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Abstract

The lasso (Tibshirani,1996) has sparked interest in the useof penalization of

the log-likelihood for variable selection, as well as shrinkage. Recently, there have

been attempts to propose penalty functions which improve upon the Lassos prop-

erties for variable selection and prediction, such as SCAD (Fan and Li, 2001) and

the Adaptive Lasso (Zou, 2006). We adopt the Bayesian interpretation of the Lasso

as the maximuma posteriori(MAP) estimate of the regression coefficients, which

have been given independent, double exponential prior distributions. Generaliz-

ing this prior provides a family of adaptive lasso penalty functions, which includes
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the quasi-cauchy distribution (Johnstone and Silverman, 2005) as a special case.

The properties of this approach are explored. We are particularly interested in the

more variables than observations case of characteristic importance for data arising

in chemometrics, genomics and proteomics - to name but three. Our methodol-

ogy can give rise to multiple modes of the posterior distribution and we show how

this may occur even with the convex lasso. These multiple modes do no more

than reflect the indeterminacy of the model. We give fast algorithms and sug-

gest a strategy of using a set of perfectly fitting random starting values to explore

different regions of the parameter space with substantial posterior support. Simu-

lations show that our procedure provides significant improvements on a range of

established procedures and we provide an example from chemometrics.

KEYWORDS: Bayesian Variable selection in regression, Scale mixturesof nor-

mals, Normal Exponential Gamma, adaptive lasso, Penalizedlikelihood, non-

convexity.

1 INTRODUCTION

Variable selection in regression has several purposes, to provide regularization

for good estimation of effects, to provide good prediction and to identify clearly

important variables. With the advent of modern instrumentation, very many vari-

ables, often vastly more than the number of observations, are provided routinely.

For example in functional genomics microarray chips typically have as many as

tens of thousand genes spotted on their surface and their behavior may be inves-

tigated over perhaps one hundred or so samples. Curve fittingin proteomics and

other application areas may involve an arbitrarily large number of variables, being

limited only by the resolution of the instrument. In such circumstances often it
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is desirable to be able to restrict attention to the few most important variables by

some form of adaptive variable selection. Consequently there is renewed interest

in providing fast and effective algorithms for sifting through these many variables.

Here we do not attempt to inject subject-matter prior knowledge, rather to give

generic procedures that will be successful across a wide range of applications.

Classical subset selection procedures are usually computationally too time

consuming and perhaps more importantly suffer from inherent instability (Breiman,

1996). Bayesian stochastic search variable selection (SSVS) methods have be-

come increasingly popular often adopting the ‘spike and slab’ prior formulation

of Mitchell and Beauchamp (1988), see also George and McCulloch (1997), and

Brown et al (1998) for multivariate extensions and more recently in themore-

variables- than- observations case by Brownet al (2002), West (2003). In these

approaches Bayesian averaging helps to induce stability. Despite careful use of

algorithms to speed up computations these approaches are still too slow to deal

with the vast numbers of variables of order 10,000 or even 100,000 with SNPs in

genomics and some form of pre-filtering is necessary.

One form of Bayesian approach which does offer the potentialfor much faster

computation takes a continuous form of prior and looks merely for modes of the

posterior distribution rather than relying on full MCMC. Such formulations lead

to penalized log likelihood approaches where the additive penalization of the log

likelihood is the log of the prior distribution. Tibshirani’s (1996) lasso is equiv-

alent to a double exponential prior distribution, proposedin Bayesian wavelet

analysis by Vidakovic (1998). A more extreme form of penaltyis the normal-

Jeffreys prior (Figueiredo and Jain 2001, Figueiredo 2003), adopted in an extended

generalized linear model setting by Kiiveri (2003). Ter Braak (2006) adopts a

power variant of the Jeffreys prior for propriety of the posterior, concentrating
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more on MCMC and the full posterior distribution.

Within the penalized likelihood literature Fan and Li (2001) have modified the

lasso’sL1 penalty so as to offer less shrinkage for large effects, their Smoothly

Clipped Absolute Deviation penalty (SCAD). They show that the lasso property

of giving a mode of exactly zero requires the penalty to be singular at the ori-

gin. They also discuss (their Theorem 2) the ‘oracle’ property whereby knowing

beforehand which coefficients should be set to zero does not improve estimation

asymptotically. Zou (2006) takes up the oracle theme, showing that in some cir-

cumstances the lasso may be inconsistent for variable selection. Meinshausen

and Bühlmann (2006) also discuss the conflict of optimal prediction and consis-

tent variable selection in the lasso. They prove that the optimal lasso shrinkage

parameter gives inconsistent variable selection results,with many noise features

included in the predictive model. Consequently Zou (2006) proposes an adaptive

lasso whereby coefficients are weighted differently. Our preferred Bayesian al-

ternative developed in section 2 is automatically adaptive, effectively achieved by

continuously varying the lasso parameter. It will also adapt to providing negligible

shrinkage for large effects in the spirit of SCAD.

As noted by Zou and Hastie (2005) the lasso needs to select at mostn non-

zero parameters. They also draw the line between strictly convex penalties and

the non-strictly convex lasso penalty which may consequently lead to a contin-

uum of solutions. The literature has concentrated on convexpenalized likelihoods

but our Bayesian priors infer non-convex penalties and penalized likelihoods and

their consequent multiple solutions. We will explore theseby means of random

perfectly fitting starting values. We argue that is is artificial to demand a single

solution to a problem that is inherently indeterminate, although it is often easy

to find one very good estimator avoiding the need to form a single estimator by
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averaging.

In section 2 we consider using scale mixture of normal prior distributions for

the regression coefficients and develop the particular normal-exponential-gamma,

showing its connections with existing approaches and the critical tail to spike

weighting of various competitors. In section 3 we compare shrinkage and se-

lection of our preferred choice with more standard alternatives. In section 4 we

implement the class of priors through an EM algorithm for exploring the posterior

modes and show how alternative subsets can be fitted through multiple random

perfectly fitting starting points, whenk, the number of variables, is greater thann,

the number of observations. Section 5 gives a counter example to the uniqueness

of the lasso when the number of variables is greater than the number of obser-

vationsk > n. Section 6 ilustrates the ideas via a simple simulation and a more

systematic simulation study together with an real example.Some concluding re-

marks are made in Section 7.

2 BAYESIAN PENALIZATION

Throughout we will be concerned with standard multiple regression with Gaussian

errors, although it will become clear that generalization to exponential family

models is straightforward.

We assume that the explanatory variables have been centeredand any scaling

of these variables has been undertaken if desired. It may be noted that automatic

scaling to ‘correlation form’ may not be desirable when the variables are on the

same scale as it will just tend to inflate the relative importance of variables that

change little over the data. We assume

Y = µ1 +Xβ + ε, (1)
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whereY is then-dimensional response vector andX is the(n × k)-dimensional

matrix of regressors,ε = (ε1, . . . , εn) and these are independent N(0, σ2). We

do not restrictk to be less thann. Implicitly throughout we are assuming a vague

prior for µ so that in effect we replace it by the sample mean of theȲ . At least

initially we will assume thatσ2 is known.

For reasons of convenience and flexibility we will concentrate on priors for

βj , j = 1, . . . , k which are scale mixtures of normals, see for example West (1987).

Here

π(βi) =

∫

N(βi|0, ψi)G(dψi)

where N(Y |µ, σ2) denotes the probability density function of a random variableY

having a normal distribution with meanµ and varianceσ2. HereG is the mixing

distribution and its density, if it is defined, will be referred to asg(·).

Taking the negative log prior gives a direct analogue to classically penalizing

the negative log-likelihood and then minimizing. The lassois a member of this

class. The mean-zero double exponential distribution, DE(0, 1/γ) with probabil-

ity density function

1

2γ
exp{−|β|/γ}, −∞ < β <∞, 0 < γ <∞

is defined by an exponential mixing distribution, Ex
(

1
2γ2

)

, with probability den-

sity function

g(ψi) =
1

2γ2
exp

{

−ψi/[2γ2]
}

. (2)

2.1 The normal-exponential gamma (NEG)

Our preferred generalization of the lasso prior is formed byallowing the scale

parameter to vary from coefficient to coefficient and define a Bayesian analogue

to the Adaptive Lasso (Zou 2006). Specifically if we write (2)aszexp(−zψi)
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and assumeZ has a gamma mixing distribution with parametersλ, γ2 and den-

sity proportional tozλ−1exp(−γ2z) then the density forψi is a subclass of the

gamma-gamma distribution (Bernardo and Smith, 1994, p120), the exponential-

gamma (EG). The density of the marginal distribution ofβi can be expressed using

Gradshteyn & Ryzik (1980, p319) as

π(βi) =
λ√
π

2λ

γ
Γ(λ+ 1/2) exp

{

1

4

β2
i

γ2

}

D−2(λ+1/2)

( |βi|
γ

)

(3)

whereDν(z) is the parabolic cylinder function. Computation of this functions is

described in Zhang and Jin (1996, section 13.5.1, p439), coded versions are avail-

able fromhttp://jin.ece.uiuc.edu/routines/routines.html for

Fortran 77 andhttp://ceta.mit.edu/comp_spec_func/ for Matlab. If

λ is small, the computation ofexp{z}Dν(z) is much more stable than computa-

tion of Dν(z). This involves a simple modification of the method describedin

Zhang and Jin (1996).

The parameterγ andλ control the scale and the heaviness of the tails respec-

tively. From Abramowitz and Stegun (1964, p689 eqn 19.8.1) we see that for large

|βi|
γ

π(βi) ≈ c

( |βi|
γ

)−(2λ+1)

.

Thus if λ = 0.5 the distribution has the same tail behavior as a Cauchy. Also

if λ > 1, the expectation ofψi and the variance ofβi exist and have the form

γ2

(λ−1) . The excess kurtosis is3 λ
λ−2 if λ > 2. This class of distributions can define

distributions for which the variance is undefined(λ ≤ 1)and thus has a tail-to-

spike balance which can be concentrated around zero and yet have fat tails. The

distribution ofβ is singular at zero with a mode that is finite for all parameter

values. We will refer to the marginal distribution ofβi with density (3) as the

normal-exponential-gamma (NEG) distribution.
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Although the emergence of parabolic cylinder functions mayseem unappetiz-

ing, the distribution has precedents in the literature whenλ = 0.5. The precedents

arise because when convolved with an equal variance normal the result is a conve-

nient explicit form. In fact Johnstone and Silverman (2005)define aquasi-Cauchy

which is exactly the NEG whenλ = 0.5. Also Berger (1985, section 4.7.10) de-

fines a robustness prior which again exactly corresponds in the univariate case of

his multivariate prior. The Cauchy form of tail behavior wasalso derived by Jef-

freys (1961, section 5.2) in connection with hypothesis testing for a normal mean,

with the requirement that one observation should give an indecisive result. The

marginal distribution ofβi for the quasi-Cauchy special case also avoids the need

for parabolic cylinder functions. Using integration by parts and Gradshteyn and

Ryzik (1980, p315, 3.362 eqn 2) we obtain forλ = 1/2

π(βi) =

√
2π

γ







1 −
[ |βi|γ ][1 − Φ( |βi|γ )]

φ( |βi|γ )







, (4)

whereφ(.) andΦ(.) are the pdf and cdf of the standard normal. This form is also

given as (13) of Johnstone and Silverman (2005).

Before going onto properties of the general NEG prior we listseveral alter-

natives. The normal-Jeffreys (NJ) prior distribution arise from the improper hy-

perpriorg(ψi) ∝ 1
ψi

which in turn induces an improper prior forβi of the form

π(βi) ∝ 1
|βi| . This has been used by Figueiredo & Jain (2001), Kiiveri(2003) and

in a power variant by ter Braak (2006). Another alternative which is proper is the

Normal Gamma (NG) or Variance Gamma of Bibby and Sorenson (2003).

Our reason for choosing the NEG is two-fold: it has a finite spike at zero for all

parameter values (not so NJ or NG) and it has fat tails forλ small. We will see that

these properties are important if we want to find sparse solutions. The tail to spike

behavior is illustrated in figure 1 for NEG, DE and NJ. For comparison we specify

one scale parameter by fixing probability mass on the centralregion(−ε, ε) to beη
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(except the Normal-Jeffreys which has no scale parameter).The figure illustrates

the effect of fixingη = 0.9 on the region(−0.01, 0.01) for the two comparisons

with the lasso: (a) DE v NEG and (b) DE v NJ. The NEG distribution is able to

maintain flat tails with a large preponderance of density around zero). It seems that

the DE and NJ are at opposite extremes with the NEG preservinggood features of

the NJ without the drawback of the extreme spike at zero.
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Figure 1:Log prior densities setting the central region (-0.01,0.01) to have probabilityη = 0.9

for: (a) double exponential distribution (solid line), NEG(λ = 1) (dashed line) and NEG(λ =

0.1) (dotted line), and (b) double exponential (solid line) andimproper normal-Jeffreys (dashed

line)

In the next section we characterize the threshold properties of the NEG and

some of its competitors in the special case of one parameter,or equivalently in

general regression when theX ′X matrix is diagonal.

3 SELECTION AND SHRINKAGE

It is natural to regard the negative prior utility as a penalty function given as

p(β), wherep(β) = − log π(β). The problem of finding a maximuma poste-

riori (MAP) estimate ofβ can be expressed as a penalized likelihood problem
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whereβ is chosen to find a minimum of the function

L =
1

2σ2
(y −Xβ)T (y −Xβ) +

k
∑

i=1

p(|βi|). (5)

In one dimension typically for spiked priors there may be a posterior mode at zero

as well as the data driven mode away from zero. With weak evidence the mode

at zero will be the only mode. As evidence of an effect strenthens so a turning

point appears away from zero. With more evidence still this mode will dominate.

Thus there may be one or two modes. In higher dimensions we mayhave a highly

multi-modal posterior distribution. The turning point of the posterior distribution

with the largest density will be called thepenalized MLE(PMLE) and reserve the

term MaximumA posterioriProbability (MAP) for the overall mode (which may

be zero).

The choice of penalty function will have implications for the shrinkage of the

regression coefficient. If we have one regressor it is straightforward to show that

the relationship between the PMLẼβ and the MLEβ̂ is given by

β̂ − β̃

σ2/XTX
= sign(β̃)p′(|β̃|). (6)

wherep′(·) is the derivative of the penalty function and σ√
XTX

is the standard

error of β̂. The amount of shrinkage is directly controlled by the derivative of the

penalty function. An extreme form of shrinkage setsβ̃ = 0 which will be useful

for variable selection. Fan and Li (2001) use equation (6) toshow that the PMLE

is zero if

|β̂| < min
θ 6=0

{

|θ|+ σ2

XTX
p′(|θ|)

}

= τ. (7)

We shall refer toτ as the turning point threshold. Fan and Li (2001) show that

the so-called oracle property is implied by the derivative of the penalty function

tending to zero as|β| → ∞. The dependence on the derivative of the penalty

function also arises from robustness considerations in Li and Goel (2006). Various
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penalty functions together with their derivatives are listed in Table 1. For large|β|

p(β) p′(|β|)

double exponential(0, 1
γ ) |β|

γ
1
γ

normal-Jeffreys log |β| 1
|β|

IG
(

λ
2
λγ2

2

)

λ+1
2 log(1 + β2/λγ2) λ+1

λγ2+β2 |β|

normal-gamma
(

1
2 − λ

)

log |β| − logKλ−1/2

(

|β|
γ

)

1
γ

Kλ−3/2

�
|β|
γ

�
Kλ−1/2

�
|β|
γ

�
NEG − β2

4γ2 − logD−2(λ+ 1
2
)

(

|β|
γ

)

(2λ+1)
γ

D−2(λ+1)

�
|β|
γ

�
D

−2(λ+ 1
2 )

�
|β|
γ

�
Table 1:Penalty functions and their derivatives induced by variouschoice for the hyperprior

the normal-Jeffreys, Student, and NEG all tend to zero at rate 1/|β| whereas the

double exponential and normal gamma tend to a non zero constant.

It is illuminating to compare the turning point threshold for various choices of

the prior distribution. For the double exponential prior distribution, the threshold

is |β̂| < 1
γ

σ2

XTX
which depends on the square of the standard error and so shrinks at

an uncomfortably fast rate of1/n. In contrast, the normal-Jeffreys prior thresholds

according to the rule|β̂| < 2 σ√
XTX

and the threshold depends linearly on the

standard error, with1/
√
n. Remarkably the 2 multiplier that pops out is rather

close to 1.96 for a single 5% normal test value. Figure 2 compares the threshold

rules for the normal-gamma penalty and the normal-exponential-gamma penalty.

The latter has linear behavior where the slope depends onλ, generalizing the

normal-Jeffreys rule and is thus more appealing. The normal-gamma case has

substantially different behavior and defines a much more conservative criterion.

Much larger values ofγ would induce a linear threshold rule but this contradicts

our imposed prior property of a large mass close to zero.

We have earlier noted that the global mode may not be the data driven non-zero

mode. An exception is the double exponential prior for whichit can be shown that
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Figure 2:The graphs show the relationship betweenτ given by (7) on they-axis and the stan-

dard error (x-axis) under different prior choices: (a) double exponential distribution (solid line)

and normal-gamma (λ = 0.1) (dotted line), and (b) normal-exponential-gamma distributions

with λ = 10 (solid line),λ = 1 (dashed line) andλ = 0.1 (dotted line). The priors were set to

have probabilityη = 0.9 on the central region (-0.01,0.01) in each case.

the PMLE and the MAP estimate coincide. In contrast the infinite spike at zero

for the Jeffreys prior and the normal-gamma withλ < 0.5 always appears in the

posterior and can dominate the search for a mode away from zero (a turning point).

However, the NEG prior distribution always renders a finite mode at zero in the

posterior.

4 IMPLEMENTING REGRESSION

In order to explore the inferential properties we develop anEM algorithm for

estimation when the number of parameters may exceed the number of observations

and show how to create multiple starting values that fit the data perfectly and can

explore alternative modes in the multi-modal posterior.
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4.1 An EM algorithm to find a mode of β

Local posterior modes can be found using the EM algorithm (Dempsteret al1977,

Meng and van Dyk 1997) which has been suggested by both Kiiveri (2003) and

Figueiredo (2003) as a means for fitting models using scale mixture of normal

priors. In general, we use the EM algorithm to find a promisingand small subset

of variables with non-zero regression coefficients. In our case, the prior variances

of the regression coefficientsψ1, . . . , ψk are treated as missing data. Alterna-

tively Kiiveri (2003) suggests applying the EM algorithm directly to the ‘likeli-

hood times prior’ in the generalized linear model setting. The M-step is approx-

imated by a Newton-Raphson line search for the MLE ofβ and the algorithm is

started from a ridge regression estimate. In the normal linear regression case no

approximations are necessary.

The standard EM algorithm outputs a sequence of estimatesβ(1), β(2), . . . that

under regularity conditions converge to a local maximum ofβ|y. The sequence is

defined by iterating between an E step which for us averages overψ for givenβ

and an M step which maximizes overβ for givenψ.

1. E-step: Letψ(i)
j = 1

E[ 1
ψj

|β(i−1)]
=

p′
����β(i−1)

j

�������β(i−1)
j

��� for j = 1, . . . , k. The deriva-

tivesp′(|β|) are given in table 1.

2. M-step: Setβ(i) = Ψ(i−1)A(ATΨ(i−1)A+σ2D−2)−1α̂where we calculate

the singular value decomposition ofX = FDAT . The matrixA is (k × r)-

dimension matrix such thatATA = Ir with columns ofA ther eigenvectors

of XTX corresponding to non-zero eigenvalues ,D is an(r×r)-dimension

diagonal matrix andF is (n×r)-dimension matrix whose columns are ther

eigenvectors ofXXT corresponding to non-zero eigenvalues and for which

F TF = Ir. We also defineΨ(i−1) = Diag(ψ(i−1)
1 , . . . , ψ

(i−1)
k ) and α̂ =
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D−1F T y. This form allows involves the inversion ofr × r matrices where

r ≤ min(n − 1, k) is the rank ofX. Whenk >> n these matrices will

be very much smaller than thek × k matrices that would be needed using

standard results.

Much of the work in linear or generalized linear models usingnormal-Jeffreys

penalty functions, see Kiiveri (2003), Figueiredo (2003),tries to find a single

mode. Bae and Mallick (2004) and Mallicket al (2005) on the other hand go

for full posterior simulation using MCMC, but in favoring the NJ overlook the

fact that the likelihood times prior for this remains improper as the likelihood for

β at zero is bounded away from zero and hence the behavior in theregion of zero

is still proportional to1/β and integrates to log(β), which blows up atzero. This

precludes full Bayesian posterior analysis using the NJ prior but does formally

allow it to act as a device for generating modes from the ‘likelihood times prior’

in the spirit of penalized likelihood. It is yet another reason for our preference for

the NEG which retains some of the attractions of NJ but without the dominating

spike at zero.

In the next section we explore where we might start the algorithm to find well

fitting local modes that have sparse solutions in the sense ofinvolving few vari-

ables.

4.2 Perfectly fitting random starting values

The Minimum Length Least Squares (MLLS) (also ridge for small ridge constant)

fit to the data fork > r is β̂MLLS = (XTX)+XT y where ‘+’ denotes the Moore-

Penrose generalized inverse. This will provide a perfectlyfitting solution with

typically all coefficient estimates non-zero. In fact therewill be ak−r dimensional

null space in which we can start our EM algorithm, with all least squares solutions
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fitting perfectly.

The singular value decomposition of the centered design matrix is

X = FDiag(d1, d2, . . . , dr)A
T .

The orthogonal projection matrix isI − P = Ik −AAT a matrix of rank(k− r).

Consider generating a randomk−vectorz and takew = (I −AAT )z, calculated

asz−A(AT z). If we add this projected random vector toβ̂MLLS then we will have

the same Minimum length least squares ‘perfectly’ fitting solution sinceXw = 0,

as verified by

Xw = FDAT (I −AAT )z

= UD(AT −AT )z = 0

Thus we can addw to β̂MLLS and get a ‘perfectly’ fitting starting point. We

can repeat this as often as we like or design thez to span the space. Typically

the seedz would be generated as independent normal elements with zeromeans

and we choose a common variance that reflects the typical or near largest of the

variances in the sampling distribution of least squaresβ̂, as given by the Moore-

Penrose generalized inverse. To this end we ordered the thep components of̂β,

β̂(1) ≤ β̂(2), . . . ,≤ β̂(p) and the average of the largest from̂β([0.9p]) upwards.

Other more graphical strategies could be sensible if for example there is distinct

jump in size of the larger elements.

The approach above is inefficient in the sense that it requires the generation of

k random values when only(k − r) are required to cover the space orthogonal to

the least squares fit. A potential way around this is calculate Ā, thek× (k− r) set

of eigenvectors completing the setA. Now suppose we a have a random(k−r)×1

vectoru, thenĀu may be added tôβMLLS to achieve a ‘perfectly’ fitting starting

point. This is easily seen sinceXĀu = FDAT Āu = 0 since the eigenvectors in
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A andĀ are orthogonal. Lack of quick algorithms to generateĀ may make this

modified approach unattractive though.

In the next section we note that regions of indeterminacy canaffect even the

convex penalization of the lasso whenk > rank(X), essentially because although

convex it is not then strictly convex.

5 NON-UNIQUENESS OF LASSO

With L1 componentwise loss in Gaussian multiple regression the penalized nega-

tive log-likelihood is convex but not strictly convexity. Thus in under-determined

contexts the lasso may give an interval of maxima rather thana unique maximum.

We give a counterexample to uniqueness which will bring out when this will occur.

The example illustrate cases where the sufficient conditions for uniqueness of Ap-

pendix B1, Theorem 5 of Rossetet al (2004) do not hold. The examples begin by

being quite specialized but move on to much more plausible settings. The message

is that although the symmetry required may not be exactly present, near symmetry

often is, and this may lead to a lack of robustness and an interchangeability of

variables.

5.1 A general counter example

We first derive a result for an example essentially considered by Zou and Hastie (2005).

This very specialized example will then be generalized to a much richer context

from which we will be able to draw insights even when the conditions only ap-

proximately hold. For the example in its original form therearek variables and

n observations but the variables are repeated for each observation, that is the n-

vectors satisfyxi = xj , i, j ∈ (1, 2, . . . , k). Denote the commonn−vector as
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x. Symmetry is crucial. This is an example where all the variables are perfectly

correlated and there is additional symmetry in the variables, that is rather than the

generalxli = bijxlj , l = 1, . . . , n it is necessary that|bij| = |b|, independent of

variable labels, w.l.o.g takeb = 1. The linear model becomes

Yl = xl

k
∑

j=1

βj + εl, l = 1, . . . , n.

The function to minimize becomes

L =

n
∑

l=1

{yl − xl(

k
∑

j=1

βj)}2 + c(

k
∑

j=1

|βj |) (8)

Let θ =
∑k

j=1 βj then the least squares estimate ofθ is θ̂ = yTx/(xTx), w.l.o.g.

assumed to be non negative. Apart from an additive constant (8) becomes

L∗ = xTx(θ − θ̂)2 + c(

k
∑

j=1

|βj |). (9)

The MLE ofβ does not exist: the likelihood is constant on the plane
∑k

j=1 βj = θ̂.

Parallel to this plane and above it both terms in (9) are increased, whereas below

the least squares plane the first term increases but the second decreases provided

we are in the positive quadrant. Differentiating (9) on the simplex for turning

points, the minimum or lasso is attained at

θ = θ̂ − c/[2

n
∑

1

x2
l ]

or zero if this changes the sign from̂θ.

Now we can strengthen and extend this example by consideringjust a subset of

the variables being perfectly symmetrically correlated. Suppose there arek1 > 1

of these and their labels are the subsetj ∈ S1 with the complementary setj ∈ S2.

Then

Y = X1β1 +X2β2 + ε

17
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withX1, n×k1 andX2, n×k2. Here we assumeX1 = x1T with n−vectorx and

1 ak1−tuple of ones. The model becomes

yl = xl
∑

j∈S1

βj +
∑

j∈S2

xljβj + εl

Let θ =
∑

j∈S1
βj , now we can see that if the lasso is applied to the reduced

problem in which the design matrix isX0 = {x...X2} a n × (k2 + 1) matrix and

the lasso solution does not setθ̂ = 0 then there will be multiple solutions on

the simplex|θ| =
∑

j∈S1
|βj |. Perversely the usual practice of of standardizing

x−variables will promote such symmetry and if correlations are near unity for

any subset of at least two variables then there will be flat sections in the penalized

likelihood space and near indeterminacy. This will be highly likely by chance in

high dimensional problems wherek >> n.

6 EXAMPLES

We will first apply the NEG prior to an example of fitting to simulated data from

a sine function with added error using a spline basis. This isfollowed by a simu-

lation study of some alternative methods systematically compared with the NEG

in then << k setting. Finally we give a real example involving prediction of the

composition of biscuits.

6.1 Spline simulation

Our first example applies regularisation to the problem of fitting a curve using

piecewise linear splines. This allows visualisation of regularisation effects using

the estimated curve. We assume that the function can be well expressed in the

18
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form

f(x) =
k

∑

i=1

βi max{0, x − Li}

whereL1, L2, . . . , Lk are knots points which are equally spaced in the interval

(a, b) and soLi = a + i−1
k−1(b − a). We observe pairs(xi, yi), which is a noisy

versions off(xi). The problem of estimatingβi is a linear regression problem

in a non-linear basis. Osborneet al (1998) have applied a Lasso penalty to this

problem and we compare this approach to Normal-Jeffreys andNEG penalisation.

If k is large, there will be substantial correlation between subsequent regressors,

due to the closeness of the knots points, which makes inference by regression

methods a challenging problem. We fitn = 30 observations:xi are uniformly

distributed on(0, 1) andyi = sin(2πxi) + εi whereεi is drawn from a normal

distribution with mean 0 and variance 0.01. We havek = 500 knot points between

a = −0.3 and b = 1.3. The hyperparameters of the Lasso and the NEG are

estimated using 5-fold cross-validation. The results for the NEG penalisation are
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(a) (b)

Figure 3: Spline fitting 5-fold cross-validation with the NEG penaltyfor various values ofλ

andµ = λ
σ2 . Panel (a) shows the average MSE and (b) shows the average number of included

variables. In both cases:λ = 0.1 (solid line),λ = 0.5 (dashed line),λ = 1 (dotted line) and

λ = 2 (dot-dash line)

illustrated in figure 3 by the average MSE error for the test set (panel (a)) and the
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average number of non-zero estimates (panel (b)). The average MSE is mainly

determined by the choice ofµ = λ
γ2 and the average non-zero regressors falls

asµ is increased. For fixedµ, larger values ofλ (leading to thinner tails) gives

more non-zero estimates. It is worth noting that although the number of non-zero

regressors should be less thann that, in practice, the number of included regressors

can be larger thann due to the high correlation of the regressors.
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Figure 4:Spline fitting at 20 perfectly-fitting random starts for the NJ, Lasso and NEG penalties

using the hyperparameters chosen by cross-validation. Panel (a) shows the number of variables

fitted in each of 20 runs and (b) shows the fitted models for eachof the 20 modes overlaid by

the observations
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The summary figures for 20 perfectly fitting random starts aregiven in fig-

ures 4 (a), 4(b) and 5 for the three prior distribution with hyperparameters cho-

sen by cross-validation. In each case, the fitted curves follow the data well (fig-

ure 4(b)). The variety of fitted curve for a given method is themain difference with

the Lasso showing the least differences and the Normal-Jeffreys the most. This re-

sults is also illustrated by the position of the knot-point with non-zero regression

parameter estimates (figure 5). The NEG and Normal-Jeffreysprior distributions

show a spread of knots points with non-zero estimates in different modes whereas

the Lasso will typically pick a single point across all modes. There is also sub-

stantial differences between the number of non-zero regressors found using the

Normal-Jeffreys and NEG priors, which are typically 7 or 8, compared to the

Lasso fits which use many more (figure 4(a)).
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Figure 5:Spline fitting knots for 20 perfectly-fitting random starts for the NJ, Lasso and NEG

prior distributions using the hyperparameters chosen by cross-validation. The figures show the

regression estimates (the area of the dots is proportional to the absolute value of the regression

estimate).
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6.2 Multiple regression simulation

We have conducted a simulation study to compare a variety of estimation methods

including that corresponding to our preferred NEG prior. The Gaussian error re-

gression model is simulated with error varianceσ2 = 1. Then× k design matrix

X is simulated with an autoregressive order (AR(1)) structure with lag 1 corre-

lation ρ = 0.5, 0.8. The simulation hasn = 100 observations,k = 500, 2000

variables,k∗ = 10 nonzero coefficients ofβ, with either all the non-zero coeffi-

cientsβ = 1 or β = 5, equally spaced in thek variable design. Hyperparameters,

egλ, µ in the NEG, were chosen by 5-fold cross validation and further tested on

10 datasets of 100 observations.

The methods compared are:

1. The normal exponential gamma (NEG) prior, in versions with both parame-

ters free to be chosen fromλ = 0.1, 0.5, 1 and2 by cross validation and

with λ = 0.1, 0.5 fixed

2. The Lasso, with one parameter estimated by cross-validatory choice

3. The Adaptive Lasso (AL) using either the Minimum Length Least Squares (MLLS)

with a Moore-Penrose generalized inverse or Ridge (from separate cross-

validatory choice) for the estimateβ∗ in the construction of their adaptive

weight function,w = 1
|β∗|γ with γ chosen as either 0.5, 1 or 2.

4. The normal Jeffreys (NJ) prior which has no free parameters to estimate

5. TheL2 penalisation (Ridge regression) with its constant estimated by cross-

validation.

The Mean squared error results for the23 = 8 cases are given in Table 2.

To summarise these results:
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Method k=500 variables k=2000 variables

β = 1 β = 5 β = 1 β = 5

ρ = 0.5 ρ = 0.8 ρ = 0.5 ρ = 0.8 ρ = 0.5 ρ = 0.8 ρ = 0.5 ρ = 0.8

NEG 1.19 1.22 1.14 1.22 1.26 1.47 1.10 1.18

NEGλ=0.1 1.27 1.30 1.16 1.30 1.51 1.64 1.13 1.20

NEGλ=0.5 1.19 1.22 1.14 1.22 1.40 1.62 1.10 1.20

Lasso 1.65 1.59 1.59 1.59 2.09 2.21 1.97 2.08

ALMLLS 1.62 1.51 1.44 1.51 2.60 2.39 2.00 2.19

ALRidge 1.96 1.76 2.75 1.76 3.35 2.86 18.7 24.2

NJ 1.25 1.30 1.17 1.30 2.73 2.57 1.10 1.17

Ridge 5.16 3.96 98.52 3.96 6.10 5.53 122.1 119.9

Table 2: Mean squared errors for regression simulations withn = 100 observations and

k∗
= 10 non-zero coefficientsβ, error variance 1.0

• NEG is generally the best with a MSE close to the oracle unity of the error

variance.

• The adaptive lasso is generally no better than the lasso.

• The NJ is surprisingly good given that it lacks adaptive flexibility with no

hyperparameters to estimate

• Ridge is generally bad, which is hardly surprising in that its prior assumption

of a exchangeable normal distribution would expect a good balance of non

zeroβ’s, not such a small number relative to the number of parameters. It

will come into its own with a higher proportion of non-zeroβ.
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Figure 6: Biscuits data 5-fold cross-validation with the NEG penaltyfor various values ofλ

andµ = λ
σ2 . Panel (a) shows the average MSE and (b) shows the average number of included

variables. In both cases:λ = 0.1 (solid line),λ = 0.5 (dashed line),λ = 1 (dotted line) and

λ = 2 (dot-dash line)

6.3 Biscuits NIR data

The data is taken from Osborneet al (1984) and was used again in Brownet al

(2001), where the data set-up are described in some detail. The predictor variables

are measurements of the NIR reflectance spectrum of biscuit dough pieces and the

amount of fat, flour, sugar and water that each piece contains. There are 39 sam-

ples in the training data and 31 in the final validation set. Wehave reduced and

thinned the reflectance spectra to 300 wavelengths 1202nm to2400nm in steps

of 4nm. The hyperparameter values of the NEG penalty are chosen using 5-fold

cross-validation. For each split of the training sample into a training and test-

ing subsample the EM algorithm is run once the training data has been centered

and standardized by the median of SDs of theX-variables and the same mean

and standard deviation used to adjust the 19 test spectra. We’ve avoided scaling

to ‘correlation form’ since it is important not to change therelative scales of re-

flectance at different wavelengths as this would promote reflectances which are

very small and may be largely noise. The responseY chosen was the flour content
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which was also centered and scaled by its standard deviationover the 20 samples.

These standardizations help numerical stability and alloweasy interpretation of

fit.

The hyperparametersµ, λ are selected by cross-validation averaging over 5

splits and the results are shown in figure 6 (a). Figure 6 (b) gives the parallel

effect on number of wavelengths chosen. The hyperparameters values chosen

wereλ = 1, µ = 100000. The results of finding estimates using the NEG pe-

nalized likelihood with these hyperparameters over 20 perfect random starts are

depicted in figure 7. Each mode found has 3 or 4 wavelengths with non-zero re-

gression coefficients. Most modes include a wavelength around position 1920nm

and 2080nm. Three further regions are identified by some of the modes around

1800nm, 2200nm and 2400nm.

The average MSEs on the validation set (31 observations) is 0.0565 (94% ex-

plained), which is competitive to that achieved in Brownet al (2001) via full

MCMC and a ‘slab and spike’ prior.

7 CONCLUSIONS

We have developed a wholly adaptive lasso motivated by a Bayesian framework.

The lasso itself is unable to simultaneously do well in (a) prediction and (b) iden-

tification of significant variables. This can be viewed as a problem of its inflex-

ibility in ‘tail to spike’ behavior with one parameter (a scale parameter) fits all.

Our Normal-Exponential-Gamma prior has two parameters forflexibility, one for

the shape and one for the scale although within this class theshape parameter

seems far less important in terms of our cross-validation studies. An effective

subclass which seems to lose little on the 2-parameter NEG isprovided by the
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Figure 7: Biscuits data, 20 perfectly-fitting random starts for the NEG penalties using the

hyperparameters chosen by cross-validation. Panel (a) shows the regression estimates (the area

of the dots is proportional to the absolute value of the regression estimate), (b) number of

wavelengths selected in each run, and (c) shows the number oftimes that a wavelength appears

in a local mode

quasi-Cauchy withλ = 1/2. Also its density, given by equation (4), is a function

of simple normal probability functions and can be quickly computed.

We have shown in the simulation study that our NEG succeeds inits aims.

We have also shown how the absence of strict convexity in the lasso leads to

multiple solutions and indeterminacy when the number of variables is larger than

the number of observations(k > n). Our NEG approach is non-convex and can

allow one to explore alternative selections which also fit well. Our EM algorithm,

exploiting the scale mixture of normals characterization of the NEG prior, is able

quickly and successfully to find very predictive small subsets. In future work we

will explore the use of the NEG prior for modal generalized linear modelling.

26



CRiSM Paper No. 07-2v2, www.warwick.ac.uk/go/crism

REFERENCES

Abramowitz, M. and Stegun, I. A. (Eds.) (1964) “Handbook of Mathematical

Functions with Formulas, Graphs and Mathematical Tables,”Dover: New

York.

Bae, K. and Mallick, B. K. (2004): “Gene selection using two-level hierarchical

Bayesian model,”Bioinformatics, 20, 3423-3430.

Berger, J. O. (1985): “Statistical Decision Theory and Bayesian Analysis,” Berlin:

Springer.

Bernardo, J. M. and Smith, A. F. M. (1994): “Bayesian Theory,” Wiley : Chich-

ester.

Bibby, B. M. and Sorensen, M. (2003): “Hyperbolic Processesin Finance, in

Handbook of Heavy Tailed Distributions in FinanceS. Rachev (ed.): , Else-

vier Science, 211-248.

Breiman, L.(1996): “Heuristics of instability and stabilization in model selec-

tion,” Annals of Statistics, 24, 2350-238 .

Brown, P. J., Vannucci, M. and Fearn, T. (1998): “Multivariate Bayesian variable

selection and prediction,”Journal of the Royal Statistical Society B, 60, 627-

641.

Brown, P. J., Fearn, T. and Vannucci, M. (2001): “Bayesian wavelet regression

on curves with application to a spectroscopic calibration problem,” Journal

of the American Statistical Association, 96, 398-408.

Brown, P. J., Vannucci, M. and Fearn, T. (2002): “Bayes modelaveraging with

selection of regressors,”Journal of the Royal Statistical Society B, 64, 519-

536.

27



CRiSM Paper No. 07-2v2, www.warwick.ac.uk/go/crism

Dempster, A. P., Laird, N. M. and Rubin, D. B. (1977): “Maximum-likelihood

from incomplete data via the EM algorithm,”Journal of the Royal Statistical

Society B, 39, 1-38.

Fan, J. and Li, R.Z. (2001): “Variable selection via nonconcave penalized likeli-

hood and its oracle properties,”Journal of the American Statistical Associ-

ation, 96, 1348-1360.

Figueiredo, M. A. T. and Jain, A. K. (2001): “Bayesian learning of sparse classi-

fiers,” Proceedings IEEE Computer Society Conference in Computer Vision

and Pattern Recognition, Vol 1, 35-41.

Figueiredo, M. A. T. (2003): “Adaptive sparseness for supervised learning,”

IEEE Transactions on Pattern Analysis and Machine Intelligence, 25, 1150-

1159.

George, E. I. and McCulloch, R. E. (1997): “Approaches for Bayesian variable

selection,”Statistica Sinica7, 339-373.

Gradshteyn, I. S. and Ryzik, I. M. (1980) “Tables of Integrals, Series and Prod-

ucts: Corrected and Enlarged Edition,” (A. Jeffrey, Ed.) Academic Press:

New York.

Jeffreys, H. (1939/1961) “Theory of Probability”, 3rd Edition 1961, Oxford:

Clarendon Press

Johnstone, I. M. and Silverman, B. W. (2005): “Empirical Bayes selection of

wavelet thresholds,”Annals of Statistics, 33, 1700-1752.

Kiiveri, H. (2003): “ A Bayesian approach to variable selection when the num-

ber of variables is very large,” In Goldstein, D.R. (Ed) “Science and Statis-

tics: Festschrift for Terry Speed”Institute of Mathematical Statistics Lecture

Notes-Monograph Series, Vol 40, 127-143.

28



CRiSM Paper No. 07-2v2, www.warwick.ac.uk/go/crism

Li, B. and Goel, P. K. (2006): “Regularized optimization in statistical learning:

A Bayesian perspective,”Statistica Sinica, 16, 411-424.

Mallick, B. K., Ghosh, D. and Ghosh, M. (2005): “Bayesian classification of

tumours by using gene expression data,”Journal of the Royal Statistical

Society B, 67, 219-234.
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