tests

For hypothesis tests, the decision space is a partition of Θ, denoted

H := {H0, H1, . . . ,Hd}.
4In the case where Θ is unbounded, this prior distribution may have to be truncated to be proper.
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Each element of H is termed a hypothesis; it is traditional to number the hypotheses from

zero. The loss function L(θ,Hi) represents the (negative) consequences of choosing element

Hi, when the true value of Θ is θ. It would be usual for the loss function to satisfy

θ ∈ Hi =⇒ L(θ,Hi) = min
j
L(θ,Hj)

on the grounds that an incorrect choice of element should never incur a smaller loss than the

correct choice. There is a generic loss function for hypothesis tests: the 0-1 (’zero-one’)

loss function

L(θ,Hi) = 1− 1{θ∈Hi},

i.e., zero if θ is in Hi, and one if it is not. The corresponding Bayes rule is to select the

hypothesis with the largest posterior probability.

Its arguable about why the 0-1 loss function would approximate a wide range of actual

loss functions and an alternative approach has proved more popular. This is to co-opt the

theory of set estimators, for which there is a defensible generic loss function, which has

strong implications for the selection of decision rules (see Section 3.5). The statistician can

use her set estimator δ to make at least some distinctions between the members of H:

• ‘Accept’ Hi exactly when δ(x) ⊂ Hi,

• ‘Reject’ Hi exactly when δ(x) ∩Hi = ∅,

• ‘Undecided’ about Hi otherwise.

Note that these three terms are given in quotes, to indicate that they acquire a technical

meaning in this context. We do not use the quotes in practice, but we always bear in mind

that we are not “accepting Hi” in the vernacular sense, but simply asserting that δ(x) ⊂ Hi

for our particular choice of δ.
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4 Confidence sets and p-values

4.1 Confidence procedures and confidence sets

We consider interval estimation, or more generally set estimation. Consider the model E =

{X ,Θ, fX(x | θ)}. For given data X = x, we wish to construct a set C = C(x) ⊂ Θ and the

inference is the statement that θ ∈ C. If θ ∈ R then the set estimate is typically an interval.

As Casella and Berger (2002, Section 9.1) note, the goal of a set estimator is to have some

guarantee of capturing the parameter of interest. With this in mind, we make the following

definition.

Definition 17 (Confidence procedure)

A random set C(X) is a level-(1− α) confidence procedure exactly when

P(θ ∈ C(X) | θ) ≥ 1− α

for all θ ∈ Θ. C is an exact level-(1 − α) confidence procedure if the probability equals

(1− α) for all θ.

Thus, exact is a special case and typically P(θ ∈ C(X) | θ) will depend upon θ. The value

P(θ ∈ C(X) | θ) is termed the coverage of C at θ. Thus a 95% confidence procedure has

coverage of at least 95% for all θ, and an exact 95% confidence procedure has coverage of

exactly 95% for all θ. If it is necessary to emphasise that C is not exact, then the term

conservative is used.

Example 19 Let X1, . . . , Xn be independent and identically distributed Unif(0, θ) random

variables where θ > 0. Let Y = max{X1, . . . , Xn}. For observed x1, . . . , xn, we have that

θ > y. Noting that Xi/θ ∼ Unif(0, 1) then if T = Y/θ we have that P(T ≤ t) = tn for

0 ≤ t ≤ 1. We consider two possible sets: (aY, bY ) where 1 ≤ a < b and (Y + c, Y +d) where

0 ≤ c < d. Notice that

P(θ ∈ (aY, bY ) | θ) = P(aY < θ < bY | θ)

= P(b−1 < T < a−1 | θ)

=

(
1

a

)n
−
(

1

b

)n
.
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Thus, the coverage probability of the interval does not depend upon θ. However,

P(θ ∈ (Y + c, Y + d) | θ) = P(Y + c < θ < Y + d | θ)

= P
(

1− d

θ
< T < 1− c

θ
| θ
)

=
(

1− c

θ

)n
−
(

1− d

θ

)n
.

In this case, the coverage probability of the interval does depend upon θ.

It is helpful to distinguish between the confidence procedure C, which is a random interval

and so a function for each possible x, and the result when C is evaluated at the observation

x, which is a set in Θ. We follow the terms used in Morey (2016), which we will later adapt

to p-values, see for example Definition 24.

Definition 18 (Confidence set)

The observed C(x) is a level-(1 − α) confidence set exactly when the random C(X) is a

level-(1− α) confidence procedure.

If Θ ⊂ R and C(x) is convex, i.e. an interval, then a confidence set (interval) is represented

by a lower and upper value. We should write, for example, “using procedure C, the 95%

confidence interval for θ is (0.55, 0.74)”, inserting “exact” if the confidence procedure C is

exact.

The challenge with confidence procedures is to construct one with a specified level. One

could propose an arbitrary C, and then laboriously compute the coverage for every θ ∈ Θ.

At that point we would know the level of C as a confidence procedure, but it is unlikely to

be 95%; adjusting C and iterating this procedure many times until the minimum coverage

was equal to 95% would be exceedingly tedious. So we need to go backwards: start with the

level, e.g. 95%, then construct a C guaranteed to have this level. With this in mind, we can

generalise Definition 17.

Definition 19 (Family of confidence procedures)

C(X;α) is a family of confidence procedures exactly when C(X;α) is a level-(1−α) confidence

procedure for every α ∈ [0, 1]. C is a nesting family exactly when α < α′ implies that

C(x;α′) ⊂ C(x;α).

If we start with a family of confidence procedures for a specified model, then we can compute

a confidence set for any level we choose.

4.2 Constructing confidence procedures

The general approach to construct a confidence procedure is to invert a test statistic. In

Example 19, the coverage of the procedure (aY, bY ) does not depend upon θ because the

coverage probability could be expressed in terms of T = Y/θ where the distribution of T
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did not depend upon θ. T is an example of a pivot . As Example 19 shows, confidence

procedures are straightforward to compute from a pivot. However, a drawback to this

approach in general is that there is no hard and fast method for finding a pivot.

An alternate method which does work generally is to exploit the property that every

confidence procedure corresponds to a hypothesis test and vice versa. Consider a hypothesis

test where we have to decide either to accept that an hypothesis H0 is true or to reject H0 in

favour of an alternative hypothesis H1 based on a sample x ∈ X . The set of x for which H0

is rejected is called the rejection region with its complement, where H0 is accepted, the

acceptance region . A hypothesis test can be constructed from any statistic T = T (X),

one popular method which is optimal in some cases is the likelihood ratio test.

Definition 20 (Likelihood Ratio Test, LRT)

The likelihood ratio test (LRT) statistic for testing H0 : θ ∈ Θ0 versus H1 : θ ∈ Θc
0, where

Θ0 ∪Θc
0 = Θ, is

λ(x) =
supθ∈Θ0

LX(θ;x)

supθ∈Θ LX(θ;x)
. (4.1)

A LRT at significance level α has a rejection region of the form {x : λ(x) ≤ c} where

0 ≤ c ≤ 1 is chosen so that P(Reject H0 | θ) ≤ α for all θ ∈ Θ0.

Example 20 Let X = (X1, . . . , Xn) and suppose that the Xi are independent and identically

distributed N(θ, σ2) random variables where σ2 is known and consider the likelihood ratio

test for H0 : θ = θ0 versus H1 : θ 6= θ0. Then, as the maximum likelihood estimate of θ is x,

λ(x) =
LX(θ0;x)

LX(x;x)

= exp

{
− 1

2σ2

n∑
i=1

(
(xi − θ0)2 − (xi − x)2

)}

= exp

{
− 1

2σ2
n(x− θ0)2

}
.

Notice that, under H0,
√
n(X−θ0)
σ ∼ N(0, 1) so that

−2 log λ(X) =
n(X − θ0)2

σ2
∼ χ2

1, (4.2)

the chi-squared distribution with one degree of freedom. Letting χ2
1,α be such that P(χ2

1 ≥
χ2

1,α) = α then, as the rejection region {x : λ(x) ≤ c} corresponds to {x : −2 log λ(x) ≥ k}
where k = −2 log c, setting k = χ2

1,α gives a test at the (exact) significance level α. The

corresponding acceptance region of this test is {x : −2 log λ(x) < χ2
1,α} where

P
(
n(X − θ0)2

σ2
< χ2

1,α

∣∣∣∣ θ = θ0

)
= 1− α. (4.3)

This holds for all θ0 and so, additionally rearranging,

P
(
X −

√
χ2

1,α

σ√
n
< θ < X +

√
χ2

1,α

σ√
n

∣∣∣∣ θ) = 1− α. (4.4)
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Thus, C(X) = (X −
√
χ2

1,α
σ√
n
, X +

√
χ2

1,α
σ√
n

) is an exact level-(1−α) confidence procedure

with C(x) the corresponding confidence set. Noting that
√
χ2

1,α = zα/2, where zα/2 is such

that P(Z ≥ zα/2) = α/2 for Z ∼ N(0, 1), this confidence set is more familiarly written as

C(x) = (x− zα/2 σ√
n
, x+ zα/2

σ√
n

).

The level-(1−α) confidence procedure defined by equation (4.4) is obtained by inverting the

acceptance region, see equation (4.3), of the level α significance test. This correspondence

between acceptance regions of tests and confidence sets is a general property.

Theorem 13 (Duality of Acceptance Regions and Confidence Sets)

1. For each θ0 ∈ Θ, let A(θ0) be the acceptance region of a test of H0 : θ = θ0 at

significance level α. For each x ∈ X , define C(x) = {θ0 : x ∈ A(θ0)}. Then C(X) is a

level-(1− α) confidence procedure.

2. Let C(X) be a level-(1−α) confidence procedure and, for any θ0 ∈ Θ, define A(θ0) =

{x : θ0 ∈ C(x)}. Then A(θ0) is the acceptance region of a test of H0 : θ = θ0 at significance

level α.

Proof: 1. As we have a level α test for each θ0 ∈ Θ then P(X ∈ A(θ0) | θ = θ0) ≥ 1 − α.

Since θ0 is arbitrary we may write θ instead of θ0 and so, for all θ ∈ Θ,

P(θ ∈ C(X) | θ) = P(X ∈ A(θ) | θ) ≥ 1− α.

Hence, from Definition 17, C(X) is a level-(1− α) confidence procedure.

2. For a test of H0 : θ = θ0, the probability of a Type I error (rejecting H0 when it is true)

is

P(X /∈ A(θ0) | θ = θ0) = P(θ0 /∈ C(X), | θ = θ0) ≤ α

since C(X) is a level-(1 − α) confidence procedure. Hence, we have a test at significance

level α. 2

A possibly easier way to understand the relationship between significance tests and confidence

sets is by defining the set {(x, θ) : (x, θ) ∈ C̃} in the space X × Θ where C̃ is also a set in

X ×Θ.

• For fixed x, we may define the confidence set as C(x) = {θ : (x, θ) ∈ C̃}.

• For fixed θ, we may define the acceptance region as A(θ) = {x : (x, θ) ∈ C̃}.

Example 21 We revisit Example 20 and, recalling that x = (x1, . . . , xn), define the set

{(x, θ) : (x, θ) ∈ C̃} =

{
(x, θ) : −zα/2

σ√
n
< x− θ < zα/2

σ√
n

}
.

The confidence set is then

C(x) =

{
θ : −zα/2

σ√
n
< x− θ < zα/2

σ√
n

}
=

{
θ : x− zα/2

σ√
n
< θ < x+ zα/2

σ√
n

}
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and acceptance region

A(θ) =

{
x : −zα/2

σ√
n
< x− θ < zα/2

σ√
n

}
=

{
x : θ − zα/2

σ√
n
< x < θ + zα/2

σ√
n

}
.

4.3 Good choices of confidence procedures

Section 3.5 made a recommendation about set estimators for θ, which was that they should

be based on level sets of fX(x | θ). This was to satisfy a necessary condition to be admissible

under the loss function (3.6). With this in mind, a good choice of confidence procedure

would be one that satisfied a level set property.

Definition 21 (Level set property, LSP)

A confidence procedure C has the level set property exactly when

C(x) = {θ : fX(x | θ) > g(x)}

for some g : X → R.

We now show that we can construct a family of confidence procedures with the LSP. The

result has pedagogic value, because it can be used to generate an uncountable number of

families of confidence procedures, each with the LSP.

Theorem 14 Let h be any probability density function for X. Then

Ch(x;α) := {θ ∈ Θ : fX(x | θ) > αh(x)} (4.5)

is a family of confidence procedures, with the LSP.

Proof: First notice that if we let X (θ) := {x ∈ X : fX(x | θ) > 0} then

E(h(X)/fX(X | θ) | θ) =

∫
x∈X (θ)

h(x)

fX(x | θ)
fX(x | θ) dx

=

∫
x∈X (θ)

h(x) dx

≤ 1 (4.6)

because h is a probability density function. Now,

P(fX(X | θ)/h(X) ≤ u | θ) = P(h(X)/fX(X | θ) ≥ 1/u | θ) (4.7)

≤ E(h(X)/fX(X | θ) | θ)
1/u

(4.8)

≤ 1

1/u
= u (4.9)

where (4.8) follows from (4.7) by Markov’s inequality1 and (4.9) from (4.8) by (4.6). 2

1If X is a nonnegative random variable and a > 0 then P(X ≥ a) ≤ E(X)/a.

45



Notice that if we define g(x, θ) := fX(x | θ)/h(x), which may be ∞ then the proof shows

that P(g(X, θ) ≤ u | θ) ≤ u. As we will see in Definition 23 this means that g(X, θ) is

super-uniform for each θ.

Among the interesting choices for h, one possibility is h(x) = fX(x | θ0), for some θ0 ∈ Θ.

Note that with this choice, the confidence set of equation (4.5) always contains θ0. So we

know that we can construct a level-(1 − α) confidence procedure whose confidence sets will

always contain θ0. Two statisticians can both construct 95% confidence sets for θ which

satisfy the LSP, using different families of confidence procedures. Yet the first statistician

may reject the null hypothesis that H0 : θ = θ0 (see Section 3.6), and the second statistician

may fail to reject it, for any θ0 ∈ Θ. This does not fill one with confidence about using

confidence procedures for hypothesis tests.

Actually, the situation is not as grim as it seems. Markov’s inequality is very slack, and

so the coverage of the family of confidence procedures defined in Theorem 14 is likely to be

much larger than (1− α) , e.g. much larger than 95%.

For any confidence procedure, the diameter2 of C(x) can grow rapidly with its coverage.

In fact, the relation must be extremely convex when coverage is nearly one, because, in

the case where Θ = R, the diameter at 100% coverage is unbounded. So an increase in

the coverage from, say 95% to 99%, could easily correspond to a doubling or more of the

diameter of the confidence procedure.

A more likely outcome in the two statisticians situation is that Ch(x; 0.05) is large for

many different choices of h, in which case no one rejects the null hypothesis, which is not a

useful outcome for a hypothesis test. But perhaps it is a useful antidote to the current ‘crisis

of reproducibility’, in which far too many null hypotheses are being rejected in published

papers.

All in all, it would be much better to use an exact family of confidence procedures which

satisfy the LSP, if one existed. And, for perhaps the most popular model in the whole of

Statistics, this is the case. This is the linear model with a normal error.

4.3.1 The linear model

We briefly discuss the linear model and, in what can be viewed as an extension of Example

20, consider constructing a confidence procedure using the likelihood ratio. Wood (2017) is

a recommended textbook discussion of the whole (generalised) theory.

Let Y = (Y1, . . . , Yn) be an n-vector of observables with Y = Xθ + ε, where µ = Xθ is an

(n × p) matrix X3 of regressors, θ is a p-vector of regression coefficients, and ε is an

2The diameter of a set in a metric space such as Euclidean space is the maximum of the distance between

two points in the set.
3We typically use X to denote a generic random variable and so it is not ideal to use it here for a specified
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n-vector of residuals. Assume that ε ∼ Nn(0, σ2In), the n-dimensional multivariate normal

distribution, where σ2 is known.

We will utilise the following two properties of the multivariate normal distribution.

Theorem 15 (Properties of the multivariate normal distribution)

Let W = (W1, . . . ,Wk) with W ∼ Nk(µ,Σ), the k-dimensional multivariate normal distribu-

tion with mean vector µ and variance matrix Σ.

1. If Y = AW + c, where A is any (l × k) matrix and c any l-dimensional vector, then

Y ∼ Nl(Aµ+ c, AΣAT ).

2. If Σ > 0 then Y = Σ−
1
2 (W − µ) ∼ Nk(0, Ik), where Ik is the (k × k) identity matrix,

and (W − µ)TΣ−1(W − µ) =
∑k
i=1 y

2
i ∼ χ2

k.

Proof: See for example, Theorem 3.2.1 and Corollary 3.2.1.1 of Mardia et al (1979). 2

It is thus immediate from the first property that for the linear model, Y ∼ Nn(µ, σ2In)

where µ = Xθ. Now,

LY (θ; y) =
(
2πσ2

)−n
2 exp

{
− 1

2σ2
(y −Xθ)T (y −Xθ)

}
. (4.10)

Let θ̂ = θ̂(y) =
(
XTX

)−1
XT y then

(y −Xθ)T (y −Xθ) = (y −Xθ̂ +Xθ̂ −Xθ)T (y −Xθ̂ +Xθ̂ −Xθ)

= (y −Xθ̂)T (y −Xθ̂) + (Xθ̂ −Xθ)T (Xθ̂ −Xθ)

= (y −Xθ̂)T (y −Xθ̂) + (θ̂ − θ)TXTX(θ̂ − θ). (4.11)

Thus, (y − Xθ)T (y − Xθ) is minimised when θ = θ̂ and so, from equation (4.10), θ̂ =(
XTX

)−1
XT y is the maximum likelihood estimator of θ. From equation (4.1), we can

calculate the likelihood ratio

λ(y) =
LY (θ; y)

LY (θ̂; y)

= exp

{
− 1

2σ2

[
(y −Xθ)T (y −Xθ)− (y −Xθ̂)T (y −Xθ̂)

]}
= exp

{
− 1

2σ2
(θ̂ − θ)TXTX(θ̂ − θ)

}
, (4.12)

where equation (4.12) follows from equation (4.11). Thus,

−2 log λ(y) =
1

σ2
(θ̂ − θ)TXTX(θ̂ − θ).

Now, as θ̂(Y ) =
(
XTX

)−1
XTY then, from Property 1. of Theorem 15,

θ̂(Y ) ∼ Np
(
θ, σ2

(
XTX

)−1
)

matrix but this is the standard notation for linear models.
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so that, from Property 2. of Theorem 15, −2 log λ(Y ) ∼ χ2
p. Hence, with P(χ2

p ≥ χ2
p,α) = α,

C(y;α) =

{
θ ∈ Rp : −2 log λ(y) = −2 log

fY (y | θ, σ2)

fY (y | θ̂, σ2)
< χ2

p,α

}

=

{
θ ∈ Rp : fY (y | θ, σ2) > exp

(
−
χ2
p,α

2

)
fY (y | θ̂, σ2)

}
(4.13)

is a family of exact confidence procedures for θ which has the LSP.

4.3.2 Wilks confidence procedures

This outcome where we can find a family of exact confidence procedures with the LSP is more-

or-less unique to the regression parameters of the linear model but it is found, approximately,

in the large n behaviour of a much wider class of models. The result can be traced back

to Wilks (1938) and, as such, the resultant confidence procedures are often termed Wilks

confidence procedures.

Theorem 16 (Wilks Theorem)

Let X = (X1, . . . , Xn) where each Xi is independent and identically distributed, Xi ∼
f(xi | θ),where f is a regular model and the parameter space Θ is an open convex subset

of Rp (and invariant to n). The distribution of the statistic −2 log λ(X) converges to a

chi-squared distribution with p degrees of freedom as n→∞.

The definition of ‘regular model’ is quite technical, but a working guideline is that f must

be smooth and differentiable in θ; in particular, the support must not depend on θ. Cox

(2006, Chapter 6) provides a summary of this result and others like it, and more details can

be found in Casella and Berger (2002, Chapter 10) or, for the full story, in van der Vaart

(1998). Analogous to equation (4.13), we thus have that if the conditions of Theorem 16 are

met,

C(x;α) =

{
θ ∈ Rp : fX(x | θ) > exp

(
−
χ2
p,α

2

)
fX(x | θ̂)

}
(4.14)

is a family of approximately exact confidence procedures which satisfy the LSP. The pertinent

question, as always with methods based on asymptotic properties for particular types of

model, is whether the approximation is a good one. The crucial concept here is level error .

The coverage that we want is at least (1 − α) everywhere, which is termed the ‘nominal

level’. But were we to evaluate a confidence procedure such as (4.14) for a general model

(not a linear model) we would find that, over all θ ∈ Θ, that the minimum coverage was not

(1 − α) but something else; usually something less than (1 − α). This is the ‘actual level’.

The difference is

level error = nominal level− actual level.
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Level error exists because the conditions under which (4.14) provides an exact confidence

procedure are not met in practice, outside the linear model. Although it is tempting to ignore

level error, experience suggests that it can be large, and that we should attempt to correct

for level error if we can. One method for making this correction is bootstrap calibration ,

described in DiCiccio and Efron (1996).

4.4 Significance procedures and duality

A hypothesis test of H0 : θ ∈ Θ0 versus H1 : θ ∈ Θc
0, where Θ0 ∪Θc

0 = Θ, with a significance

level of 5% (or any other specified value) returns one bit of information, either we ‘accept

H0’ or ‘reject H0’. We do not know whether the decision was borderline or nearly conclusive;

i.e. whether, for rejection, H0 and C(x; 0.05) were close, or well-separated. Of more interest

is to consider what is the smallest value of α for which C(x;α) does not intersect H0. This

value is termed the p-value.

Definition 22 (p-value)

A p-value p(X) is a statistic satisfying p(x) ∈ [0, 1] for every x ∈ X . Small values of p(x)

support the hypothesis that H1 is true. A p-value is valid if, for every θ ∈ Θ0 and every

α ∈ [0, 1],

P(p(X) ≤ α | θ) ≤ α. (4.15)

If p(X) is a valid p-value then a significance test that rejects H0 if and only if p(X) ≤ α

is, from (4.15), a test with significance level α. In this section we introduce the idea of

significance procedures and derive a duality between a significance procedure at level α and

a confidence procedure at level 1−α. We first need some additional concepts. Let X and Y

be two scalar random variables. Then X stochastically dominates Y exactly when

P(X ≤ v) ≤ P(Y ≤ v)

for all v ∈ R. Visually, the distribution function for X is never to the left of the distribution

function for Y .4 Recall that if U ∼ Unif(0, 1), the standard uniform distribution, then

P(U ≤ u) = u for u ∈ [0, 1]. With this in mind, we make the following definition.

Definition 23 (Super-uniform)

The random variable X is super-uniform exactly when it stochastically dominates a standard

uniform random variable. That is

P(X ≤ u) ≤ u (4.16)

for all u ∈ [0, 1].

Example 22 From Definition 22, we see that for θ ∈ Θ0, the p-value p(X) is super-uniform.

4Recollect that the distribution function of X has the form F (x) := P(X ≤ x) for x ∈ R.
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We now define a significance procedure which can be viewed as an extension of Definition 22.

Note the similarities with the definitions of a confidence procedure which are not coincidental.

Definition 24 (Significance procedure)

1. p : X → R is a significance procedure for θ0 ∈ Θ exactly when p(X) is super-uniform

under θ0. If p(X) is uniform under θ0, then p is an exact significance procedure for θ0.

2. For X = x, p(x) is a significance level or (observed) p-value for θ0 exactly when p is

a significance procedure for θ0.

3. p : X × Θ → R is a family of significance procedures exactly when p(x; θ0) is a

significance procedure for θ0 for every θ0 ∈ Θ.

We now show that there is a duality between significance procedures and confidence proce-

dures.

Theorem 17 (Duality theorem)

1. Let p be a family of significance procedures. Then

C(x;α) := {θ ∈ Θ : p(x; θ) > α}

is a nesting family of confidence procedures.

2. Conversely, let C be a nesting family of confidence procedures. Then

p(x; θ0) := inf{α : θ0 /∈ C(x;α)}

is a family of significance procedures.

If either is exact, then the other is exact as well.

Proof: If p is a family of significance procedures then for any θ ∈ Θ,

P(θ ∈ C(X;α) | θ) = P(p(X; θ) > α | θ)

= 1− P(p(X; θ) ≤ α | θ). (4.17)

Now, as p is super-uniform for θ then P(p(X; θ) ≤ α | θ) ≤ α. Thus, from equation (4.17),

P(θ ∈ C(X;α) | θ) ≥ 1− α (4.18)

so that, from Definition 17, C(X;α) is a level-(1−α) confidence procedure. From Definition

19 it is clear that C is nesting. If p is exact then the inequality in (4.18) can be replaced

by an equality and so C is also exact. We thus have 1. Now, if C is a nesting family of

confidence procedures then5

inf{α : θ0 /∈ C(x;α)} ≤ u ⇐⇒ θ0 /∈ C(x;u).

5Here we’re finessing the issue of the boundary of C by assuming that if α∗ := inf{α : θ0 /∈ C(x;α)}
then θ0 /∈ C(x;α∗).
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Let θ0 and u ∈ [0, 1] be arbitrary. Then,

P(p(X; θ0) ≤ u | θ0) = P(θ0 /∈ C(X;u) | θ0) ≤ u

as C(X;u) is a level-(1 − u) confidence procedure. Thus, p is super-uniform. If C is exact,

then the inequality is replaced by an equality, and hence p is exact as well. 2

Theorem 17 shows that confidence procedures and significance procedures are two sides of

the same coin. If we have a way of constructing families of confidence procedures then we

have a way of constructing families significance procedures, and vice versa. If we have a

good way of constructing confidence procedures then (presumably, and in principle) we have

a good way of constructing significance procedures. This is helpful because, as Section 4.5

will show, there are an uncountable number of families of significance procedures, and so

there are an uncountable number of families of confidence procedures. Naturally, in both

these cases, almost all of the possible procedures are useless for our inference. So just being

a confidence procedure, or just being a significance procedure, is never enough. We need to

know how to make good choices.

4.5 Families of significance procedures

We now consider a very general way to construct a family of significance procedures. We

will then show how to use simulation to compute the family.

Theorem 18 Let t : X → R be a statistic. For each x ∈ X and θ0 ∈ Θ define

pt(x; θ0) := P(t(X) ≥ t(x) | θ0).

Then pt is a family of significance procedures. If the distribution function of t(X) is contin-

uous, then pt is exact.

Proof: We follow Casella and Berger (2002, Theorem 8.3.27). Now,

pt(x; θ0) = P(t(X) ≥ t(x) | θ0)

= P(−t(X) ≤ −t(x) | θ0).

Let F denote the distribution function of Y (X) = −t(X) then

pt(x; θ0) = F (−t(x) | θ0).

If t(X) is continuous then Y (X) = −t(X) is continuous and, using the Probability Integral

Transform, see Theorem 23,

P(pt(X; θ0) ≤ α | θ0) = P(F (Y ) ≤ α | θ0)

= P(Y ≤ F−1(α) | θ0) = F (F−1(α)) = α.
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Hence, pt is uniform under θ0. If t(X) is not continuous then, via the Probability Integral

Transform, P(F (Y ) ≤ α | θ0) ≤ α and so pt(X; θ0) is super-uniform under θ0. 2

So there is a family of significance procedures for each possible function t : X → R. Clearly

only a tiny fraction of these can be useful functions, and the rest must be useless. Some, like

t(x) = c for some constant c, are always useless. Others, like t(x) = sin(x) might sometimes

be a little bit useful, while others, like t(x) =
∑
i xi might be quite useful - but it all depends

on the circumstances. Some additional criteria are required to separate out good from poor

choices of the test statistic t, when using the construction in Theorem 18. The most pertinent

criterion is:

• Select a test statistic for which t(X) which will tend to be larger for decision-relevant

departures from θ0.

Example 23 For the likelihood ratio, λ(x), given by equation (4.1), small observed values

of λ(x) support departures from θ0. Thus, t(X) = −2 log λ(X), is a test statistic for which

large values support departures from θ0.

In the context of Definition 22, large values of t(X) will correspond to small values of the p-

value, supporting the hypothesis that H1 is true. Thus, this criterion ensures that pt(X; θ0)

will tend to be smaller under decision-relevant departures from θ0; small p-values are more

interesting, precisely because significance procedures are super-uniform under θ0.

4.5.1 Computing p-values

Only in very special cases will it be possible to find a closed-form expression for pt from

which we can compute the p-value pt(x; θ0). Instead,we can use simulation, according to the

following result (adapted from Besag and Clifford, 1989).

Theorem 19 For any finite sequence of scalar random variables X0, X1, . . . , Xm, define the

rank of X0 in the sequence as

R :=

m∑
i=1

1{Xi≤X0}.

If X0, X1, . . . , Xm are exchangeable6 then R has a discrete uniform distribution on the inte-

gers {0, 1, . . . ,m}, and (R+ 1)/(m+ 1) has a super-uniform distribution.

Proof: By exchangeability, X0 has the same probability of having rank r as any of the

other Xi’s, for any r, and therefore

P(R = r) =
1

m+ 1
(4.19)

6If X0, X1, . . . , Xm are exchangeable then their joint density function satisfies f(x0, . . . , xm) =

f(xπ(0), . . . , xπ(m)) for all permutations π defined on the set {0, . . . ,m}.
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for r ∈ {0, 1, . . . ,m} and zero otherwise, proving the first claim. For the second claim,

P
(
R+ 1

m+ 1
≤ u

)
= P(R+ 1 ≤ u(m+ 1))

= P(R+ 1 ≤ bu(m+ 1)c)

since R is an integer and bxc denotes the largest integer no larger than x. Hence,

P
(
R+ 1

m+ 1
≤ u

)
=

bu(m+1)c−1∑
r=0

P(R = r) (4.20)

=

bu(m+1)c−1∑
r=0

1

m+ 1
(4.21)

=
bu(m+ 1)c
m+ 1

≤ u,

as required where equation (4.21) follows from (4.20) by (4.19). 2

To use this result, fix the test statistic t(x) and define Ti = t(Xi) where X1, . . . , Xm are

independent and identically distributed random variables with density f(· | θ0). Define

Rt(x; θ0) :=

m∑
i=1

1{−Ti≤−t(x)} =

m∑
i=1

1{Ti≥t(x)},

where θ0 is an argument to R because θ0 needs to be specified in order to simulate T1, . . . , Tm.

Then Theorem 19 implies that

Pt(x; θ0) :=
Rt(x; θ0) + 1

m+ 1

has a super-uniform distribution under X ∼ f(· | θ0), because in this case t(X), T1, . . . , Tm

are exchangeable. Furthermore, the Weak Law of Large Numbers (WLLN) implies that

lim
m→∞

Pt(x; θ0) = lim
m→∞

Rt(x; θ0) + 1

m+ 1

= lim
m→∞

Rt(x; θ0)

m
= P(T ≥ t(x) | θ0) = pt(x; θ0).

Therefore, not only is Pt(x; θ0) super-uniform under θ0, so that Pt is a family of significance

procedures for every m, but the limiting value of Pt(x; θ0) as m becomes large is pt(x; θ0).

In summary, if you can simulate from your model under θ0 then you can produce a p-

value for any test statistic t, namely Pt(x; θ0), and if you can simulate cheaply, so that the

number of simulations m is large, then Pt(x; θ0) ≈ pt(x; θ0).

The less-encouraging news is that this simulation-based approach is not well-adapted to

constructing confidence sets. Let Ct be the family of confidence procedures induced by pt
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using duality, see Theorem 17. We can answer the question ‘Is θ0 ∈ Ct(x;α)?’ with one set

of m simulations. These simulations give a value Pt(x; θ0) which is either larger or not larger

than α. If Pt(x; θ0) > α then θ0 ∈ Ct(x;α), and otherwise it is not. Clearly, though, this is

not an effective way to enumerate all of the points in Ct(x;α), because we would need to do

m simulations for each point in Θ.

4.6 Generalisations

So far, confidence procedures and significance procedures have been defined with respect to

a point θ0 ∈ Θ. Often, though, we require a more general treatment, where a confidence

procedure is defined for some g : θ 7→ φ, where g may not be bijective; or where a significance

procedure is defined for some Θ0 ⊂ Θ, where Θ0 may not be a single point. These general

treatments are always possible, but the result is often very conservative. As discussed at the

end of Section 4.3, conservative procedures are formally correct but they can be practically

useless.

4.6.1 Marginalisation of confidence procedures

Suppose that g : θ 7→ φ is some specified function, and we would like a confidence procedure

for φ. If C is a level-(1 − α) confidence procedure for φ then it must have φ-coverage of at

least (1 − α) for all θ ∈ Θ. The most common situation is where Θ ⊂ Rp, and g extracts a

single component of θ: for example, θ = (µ, σ2) and g(θ) = µ.

Theorem 20 (Confidence Procedure Marginalisation, CPM)

Suppose that g : θ 7→ φ, and that C is a level-(1− α) procedure for θ. Then

gC := {φ : φ = g(θ) for some θ ∈ C}

is a level-(1− α) confidence procedure for φ.

Proof: The result follows immediately by noting that θ ∈ C(x) implies that φ ∈ gC(x) for

all x, and hence

P(θ ∈ C(X) | θ) ≤ P(φ ∈ gC(X) | θ)

for all θ ∈ Θ. So if C has θ-coverage of at least (1− α) , then gC has φ-coverage of at least

(1− α) as well. 2

This result shows that we can derive level-(1 − α) confidence procedures for functions of

θ directly from level-(1 − α) confidence procedures for θ. Furthermore, if the confidence

procedure for θ is easy to enumerate, then the confidence procedure for φ is easy to enumerate

too - just by transforming each element. But it also shows that the coverage of such derived

procedures will typically be more than (1 − α), even if the original confidence procedure
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is exact: thus gC is a conservative confidence procedure. As already noted, conservative

confidence procedures can often be far larger than they need to be: sometimes too large to

be useful.

4.6.2 Generalisation of significance procedures

We now give a simple result which extends a family of significance procedures over a set in

Θ.

Theorem 21 Let Θ0 ⊂ Θ. If p is a family of significance procedures, then

P (x; Θ0) := sup
θ0∈Θ0

p(x; θ0)

is super-uniform for all θ ∈ Θ0.

Proof: P (x; Θ0) ≤ u implies that p(x; θ0) ≤ u for all θ0 ∈ Θ. Let θ ∈ Θ0 be arbitrary;

then, for any u ≥ 0,

P(P (X; Θ0) ≤ u | θ) ≤ P(p(X; Θ0) ≤ u | θ) ≤ u

for θ ∈ Θ0, showing that P (x; Θ0) is super-uniform for all θ ∈ Θ0. 2

As with the marginalisation of confidence procedures, this result shows that we can derive a

significance procedure for an arbitrary Θ0 ⊂ Θ. The difference, though, is that this is rather

impractical, because of the need, in general, to maximise over a possibly unbounded set Θ0.

As a result, this type of p-value is not much used in practice. It is sometimes replaced by

simple approximations. For example, if the parameter is (v, θ) then a p-value for v0 could be

approximated by plugging-in a specific value for θ, such as the maximum likelihood value,

and treating the model as though it were parameterised by v alone. But this does not

give rise to a well defined significance procedure for v0 on the basis of the original model.

Adopting this type of approach is something of an act of desperation, for when Theorem 21

is intractable. The difficulty is that you get a number, but you do not know what it signifies.

4.7 Reflections

4.7.1 On the definitions

The first thing to note is the abundance of families of confidence procedures and significance

procedures, most of which are useless. For example, let U be a uniform random quantity.

Based on the definition alone,

C(x;α) =

 {0} U < α

Θ U ≥ α
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is a perfectly acceptable family of exact confidence procedures, and

p(x; θ0) = U

is a perfectly acceptable family of exact significance procedures. They are both useless. You

cannot object that these examples are pathological because they contain the auxiliary ran-

dom quantity U, because the most accessible method for computing p-values also contains

auxiliary random quantities (see Section 4.5.1). You could object that the family of signifi-

cance procedures does not have the LSP property (Definition 21), which is a valid objection

if you intend to apply the LSP rigorously. But would you then have to insist that every

significance procedure’s dual confidence procedure (see Theorem 17) should also have the

LSP?

The second thing to note is how often confidence procedures and significance procedures

will be conservative. This means that there is some region of the parameter space where the

actual coverage of the confidence procedure is more than the nominal coverage of (1 − α).

Or where the significance procedure has a super-uniform but not uniform distribution under

θ0. As shown in this chapter:

• A generic method for constructing families of confidence procedures with the LSP (see

Theorem 14) is always conservative.

• Confidence procedures for non-bijective functions of the parameters are always conser-

vative (see Theorem 20).

• Significance procedures based on test statistics where t(X) is discrete are always con-

servative (see Theorem 18).

• Significance procedures for composite hypotheses are always conservative (see Theorem

21 ).

4.7.2 On the interpretations

It is a very common observation, made repeatedly over the last 50 years see, for example,

Rubin (1984), that clients think more like Bayesians than classicists. Classical statisticians

have to wrestle with the issue that their clients will likely misinterpret their results. This is

bad enough for confidence sets (see, e.g., Morey et al., 2016), but potentially disastrous for

p-values. A p-value p(x; θ0) refers only to θ0, making no reference at all to other hypotheses

about θ. But a posterior probability π(θ0 |x) contrasts θ0 with other values in Θ which θ

might have taken. The two outcomes can be radically different, as first captured in Lindley’s

paradox (Lindley, 1957).
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4.8 Appendix: The Probability Integral Transform

Here is a very elegant and useful piece of probability theory. Let X be a scalar random

variable with sample space X and distribution function F (x) := P(X ≤ x). By convention,

F is defined for all x ∈ R. By construction, limx↓−∞ F (x) = 0, limx↑∞ F (x) = 1, F is

non-decreasing, and F is continuous from the right, i.e.

lim
x′↓x

F (x′) = F (x).

Define the quantile function

F−(u) := inf{x ∈ R : F (x) ≥ u}. (4.22)

The following result is a cornerstone of generating random variables with easy-to-evaluate

quantile functions.

Theorem 22 (Probability Integral Transform, PIT)

Let U have a standard uniform distribution. If F− is the quantile function of X, then F−(U)

and X have the same distribution.

Proof: Let F be the distribution function of X. We must show that

F−(u) ≤ x ⇐⇒ u ≤ F (x) (4.23)

because then

P(F−(U) ≤ x) = P(U ≤ F (x)) = F (x)

as required. Now, see Figure 4.1, it is easy to check that

u ≤ F (x) =⇒ F−(u) ≤ x,

which is one half of equation (4.23). It is also easy to check that

u′ > F (x) =⇒ F−(u′) > x.

Taking the contrapositive of this second implication gives

F−(u′) ≤ x =⇒ u′ ≤ F (x),

which is the other half of equation (4.23). 2

Theorem 22 is the basis for the following result; recollect the definition of a super-uniform

random quantity from Definition 23. This result is used in the proof of Theorem 18.

Theorem 23 If F is the distribution function of X, then F (X) has a super-uniform distri-

bution. If F is continuous then F (X) has a uniform distribution.
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Values for x0

1

••

•

F•

x

F (x)

u

F−(u)

u′

F−(u′)

Figure 4.1: Figure for the proof of Theorem 22. The distribution function F is non-decreasing

and continuous from the right. The quantile function F− is defined in equation (4.22).

Proof: As we can see from Figure 4.1, F (F−(u)) ≥ u. Then, from Theorem 22,

P(F (X) ≤ u) = P(F (F−(U)) ≤ u)

≤ P(U ≤ u)

= u.

In the case where F is continuous, it is strictly increasing except on sets which have proba-

bility zero. Then

P(F (X) ≤ u) = P(F (F−(U)) ≤ u) = P(U ≤ u) = u,

as required. 2
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