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Abstract

The lasso (Tibshirani,1996) has sparked interest in theoipenalization of
the log-likelihood for variable selection, as well as skeage. Recently, there have
been attempts to propose penalty functions which improes uipe Lassos prop-
erties for variable selection and prediction, such as SCRdh (@nd Li, 2001) and
the Adaptive Lasso (Zou, 2006). We adopt the Bayesian irgtafon of the Lasso
as the maximuna posteriori(MAP) estimate of the regression coefficients, which
have been given independent, double exponential priorlalistons. Generaliz-

ing this prior provides a family of adaptive lasso penaltydiions, which includes
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the quasi-cauchy distribution (Johnstone and Silverm@fA5pas a special case.
The properties of this approach are explored. We are phatlgunterested in the
more variables than observations case of characterisgioriance for data arising
in chemometrics, genomics and proteomics - to name but.t@eg methodol-
ogy can give rise to multiple modes of the posterior distidouand we show how
this may occur even with the convex lasso. These multipleesa@b no more
than reflect the indeterminacy of the model. We give fastrilyms and sug-
gest a strategy of using a set of perfectly fitting randontisgwalues to explore
different regions of the parameter space with substantisigsior support. Simu-
lations show that our procedure provides significant impnognts on a range of
established procedures and we provide an example from ghetrios.
KEYWORDS: Bayesian Variable selection in regression, Scale mixtafesr-
mals, Normal Exponential Gamma, adaptive lasso, Penaliketihood, non-

convexity.

1 INTRODUCTION

Variable selection in regression has several purposestotade regularization
for good estimation of effects, to provide good predictioml & identify clearly
important variables. With the advent of modern instrumigoma very many vari-
ables, often vastly more than the number of observatiomspravided routinely.
For example in functional genomics microarray chips tylbjchave as many as
tens of thousand genes spotted on their surface and thewioemay be inves-
tigated over perhaps one hundred or so samples. Curve fittipgpteomics and
other application areas may involve an arbitrarily largembar of variables, being

limited only by the resolution of the instrument. In suchcaimstances often it
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is desirable to be able to restrict attention to the few mogiortant variables by

some form of adaptive variable selection. Consequentlsettserenewed interest
in providing fast and effective algorithms for sifting tlugh these many variables.
Here we do not attempt to inject subject-matter prior knolgks rather to give

generic procedures that will be successful across a widgerahapplications.

Classical subset selection procedures are usually cotigmaby too time
consuming and perhaps more importantly suffer from inhténestability (Breiman,
1996). Bayesian stochastic search variable selection §®\thods have be-
come increasingly popular often adopting the ‘spike ant’ gpaor formulation
of Mitchell and Beauchamp (1988), see also George and Mo€hul{1997), and
Brown et al (1998) for multivariate extensions and more recently in rtingre-
variables- than- observations case by Braetral (2002), West (2003). In these
approaches Bayesian averaging helps to induce stabiligspide careful use of
algorithms to speed up computations these approachesilatecsslow to deal
with the vast numbers of variables of order 10,000 or even(D@with SNPs in
genomics and some form of pre-filtering is necessary.

One form of Bayesian approach which does offer the potefaiahuch faster
computation takes a continuous form of prior and looks nyefi@ modes of the
posterior distribution rather than relying on full MCMC. Guformulations lead
to penalized log likelihood approaches where the additergapzation of the log
likelihood is the log of the prior distribution. Tibshirami(1996) lasso is equiv-
alent to a double exponential prior distribution, proposedBayesian wavelet
analysis by Vidakovic (1998). A more extreme form of penadtythe normal-
Jeffreys prior (Figueiredo and Jain 2001, Figueiredo 208&)pted in an extended
generalized linear model setting by Kiiveri (2003). Ter &«g2006) adopts a

power variant of the Jeffreys prior for propriety of the m&ir, concentrating
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more on MCMC and the full posterior distribution.

Within the penalized likelihood literature Fan and Li (20®&ve modified the
lasso’sL; penalty so as to offer less shrinkage for large effectsy tBeioothly
Clipped Absolute Deviation penalty (SCAD). They show that tasso property
of giving a mode of exactly zero requires the penalty to bguder at the ori-
gin. They also discuss (their Theorem 2) the ‘oracle’ propethereby knowing
beforehand which coefficients should be set to zero doesmmibve estimation
asymptotically. Zou (2006) takes up the oracle theme, shgwhat in some cir-
cumstances the lasso may be inconsistent for variableteelecMeinshausen
and Buhlmann (2006) also discuss the conflict of optimatljsteon and consis-
tent variable selection in the lasso. They prove that ther@tlasso shrinkage
parameter gives inconsistent variable selection resuith, many noise features
included in the predictive model. Consequently Zou (2006ppses an adaptive
lasso whereby coefficients are weighted differently. Owfgared Bayesian al-
ternative developed in section 2 is automatically adapgffectively achieved by
continuously varying the lasso parameter. It will also adajproviding negligible
shrinkage for large effects in the spirit of SCAD.

As noted by Zou and Hastie (2005) the lasso needs to selecvsttmon-
zero parameters. They also draw the line between strictlyeopenalties and
the non-strictly convex lasso penalty which may consedydead to a contin-
uum of solutions. The literature has concentrated on copeeslized likelihoods
but our Bayesian priors infer non-convex penalties and lsthlikelihoods and
their consequent multiple solutions. We will explore thegemeans of random
perfectly fitting starting values. We argue that is is aitiito demand a single
solution to a problem that is inherently indeterminateh@lgh it is often easy

to find one very good estimator avoiding the need to form alsiegtimator by
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averaging.

In section 2 we consider using scale mixture of normal pristrithutions for
the regression coefficients and develop the particular abexponential-gamma,
showing its connections with existing approaches and tiiealrtail to spike
weighting of various competitors. In section 3 we companenkage and se-
lection of our preferred choice with more standard altéveat In section 4 we
implement the class of priors through an EM algorithm forlekpg the posterior
modes and show how alternative subsets can be fitted throudfiple random
perfectly fitting starting points, whefn the number of variables, is greater than
the number of observations. Section 5 gives a counter exaraphe uniqgueness
of the lasso when the number of variables is greater than uh&ar of obser-
vationsk > n. Section 6 ilustrates the ideas via a simple simulation and@em
systematic simulation study together with an real exam@teme concluding re-

marks are made in Section 7.

2 BAYESIAN PENALIZATION

Throughout we will be concerned with standard multiple esgron with Gaussian
errors, although it will become clear that generalizationekponential family
models is straightforward.

We assume that the explanatory variables have been ceiedeahy scaling
of these variables has been undertaken if desired. It mapteel that automatic
scaling to ‘correlation form’ may not be desirable when tlagiables are on the
same scale as it will just tend to inflate the relative impueeaof variables that

change little over the data. We assume

Y =pul+XB+e, (1)
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whereY is then-dimensional response vector aidis the(n x k)-dimensional
matrix of regressorss = (e1,...,¢€,) and these are independentONos2). We
do not restrictt to be less tham. Implicitly throughout we are assuming a vague
prior for ;1 so that in effect we replace it by the sample mean ofithe\t least
initially we will assume that? is known.

For reasons of convenience and flexibility we will concetatran priors for
Bj,3 = 1,..., kwhich are scale mixtures of normals, see for example We8{()19
Here

7(5;) Z/N(ﬁi|07¢i)a(d¢i)

where NY |11, 02) denotes the probability density function of a random vaeiab
having a normal distribution with meanand variancer?. HereG is the mixing
distribution and its density, if it is defined, will be refed to agy(-).

Taking the negative log prior gives a direct analogue tosatadly penalizing
the negative log-likelihood and then minimizing. The lags@ member of this
class. The mean-zero double exponential distribution,0DE/~) with probabil-

ity density function

1
%exp{—lﬂ\/v}, —00 < <00, 0 <y <0

is defined by an exponential mixing distribution, é(%) with probability den-
sity function

o) = #exp{—wi/[zvz]}. @

2.1 The normal-exponential gamma (NEG)

Our preferred generalization of the lasso prior is formedablgwing the scale
parameter to vary from coefficient to coefficient and defineagBian analogue

to the Adaptive Lasso (Zou 2006). Specifically if we write @& zexp(—z1);)

6
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and assume has a gamma mixing distribution with parametars,?> and den-
sity proportional toz*~'exp(—~2z) then the density fo; is a subclass of the
gamma-gamma distribution (Bernardo and Smith, 1994, p1B@)exponential-
gamma (EG). The density of the marginal distributiorsptan be expressed using

Gradshteyn & Ryzik (1980, p319) as

A2 167 3;
7(6i) = \/—EVI’()\—F 1/2) exp {Z?} D_2()\+1/2) (‘/y‘) 3)

whereD, (z) is the parabolic cylinder function. Computation of this dtions is
described in Zhang and Jin (1996, section 13.5.1, p439gdwdrsions are avail-
ablefromhtt p: //jin.ece. uiuc.edu/routines/routines. htnl for
Fortran 77 andht t p: / / ceta. mi t. edu/ conp_spec_f unc/ for Matlab. If
A is small, the computation efkp{z}D, (z) is much more stable than computa-
tion of D, (z). This involves a simple modification of the method described
Zhang and Jin (1996).

The parametety and A control the scale and the heaviness of the tails respec-

tively. From Abramowitz and Stegun (1964, p689 eqn 19.84d yee that for large

|8
i

|ﬁz| > —(22+1)

(i ~e (2

Thus if A = 0.5 the distribution has the same tail behavior as a Cauchy. Also
if A > 1, the expectation of); and the variance af; exist and have the form

(A“’_Ql). The excess kurtosis IB)\i—2 if A > 2. This class of distributions can define

distributions for which the variance is undefined < 1)and thus has a tail-to-
spike balance which can be concentrated around zero andcyetfat tails. The
distribution of 5 is singular at zero with a mode that is finite for all parameter
values. We will refer to the marginal distribution @6f with density (3) as the

normal-exponential-gamma (NEG) distribution.
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Although the emergence of parabolic cylinder functions segm unappetiz-
ing, the distribution has precedents in the literature when0.5. The precedents
arise because when convolved with an equal variance nohmagsult is a conve-
nient explicit form. In fact Johnstone and Silverman (20@&jne aquasi-Cauchy
which is exactly the NEG wheh = 0.5. Also Berger (1985, section 4.7.10) de-
fines a robustness prior which again exactly correspondseiminivariate case of
his multivariate prior. The Cauchy form of tail behavior wadso derived by Jef-
freys (1961, section 5.2) in connection with hypothesitingdor a normal mean,
with the requirement that one observation should give amdisi’e result. The
marginal distribution of3; for the quasi-Cauchy special case also avoids the need
for parabolic cylinder functions. Using integration by {saand Gradshteyn and

Ryzik (1980, p315, 3.362 eqgn 2) we obtain for= 1/2

Nor (L) — oLy
n(f) = —<{1— ,
. { o(12)

Y
whereg¢(.) and®(.) are the pdf and cdf of the standard normal. This form is also

(4)

given as (13) of Johnstone and Silverman (2005).

Before going onto properties of the general NEG prior wedisteral alter-
natives. The normal-Jeffreys (NJ) prior distribution arfsom the improper hy-
perprior g(1;) o wi which in turn induces an improper prior fo§ of the form
7(B;) x \ﬁ_l\ This has been used by Figueiredo & Jain (2001), Kiiveri(2Go®1
in a power variant by ter Braak (2006). Another alternativeoh is proper is the
Normal Gamma (NG) or Variance Gamma of Bibby and Sorensod3R20

Our reason for choosing the NEG is two-fold: it has a finité&eait zero for all
parameter values (not so NJ or NG) and it has fat tails\femall. We will see that
these properties are important if we want to find sparseisofit The tail to spike

behavior is illustrated in figure 1 for NEG, DE and NJ. For camigon we specify

one scale parameter by fixing probability mass on the cergidn(—e, ¢) to ben

8
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(except the Normal-Jeffreys which has no scale parametég .figure illustrates
the effect of fixingn = 0.9 on the region(—0.01,0.01) for the two comparisons
with the lasso: (a) DE v NEG and (b) DE v NJ. The NEG distribatis able to
maintain flat tails with a large preponderance of densityadwzero). It seems that
the DE and NJ are at opposite extremes with the NEG presegaad features of

the NJ without the drawback of the extreme spike at zero.

I
|
|
|
1

(@) (b)
Figure 1:Log prior densities setting the central region (-0.01,pt6have probability; = 0.9
for: (a) double exponential distribution (solid line), NE& = 1) (dashed line) and NEG(=
0.1) (dotted line), and (b) double exponential (solid line) angroper normal-Jeffreys (dashed

line)

In the next section we characterize the threshold propedig¢he NEG and
some of its competitors in the special case of one paramatemuivalently in

general regression when th& X matrix is diagonal.

3 SELECTION AND SHRINKAGE

It is natural to regard the negative prior utility as a penditnction given as
p(B), wherep(3) = —lognw(3). The problem of finding a maximura poste-

riori (MAP) estimate ofg can be expressed as a penalized likelihood problem
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whereg is chosen to find a minimum of the function

k

L=ty X8 - X0+ 3 p(l5). 5)

202 i=1

In one dimension typically for spiked priors there may be st@aor mode at zero
as well as the data driven mode away from zero. With weak ecel¢he mode
at zero will be the only mode. As evidence of an effect stremshso a turning
point appears away from zero. With more evidence still thiglenwill dominate.
Thus there may be one or two modes. In higher dimensions wehanag/a highly
multi-modal posterior distribution. The turning point &t posterior distribution
with the largest density will be called tipenalized MLEPMLE) and reserve the
term MaximumA posterioriProbability (MAP) for the overall mode (which may
be zero).

The choice of penalty function will have implications foetkhrinkage of the
regression coefficient. If we have one regressor it is ditidgvard to show that

the relationship between the PMIEand the MLES is given by

b-5
o2/XTX

sign(3)p' (1)) (6)

wherep/(-) is the derivative of the penalty function aq%;’T:X is the standard
error of 3. The amount of shrinkage is directly controlled by the datixe of the
penalty function. An extreme form of shrinkage séts= 0 which will be useful

for variable selection. Fan and Li (2001) use equation (&htaw that the PMLE

is zero if

0.2

St} =7 )

1 < {10+
We shall refer tor as the turning point threshold. Fan and Li (2001) show that
the so-called oracle property is implied by the derivati¥¢he penalty function

tending to zero a§3| — oo. The dependence on the derivative of the penalty

function also arises from robustness considerations imdi@oel (2006). Various

10
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penalty functions together with their derivatives areelisin Table 1. For larggs|

p(B) p'(161)
double exponentié, 1) % 1
normal-Jeffreys log | 5] ﬁ
6(3%%) AL log(1+ 52/\?) 2L
normal-gamma (3 =) log|B| — log K12 (@) ! 2 j:zgég
wo | g () 2ol

Table 1:Penalty functions and their derivatives induced by varichusice for the hyperprior

the normal-Jeffreys, Student, and NEG all tend to zero atlrd{3| whereas the
double exponential and normal gamma tend to a non zero ciinsta
It is illuminating to compare the turning point threshold Y@rious choices of

the prior distribution. For the double exponential priostdbution, the threshold

is |G| < %X"fX which depends on the square of the standard error and sé&shtin

an uncomfortably fast rate @f/n. In contrast, the normal-Jeffreys prior thresholds

according to the rulé3| < 2\/7 and the threshold depends linearly on the
standard error, witl /\/n. Remarkably the 2 multiplier that pops out is rather
close to 1.96 for a single 5% normal test value. Figure 2 coegpthe threshold
rules for the normal-gamma penalty and the normal-expaeggmma penalty.
The latter has linear behavior where the slope depends, ayeneralizing the
normal-Jeffreys rule and is thus more appealing. The negaaima case has
substantially different behavior and defines a much mores@&wmative criterion.
Much larger values off would induce a linear threshold rule but this contradicts
our imposed prior property of a large mass close to zero.

We have earlier noted that the global mode may not be the da&mdon-zero

mode. An exception is the double exponential prior for whican be shown that

11
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(@) (b)
Figure 2:The graphs show the relationship betweegiven by (7) on they-axis and the stan-
dard error {-axis) under different prior choices: (a) double expora@mtistribution (solid line)
and normal-gamma)(= 0.1) (dotted line), and (b) normal-exponential-gamma distitns
with A = 10 (solid line), A = 1 (dashed line) and = 0.1 (dotted line). The priors were set to

have probability; = 0.9 on the central region (-0.01,0.01) in each case.

the PMLE and the MAP estimate coincide. In contrast the itdispike at zero
for the Jeffreys prior and the normal-gamma with< 0.5 always appears in the
posterior and can dominate the search for a mode away fram{@éurning point).

However, the NEG prior distribution always renders a finiteda at zero in the

posterior.

4 IMPLEMENTING REGRESSION

In order to explore the inferential properties we developEdh algorithm for
estimation when the number of parameters may exceed theanwohbbservations
and show how to create multiple starting values that fit tita garfectly and can

explore alternative modes in the multi-modal posterior.

12
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4.1 An EM algorithm to find a mode of 3

Local posterior modes can be found using the EM algorithmm{psteret al 1977,
Meng and van Dyk 1997) which has been suggested by both K{@@03) and
Figueiredo (2003) as a means for fitting models using scajktuna of normal
priors. In general, we use the EM algorithm to find a promising small subset
of variables with non-zero regression coefficients. In @ge; the prior variances
of the regression coefficients,, ...,y are treated as missing data. Alterna-
tively Kiiveri (2003) suggests applying the EM algorithnretditly to the ‘likeli-
hood times prior’ in the generalized linear model settinge M-step is approx-
imated by a Newton-Raphson line search for the MLEB@nd the algorithm is
started from a ridge regression estimate. In the normahtinegression case no
approximations are necessary.

The standard EM algorithm outputs a sequence of estin#atess @), . .. that
under regularity conditions converge to a local maximurgjgf The sequence is
defined by iterating between an E step which for us averagesyofor given g

and an M step which maximizes ovérfor given.

/()
B;i—l)‘

1. E-step Let w](.i) = forj=1,... k. The deriva-

1 —
E[L190] —

tivesp’(|3]) are given in table 1.

2. M-step: Set3() = ¥-DAATW(-1) A+ 52D ~2)~ 14 where we calculate
the singular value decomposition &F = FDA”. The matrixA is (k x r)-
dimension matrix such that” A = I,. with columns ofA ther eigenvectors
of X” X corresponding to non-zero eigenvaluds is an(r x r)-dimension
diagonal matrix and’ is (n x r)-dimension matrix whose columns are the
eigenvectors o X corresponding to non-zero eigenvalues and for which

FTF = I.. We also defines(i-1) = Diag(wy_l),...,wg_l)) anda =

13
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D~'FTy. This form allows involves the inversion ofx r matrices where
r < min(n — 1,k) is the rank ofX. Whenk >> n these matrices will
be very much smaller than thiex k& matrices that would be needed using

standard results.

Much of the work in linear or generalized linear models usiogmal-Jeffreys
penalty functions, see Kiiveri (2003), Figueiredo (2008jes to find a single
mode. Bae and Mallick (2004) and Mallick al (2005) on the other hand go
for full posterior simulation using MCMC, but in favoring&hNJ overlook the
fact that the likelihood times prior for this remains impeogas the likelihood for
0 at zero is bounded away from zero and hence the behavior me¢ji@n of zero
is still proportional tol /5 and integrates to Iq@), which blows up atero. This
precludes full Bayesian posterior analysis using the Ndrgut does formally
allow it to act as a device for generating modes from the liliked times prior’
in the spirit of penalized likelihood. It is yet another reagor our preference for
the NEG which retains some of the attractions of NJ but witlibe dominating
spike at zero.

In the next section we explore where we might start the algorio find well
fitting local modes that have sparse solutions in the sengevoliving few vari-

ables.

4.2 Perfectly fitting random starting values

The Minimum Length Least Squares (MLLS) (also ridge for dmdgje constant)
fit to the data fork > ris Byrs = (X7 X)+ X7y where ‘+' denotes the Moore-
Penrose generalized inverse. This will provide a perfefitiyng solution with
typically all coefficient estimates non-zero. In fact theik be ak—r dimensional

null space in which we can start our EM algorithm, with alldesquares solutions

14
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fitting perfectly.

The singular value decomposition of the centered designixmst
X = FDiag(dy,ds,...,d)AT.

The orthogonal projection matrix &— P = I;, — AAT a matrix of rank(k — r).
Consider generating a random-vectorz and takew = (I — AAT)z, calculated
asz—A(AT2). If we add this projected random vectordg, .15 then we will have
the same Minimum length least squares ‘perfectly’ fittinpson sinceXw = 0,

as verified by

Xw = FDAT(I - AAT)z

Thus we can addv to 35715 and get a ‘perfectly’ fitting starting point. We
can repeat this as often as we like or design 4tte span the space. Typically
the seed: would be generated as independent normal elements withnzeans
and we choose a common variance that reflects the typicalasrlamgest of the
variances in the sampling distribution of least squateas given by the Moore-
Penrose generalized inverse. To this end we ordered the ¢cbmponents of,
Bay < Beays--.< B and the average of the largest froBy o, upwards.
Other more graphical strategies could be sensible if fongya there is distinct
jump in size of the larger elements.

The approach above is inefficient in the sense that it regjtiire generation of
k random values when onl{k — r) are required to cover the space orthogonal to
the least squares fit. A potential way around this is caleulathek x (k —r) set
of eigenvectors completing the s&t Now suppose we a have a randdk-r) x 1

vectoru, then Au may be added t6/1.Ls 10 achieve a ‘perfectly’ fitting starting

point. This is easily seen sincéAu = FDAT Au = 0 since the eigenvectors in

15
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A and A are orthogonal. Lack of quick algorithms to generdtenay make this
modified approach unattractive though.

In the next section we note that regions of indeterminacyaféett even the
convex penalization of the lasso wheen- rank(X), essentially because although

convex it is not then strictly convex.

5 NON-UNIQUENESS OF LASSO

With L, componentwise loss in Gaussian multiple regression thalized nega-
tive log-likelihood is convex but not strictly convexity.htis in under-determined
contexts the lasso may give an interval of maxima rather ghamque maximum.
We give a counterexample to uniqueness which will bring dugmthis will occur.
The example illustrate cases where the sufficient conditionuniqueness of Ap-
pendix B1, Theorem 5 of Rosset al (2004) do not hold. The examples begin by
being quite specialized but move on to much more plausilitemgs. The message
is that although the symmetry required may not be exactlggire near symmetry
often is, and this may lead to a lack of robustness and anchraageability of

variables.

5.1 A general counter example

We first derive a result for an example essentially consalbyeZou and Hastie (2005).
This very specialized example will then be generalized tougmricher context
from which we will be able to draw insights even when the ctiads only ap-
proximately hold. For the example in its original form theme k variables and
n observations but the variables are repeated for each @bserythat is the n-

vectors satisfyr; = xz;, i,j € (1,2,...,k). Denote the common—vector as

16
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x. Symmetry is crucial. This is an example where all the vaeslare perfectly
correlated and there is additional symmetry in the varghleat is rather than the
generaly;; = b;jxi5, [ = 1,...,nitis necessary thab;;| = |b|, independent of

variable labels, w.l.0.g take= 1. The linear model becomes

k
YEZ.Z‘lZﬁj—I—Gl, l=1,...,n.
j=1

The function to minimize becomes

n k k
L= {y—am(d 8y +cD_16) 8)
=1 Jj=1 Jj=1

Letd = Y°%_, B; then the least squares estimate@$ = y”z/(2"z), w.l.o.g.
assumed to be non negative. Apart from an additive consBaulecomes
k
L =aTa(0 - 0)" + (Y 18- ©)
j=1

The MLE of 3 does not exist: the likelihood is constant on the plﬁf(;(;l 8; = 6.
Parallel to this plane and above it both terms in (9) are awmxd, whereas below
the least squares plane the first term increases but thedsdeoreases provided
we are in the positive quadrant. Differentiating (9) on tiamex for turning

points, the minimum or lasso is attained at
n

0=0—c/[2) af]
1

or zero if this changes the sign frofin

Now we can strengthen and extend this example by considgratg subset of
the variables being perfectly symmetrically correlatedpi®se there arke; > 1
of these and their labels are the subset S; with the complementary sgte Ss.
Then

Y =X1681 + Xofa + €

17
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with X1, n x k; andXs, n x ky. Here we assum&; = z17 with n—vectorz and
1 ak;—tuple of ones. The model becomes

=) B+ Y wBi+ea

JESI JES2

Letd = > Bj, now we can see that if the lasso is applied to the reduced

JESI
problem in which the design matrix &y, = {2:X>} an x (kg + 1) matrix and
the lasso solution does not set= 0 then there will be multiple solutions on
the simplex|0| = >, |8;|. Perversely the usual practice of of standardizing
x—variables will promote such symmetry and if correlations aear unity for
any subset of at least two variables then there will be flat@esin the penalized

likelihood space and near indeterminacy. This will be hidikely by chance in

high dimensional problems wheke>> n.

6 EXAMPLES

We will first apply the NEG prior to an example of fitting to sifated data from
a sine function with added error using a spline basis. THigliewed by a simu-
lation study of some alternative methods systematicalmmared with the NEG
in then << k setting. Finally we give a real example involving prediotiof the

composition of biscuits.

6.1 Spline simulation

Our first example applies regularisation to the problem ¢hita curve using
piecewise linear splines. This allows visualisation ofulagsation effects using

the estimated curve. We assume that the function can be wmikssed in the
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form
k
flx) = Zﬂi max{0,x — L;}
i=1

where L1, Lo, ..., L are knots points which are equally spaced in the interval

(a,b) and sOL; = a + {=X(b — a). We observe pairéz;,y;), which is a noisy
versions off(x;). The problem of estimating; is a linear regression problem

in a non-linear basis. Osbormt al (1998) have applied a Lasso penalty to this
problem and we compare this approach to Normal-Jeffreyd\&t@ penalisation.

If k& is large, there will be substantial correlation betweersegbent regressors,
due to the closeness of the knots points, which makes irderéy regression
methods a challenging problem. Weit= 30 observations:x; are uniformly
distributed on(0,1) andy; = sin(27z;) + ¢; whereg; is drawn from a normal
distribution with mean 0 and variance 0.01. We have 500 knot points between

a = —0.3 andb = 1.3. The hyperparameters of the Lasso and the NEG are

estimated using 5-fold cross-validation. The results lierNEG penalisation are

(a) (b)
Figure 3: Spline fitting 5-fold cross-validation with the NEG penaftyr various values of\
andy = 0% Panel (a) shows the average MSE and (b) shows the averadgeenofrincluded
variables. In both cases: = 0.1 (solid line), A = 0.5 (dashed line)A = 1 (dotted line) and

A = 2 (dot-dash line)
illustrated in figure 3 by the average MSE error for the tes{zanel (a)) and the
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average number of non-zero estimates (panel (b)). The gaveVSE is mainly
determined by the choice qf = V% and the average non-zero regressors falls
asu is increased. For fixed, larger values of\ (leading to thinner tails) gives
more non-zero estimates. It is worth noting that althoughribmber of non-zero
regressors should be less thathat, in practice, the number of included regressors

can be larger than due to the high correlation of the regressors.

NEG =

Lasso =

NJ -

(a) (b)
Figure 4:Spline fitting at 20 perfectly-fitting random starts for thg, Nasso and NEG penalties
using the hyperparameters chosen by cross-validatiorel R&nshows the number of variables
fitted in each of 20 runs and (b) shows the fitted models for @athe 20 modes overlaid by

the observations
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NEG

Lasso

NJ

The summary figures for 20 perfectly fitting random starts given in fig-

ures 4 (a), 4(b) and 5 for the three prior distribution wittplgparameters cho-

sen by cross-validation. In each case, the fitted curveswdihe data well (fig-

ure 4(b)). The variety of fitted curve for a given method isntegn difference with

the Lasso showing the least differences and the Normaikeysfthe most. This re-

sults is also illustrated by the position of the knot-pointhwnon-zero regression

parameter estimates (figure 5). The NEG and Normal-Jeffpegs distributions

show a spread of knots points with non-zero estimates ierdifft modes whereas

the Lasso will typically pick a single point across all moddsere is also sub-

stantial differences between the number of non-zero regredound using the

Normal-Jeffreys and NEG priors, which are typically 7 or 8mpared to the

Lasso fits which use many more (figure 4(a)).

R ERE

LN

T T T TR

|-

)

E

0
0
0

ST T I-F T T T T

i
A

Figure 5:Spline fitting knots for 20 perfectly-fitting random starts the NJ, Lasso and NEG

prior distributions using the hyperparameters chosen bgsevalidation. The figures show the

regression estimates (the area of the dots is proportiorthktabsolute value of the regression

estimate).
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6.2 Multiple regression simulation

We have conducted a simulation study to compare a varietgtmhation methods
including that corresponding to our preferred NEG priore Tdaussian error re-
gression model is simulated with error varianée= 1. Then x k design matrix
X is simulated with an autoregressive order (AR(1)) striectwith lag 1 corre-
lation p = 0.5,0.8. The simulation hass = 100 observationskg = 500, 2000
variables,k* = 10 nonzero coefficients g8, with either all the non-zero coeffi-
cientsg = 1 or 8 = 5, equally spaced in the variable design. Hyperparameters,
eg A, i in the NEG, were chosen by 5-fold cross validation and furtested on
10 datasets of 100 observations.

The methods compared are:

1. The normal exponential gamma (NEG) prior, in versionf\wiith parame-
ters free to be chosen froth = 0.1,0.5,1 and2 by cross validation and

with A = 0.1, 0.5 fixed
2. The Lasso, with one parameter estimated by cross-vatidahoice

3. The Adaptive Lasso (AL) using either the Minimum LengtlakeSquares (MLLS)
with a Moore-Penrose generalized inverse or Ridge (fronarsd@ cross-
validatory choice) for the estimat@, in the construction of their adaptive

weight function,w = ﬁ with v chosen as either 0.5, 1 or 2.
4. The normal Jeffreys (NJ) prior which has no free pararsdteestimate

5. TheL, penalisation (Ridge regression) with its constant estohély cross-

validation.

The Mean squared error results for the= 8 cases are given in Table 2.

To summarise these results:
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Method

k=500 variables

g=1 B=5

p=05 p=08 p=05 p=038

k=2000 variables

B=1 B=5

p=05 p=08 p=0>5 p=078

NEG
NEG) =01
NEG)—0.5
Lasso
Almis
AL Ridge
NJ

Ridge

1.19

1.27

1.19

1.65

1.62

1.96

1.25

5.16

1.22 1.14 1.22

1.30 1.16 1.30

1.22 1.14 1.22

1.59 1.59 1.59

151 1.44 1.51

1.76 2.75 1.76

1.30 1.17 1.30

3.96 98.52 3.96

1.26

151

1.40

2.09

2.60

3.35

2.73

6.10

1.47 1.10 1.18

1.64 1.13 1.20

1.62 1.10 1.20

2.21 1.97 2.08

2.39 2.00 2.19

2.86 18.7 24.2

2.57 1.10 1.17

5.53 122.1 119.9

Table 2: Mean squared errors for regression simulatiortsmat 100 observations and

k* = 10 non-zero coefficients, error variance 1.0

e NEG is generally the best with a MSE close to the oracle urfithe error

variance.

e The adaptive lasso is generally no better than the lasso.

e The NJ is surprisingly good given that it lacks adaptive fdéiy with no

hyperparameters to estimate

¢ Ridge is generally bad, which is hardly surprising in thepitior assumption

of a exchangeable normal distribution would expect a godanica of non

zeroA’s, not such a small number relative to the number of parammete

will come into its own with a higher proportion of non-zefo
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(@) (b)
Figure 6: Biscuits data 5-fold cross-validation with the NEG penditiy various values of\
andu = 0% Panel (a) shows the average MSE and (b) shows the averageenofrincluded
variables. In both cases: = 0.1 (solid line), A = 0.5 (dashed line)A = 1 (dotted line) and

A = 2 (dot-dash line)
6.3 Biscuits NIR data

The data is taken from Osbormee al (1984) and was used again in Browhal
(2001), where the data set-up are described in some dekelpredictor variables
are measurements of the NIR reflectance spectrum of bissugfidpieces and the
amount of fat, flour, sugar and water that each piece contdinere are 39 sam-
ples in the training data and 31 in the final validation set. hafee reduced and
thinned the reflectance spectra to 300 wavelengths 1202r4d0nm in steps
of 4nm. The hyperparameter values of the NEG penalty areechosing 5-fold
cross-validation. For each split of the training sample iattraining and test-
ing subsample the EM algorithm is run once the training dasleen centered
and standardized by the median of SDs of #evariables and the same mean
and standard deviation used to adjust the 19 test spectrae \&ided scaling
to ‘correlation form’ since it is important not to change tedative scales of re-
flectance at different wavelengths as this would promotectthces which are

very small and may be largely noise. The resparisghosen was the flour content
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which was also centered and scaled by its standard deviagiemthe 20 samples.
These standardizations help numerical stability and abesy interpretation of
fit.

The hyperparameters, A are selected by cross-validation averaging over 5
splits and the results are shown in figure 6 (a). Figure 6 (@sgythe parallel
effect on number of wavelengths chosen. The hyperparamegstues chosen
were A = 1, x = 100000. The results of finding estimates using the NEG pe-
nalized likelihood with these hyperparameters over 20guénfandom starts are
depicted in figure 7. Each mode found has 3 or 4 wavelengths maibh-zero re-
gression coefficients. Most modes include a wavelengthrarosition 1920nm
and 2080nm. Three further regions are identified by someefrtbhdes around
1800nm, 2200nm and 2400nm.

The average MSEs on the validation set (31 observationspP&66 (94% ex-
plained), which is competitive to that achieved in Broenal (2001) via full

MCMC and a ‘slab and spike’ prior.

7/ CONCLUSIONS

We have developed a wholly adaptive lasso motivated by a saydramework.
The lasso itself is unable to simultaneously do well in (@diction and (b) iden-
tification of significant variables. This can be viewed as @bjem of its inflex-
ibility in ‘tail to spike’ behavior with one parameter (a $egarameter) fits all.
Our Normal-Exponential-Gamma prior has two parameteréléaibility, one for
the shape and one for the scale although within this classtiape parameter
seems far less important in terms of our cross-validatioies. An effective

subclass which seems to lose little on the 2-parameter NEfoidded by the
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Figure 7: Biscuits data, 20 perfectly-fitting random starts for the@®Eenalties using the
hyperparameters chosen by cross-validation. Panel (ajssti@ regression estimates (the area
of the dots is proportional to the absolute value of the r&gjom estimate), (b) number of
wavelengths selected in each run, and (c) shows the numlienexf that a wavelength appears

in a local mode

quasi-Cauchy with\ = 1/2. Also its density, given by equation (4), is a function
of simple normal probability functions and can be quicklynputed.

We have shown in the simulation study that our NEG succeedts @ims.
We have also shown how the absence of strict convexity indhksol leads to
multiple solutions and indeterminacy when the number ofatdes is larger than
the number of observatiori& > n). Our NEG approach is non-convex and can
allow one to explore alternative selections which also fil.w@ur EM algorithm,
exploiting the scale mixture of normals characterizatibthe NEG prior, is able
quickly and successfully to find very predictive small subsén future work we

will explore the use of the NEG prior for modal generalizeweir modelling.
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