CONDITIONING AN ADDITIVE FUNCTIONAL OF A MARKOV CHAIN TO STAY NON-NEGATIVE II: HITTING A HIGH LEVEL ¹

Saul D. Jacka, University of Warwick Zorana Lazic, University of Warwick Jon Warren, University of Warwick

Abstract

Let $(X_t)_{t\geq 0}$ be a continuous-time irreducible Markov chain on a finite statespace E, let $v: E \to \mathbb{R} \setminus \{0\}$ and let $(\varphi_t)_{t\geq 0}$ be defined by $\varphi_t = \int_0^t v(X_s) ds$. We consider the cases where the process $(\varphi_t)_{t\geq 0}$ is oscillating and where $(\varphi_t)_{t\geq 0}$ has a negative drift. In each of the cases we condition the process $(X_t, \varphi_t)_{t\geq 0}$ on the event that $(\varphi_t)_{t\geq 0}$ hits level y before hitting zero and prove weak convergence of the conditioned process as $y \to \infty$. In addition, we show the relation between conditioning the process $(\varphi_t)_{t\geq 0}$ with a negative drift to oscillate and conditioning it to stay non-negative until large time, and the relation between conditioning $(\varphi_t)_{t\geq 0}$ with a negative drift to drift to drift to $+\infty$ and conditioning it to hit large levels before hitting zero.

1 Introduction

Let $(X_t)_{t\geq 0}$ be a continuous-time irreducible Markov chain on a finite statespace E, let v be a map $v: E \to \mathbb{R} \setminus \{0\}$, let $(\varphi_t)_{t\geq 0}$ be an additive functional defined by $\varphi_t = \varphi + \int_0^t v(X_s) ds$ and let $H_y, y \in \mathbb{R}$, be the first hitting time of level y by the process $(\varphi_t)_{t\geq 0}$. In the previous paper Jacka, Najdanovic, Warren (2005) we discussed the problem of conditioning the process $(X_t, \varphi_t)_{t\geq 0}$ on the event that the process $(\varphi_t)_{t\geq 0}$ stays non-negative, that is the event $\{H_0 = +\infty\}$. In the oscillating case and in the case of the negative drift of the process $(\varphi_t)_{t\geq 0}$, when the event $\{H_0 = +\infty\}$ is of zero probability, the process $(X_t, \varphi_t)_{t\geq 0}$ can instead be conditioned on some approximation of the event $\{H_0 = +\infty\}$. In Jacka et al. (2005) we considered the approximation by the events $\{H_0 > T\}, T > 0$, and proved weak convergence as $T \to \infty$ of the process $(X_t, \varphi_t)_{t\geq 0}$ conditioned on this approximation.

In this paper we look at another approximation of the event $\{H_0 = +\infty\}$ which is the approximation by the events $\{H_0 > H_y\}, y \in \mathbb{R}$. Again, we are interested in weak convergence as $y \to \infty$ of the process $(X_t, \varphi_t)_{t>0}$ conditioned on this approximation.

¹MSC Classification: Primary 60J27, Secondary 60B10

Keywords: Markov chain, conditional law, weak convergence

Our motivation comes from a work by Bertoin and Doney. In Bertoin, Doney (1994) the authors considered a real-valued random walk $\{S_n, n \ge 0\}$ that does not drift to $+\infty$ and conditioned it to stay non-negative. They discussed two interpretations of this conditioning, one was conditioning S to exceed level n before hitting zero, and another was conditioning S to stay non-negative up to time n. As it will be seen, results for our process $(X_t, \varphi_t)_{t\ge 0}$ conditioned on the event $\{H_0 = +\infty\}$ appear to be analogues of the results for a random walk.

Furthermore, similarly to the results obtained in Bertoin, Doney (1994) for a realvalued random walk $\{S_n, n \ge 0\}$ that does not drift to $+\infty$, we show that in the negative drift case

- (i) taking the limit as $y \to \infty$ of conditioning the process $(X_t, \varphi_t)_{t\geq 0}$ on $\{H_y < +\infty\}$ and then further conditioning on the event $\{H_0 = +\infty\}$ yields the same result as the limit as $y \to \infty$ of conditioning $(X_t, \varphi_t)_{t\geq 0}$ on the event $\{H_0 > H_y\}$;
- (ii) conditioning the process $(X_t, \varphi_t)_{t\geq 0}$ on the event that the process $(\varphi_t)_{t\geq 0}$ oscillates and then further conditioning on $\{H_0 = +\infty\}$ yields the same result as the limit as $T \to \infty$ of conditioning the process $(X_t, \varphi_t)_{t\geq 0}$ on $\{H_0 > T\}$.

The organisation of the paper is as follows: in Section 2 we state the main theorems in the oscillating and in the negative drift case; in Section 3 we calculate the Green's function and the two-sided exit probabilities of the process $(X_t, \varphi_t)_{t\geq 0}$ that are needed for the proofs in subsequent sections; in Section 4 we prove the main theorem in the oscillating case; in Section 5 we prove the main theorem in the negative drift case. Finally, Sections 6 and 7 deal with the negative drift case of the process $(\varphi_t)_{t\geq 0}$ and commuting diagrams in conditioning the process $(X_t, \varphi_t)_{t\geq 0}$ on $\{H_y < H_0\}$ and $\{H_0 > T\}$, respectively, listed in (i) and (ii) above.

All the notation in the present paper is taken from Jacka et al. (2005).

2 Main theorems

First we recall some notation from Jacka et al. (2005).

Let the process (X_t, φ_t) be as defined in Introduction. Suppose that both $E^+ = v^{-1}(0, \infty)$ and $E^- = v^{-1}(-\infty, 0)$ are non-empty. Let, for any $y \in \mathbb{R}$, E_y^+ and E_y^- be the halfspaces defined by $E_y^+ = (E \times (y, +\infty)) \bigcup (E^+ \times \{y\})$ and $E_y^- = (E \times (-\infty, y)) \bigcup (E^- \times \{y\})$. Let $H_y, y \in \mathbb{R}$, be the first crossing time of the level y by the process $(\varphi_t)_{t>0}$ defined by

$$H_y = \begin{cases} \inf\{t > 0 : \varphi_t < y\} & \text{if } (X_t, \varphi_t)_{t \ge 0} \text{ starts in } E_y^+ \\ \inf\{t > 0 : \varphi_t > y\} & \text{if } (X_t, \varphi_t)_{t \ge 0} \text{ starts in } E_y^- \end{cases}$$

Let $P_{(e,\varphi)}$ denote the law of the process $(X_t, \varphi_t)_{t\geq 0}$ starting at (e,φ) and let $E_{(e,\varphi)}$ denote the expectation operator associated with $P_{(e,\varphi)}$. Let Q denote the conservative irreducible Q-matrix of the process $(X_t)_{t\geq 0}$ and let V be the diagonal matrix diag(v(e)). Let $V^{-1}Q\Gamma = \Gamma G$ be the unique Wiener-Hopf factorisation of the matrix $V^{-1}Q$ (see Lemma 3.4 in Jacka et al. (2005)). Let J, J_1 and J_2 be the matrices

$$J = \begin{pmatrix} I & 0 \\ 0 & -I \end{pmatrix} \qquad J_1 = \begin{pmatrix} I & 0 \\ 0 & 0 \end{pmatrix} \qquad J_2 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

and let a matrix Γ_2 be given by $\Gamma_2 = J\Gamma J$. For fixed y > 0, let $P_{(e,\varphi)}^{[y]}$ denote the law of the process $(X_t, \varphi_t)_{t \ge 0}$, starting at $(e, \varphi) \in E_0^+$, conditioned on the event $\{H_y < H_0\}$, and let $P_{(e,\varphi)}^{[y]}|_{\mathcal{F}_t}, t \ge 0$, be the restriction of $P_{(e,\varphi)}^{[y]}$ to \mathcal{F}_t . We are interested in weak convergence of $(P_{(e,\varphi)}^{[y]}|_{\mathcal{F}_t})_{y\ge 0}$ as $y \to +\infty$.

Theorem 2.1 Suppose that the process $(\varphi_t)_{t\geq 0}$ oscillate. Then, for fixed $(e,\varphi) \in E_0^+$ and $t \geq 0$, the measures $(P_{(e,\varphi)}^{[y]}|_{\mathcal{F}_t})_{y\geq 0}$ converge weakly to the probability measure $P_{(e,\varphi)}^{h_r}|_{\mathcal{F}_t}$ as $y \to \infty$ which is defined by

$$P_{(e,\varphi)}^{h_r}(A) = \frac{E_{(e,\varphi)}\Big(I(A)h_r(X_t,\varphi_t)I\{t < H_0\}\Big)}{h_r(e,\varphi)}, \qquad t \ge 0, \ A \in \mathcal{F}_t.$$

where h_r is a positive harmonic function for the process $(X_t, \varphi_t)_{t\geq 0}$ given by

$$h_r(e,y) = e^{-yV^{-1}Q} J_1 \Gamma_2 r(e), \qquad (e,y) \in E \times \mathbb{R},$$

and $V^{-1}Qr = 1$.

By comparing Theorem 2.1 and Theorem 2.1 in Jacka et al. (2005) we see that the measures $(P_{(e,\varphi)}^{[y]})_{y\geq 0}$ and $(P_{(e,\varphi)}^T)_{T\geq 0}$ converge weakly to the same limit. Therefore, in the oscillating case conditioning $(X_t, \varphi_t)_{t\geq 0}$ on $\{H_y < H_0\}, y > 0$, and conditioning $(X_t, \varphi_t)_{t\geq 0}$ on $\{H_0 > T\}, T > 0$, yield the same result.

Let f_{max} be the eigenvector of the matrix $V^{-1}Q$ associated with its eigenvalue with the maximal non-positive real part. The weak limit as $y \to +\infty$ of the sequence $(P_{(e,\varphi)}^{[y]}|_{\mathcal{F}_t})_{y\geq 0}$ in the negative drift case is given in the following theorem:

Theorem 2.2 Suppose that the process $(\varphi_t)_{t\geq 0}$ drifts to $-\infty$. Then, for fixed $(e, \varphi) \in E_0^+$ and $t \geq 0$, the measures $(P_{(e,\varphi)}^{[y]}|_{\mathcal{F}_t})_{y\geq 0}$ converge weakly to the probability measure $P_{(e,\varphi)}^{h_{f_{max}}}|_{\mathcal{F}_t}$ as $y \to \infty$ which is given by

$$P_{(e,\varphi)}^{h_{f_{max}}}(A) = \frac{E_{(e,\varphi)}\Big(I(A)h_{f_{max}}(X_t,\varphi_t)I\{t < H_0\}\Big)}{h_{f_{max}}(e,\varphi)}, \qquad t \ge 0, \ A \in \mathcal{F}_t$$

where the function $h_{f_{max}}$ is positive and harmonic for the process $(X_t, \varphi_t)_{t\geq 0}$ and is given by

$$h_{f_{max}}(e,y) = e^{-yV - IQ} J_1 \Gamma_2 f_{max}(e), \qquad (e,y) \in E \times \mathbb{R}$$

Before we prove Theorems 2.1 and 2.2, we recall some more notation from Jacka et al. (2005) that will be in use in the sequel.

The matrices G^+ and G^- are the components of the matrix G and the matrices Π^+ and Π^- are the components of the matrix Γ determined by the Wiener-Hopf factorisation of the matrix $V^{-1}Q$, that is

$$G = \begin{pmatrix} G^+ & 0\\ 0 & -G^- \end{pmatrix} \quad \text{and} \quad \Gamma = \begin{pmatrix} I & \Pi^-\\ \Pi^+ & I \end{pmatrix}$$

In other words, the matrix G^+ is the Q-matrix of the process $(X_{H_y})_{y\geq 0}$, $(X_0, \varphi_0) \in E^+ \times \{0\}$, the matrix G^- is the Q-matrix of the process $(X_{H_{-y}})_{y\geq 0}$, $(X_0, \varphi_0) \in E^- \times \{0\}$, and the matrices Π^- and Π^+ determine the probability distribution of the process $(X_t)_{t\geq 0}$ at the time when $(\varphi_t)_{t\geq 0}$ hits zero, that is the probability distribution of X_{H_0} (see Lemma 3.4 in Jacka et al. (2005)).

A matrix $F(y), y \in \mathbb{R}$, is defined by

$$F(y) = \begin{cases} J_1 \ e^{yG} = e^{yG} \ J_1, & y > 0 \\ J_2 \ e^{yG} = e^{yG} \ J_2, & y < 0. \end{cases}$$

For any vector g on E, let g^+ and g^- denote its restrictions to E^+ and E^- respectively. We write the column vector g as $g = \begin{pmatrix} g^+ \\ g^- \end{pmatrix}$ and the row vector μ as $\mu = (\mu^+ \ \mu^-)$.

A vector g is associated with an eigenvalue λ of the matrix $V^{-1}Q$ if there exists $k \in \mathbb{N}$ such that $(V^{-1}Q - \lambda I)^k g = 0$.

 \mathcal{B} is a basis in the space of all vectors on E such that there are exactly $n = |E^+|$ vectors $\{f_1, f_2, \ldots, f_n\}$ in \mathcal{B} such that each vector f_j , $j = 1, \ldots, n$ is associated with an eigenvalue α_j of $V^{-1}Q$ for which $Re(\alpha_j) \leq 0$, and that there are exactly $m = |E^-|$ vectors $\{g_1, g_2, \ldots, g_m\}$ in \mathcal{B} such that each vector g_k , $k = 1, \ldots, m$, is associated with an eigenvalue β_k of $V^{-1}Q$ with $Re(\beta_k) \geq 0$. The vectors $\{f_1^+, f_2^+, \ldots, f_n^+\}$ form a basis \mathcal{N}^+ in the space of all vectors on E^+ . and the vectors $\{g_1^-, g_2^-, \ldots, g_m^-\}$ form a basis $\mathcal{P}^$ in the space of all vectors on E^- .

The matrix $V^{-1}Q$ cannot have strictly imaginary eigenvalues. All eigenvalues of $V^{-1}Q$ with negative (respectively positive) real part coincide with the eigenvalues of G^+ (respectively $-G^-$). G^+ and G^- are irreducible Q-matrices and

$$\alpha_{max} \equiv \max_{1 \le j \le n} Re(\alpha_j) \le 0 \text{ and } -\beta_{min} \equiv \max_{1 \le k \le m} Re(-\beta_k) = -\min_{1 \le k \le m} Re(\beta_k) \le 0$$

are simple eigenvalues of G^+ and G^- , respectively. f_{max} and g_{min} are the eigenvectors of the matrix $V^{-1}Q$ associated with its eigenvalues α_{max} and β_{min} , respectively, and therefore f_{max}^+ and g_{min}^- are the Perron-Frobenius eigenvectors of the matrices G^+ and G^- , respectively.

If the process $(\varphi_t)_{t\geq 0}$ drifts to $-\infty$, then $\alpha_{max} < 0$ and $\beta_{min} = 0$. If the process $(\varphi_t)_{t\geq 0}$ drifts to $+\infty$, then $\alpha_{max} = 0$ and $\beta_{min} > 0$. If the process $(\varphi_t)_{t\geq 0}$ oscillates then $\alpha_{max} = \beta_{min} = 0$ and there exists a vector r such that $V^{-1}Qr = 1$.

3 The Green's function and the hitting probabilities of the process $(X_t, \varphi_t)_{t \ge 0}$

The Green's function of the process $(X_t, \varphi_t)_{t \ge 0}$, denoted by $G((e, \varphi), (f, y))$, for any $(e, \varphi), (f, y) \in E \times \mathbb{R}$, is defined as

$$G((e,\varphi),(f,y)) = E_{(e,\varphi)}\Big(\sum_{0 \le s < \infty} I(X_s = f,\varphi_s = y)\Big),$$

noting that the process $(X_t, \varphi_t)_{t \ge 0}$ hits any fixed state at discrete times. For simplicity of notation, let $G(\varphi, y)$ denote the matrix $(G((\cdot, \varphi), (\cdot, y)))_{E \times E}$.

Theorem 3.1 In the drift cases,

$$G(0,0) = \Gamma_2^{-1} = \begin{pmatrix} (I - \Pi^- \Pi^+)^{-1} & \Pi^- (I - \Pi^+ \Pi^-)^{-1} \\ \Pi^+ (I - \Pi^- \Pi^+)^{-1} & (I - \Pi^+ \Pi^-)^{-1} \end{pmatrix}.$$

In the oscillating case, $G(0,0) = +\infty$.

Proof: By the definition of G(0,0) and the matrices Π^+ , Π^- and Γ_2 ,

$$G(0,0) = \sum_{n=1}^{\infty} \begin{pmatrix} 0 & \Pi^{-} \\ \Pi^{+} & 0 \end{pmatrix}^{n} = \sum_{n=1}^{\infty} (I - \Gamma_{2})^{n}.$$

Suppose that the process $(\varphi_t)_{t\geq 0}$ drifts either to $+\infty$ of $-\infty$. Then by (3.8) and Lemma 3.5 (iv) in Jacka et al. (2005) exactly one of the matrices Π^+ and Π^- is strictly substochastic. In addition, the matrix $\Pi^-\Pi^+$ is positive and thus primitive. Therefore, the Perron-Frobenius eigenvalue λ of $\Pi^-\Pi^+$ satisfies $0 < \lambda < 1$ which, by the Perron-Frobenius theorem for primitive matrices (see Seneta (1981)), implies that

$$\lim_{n \to \infty} \frac{(\Pi^- \Pi^+)^n}{(1+\lambda)^n} = const. \neq 0.$$

Therefore, $(\Pi^{-}\Pi^{+})^{n} \to 0$ elementwise as $n \to +\infty$, and similarly $(\Pi^{+}\Pi^{-})^{n} \to 0$ elementwise as $n \to +\infty$. Hence, $(I - \Gamma_{2})^{n} \to 0, n \to +\infty$. Since

$$I - (I - \Gamma_2)^{n+1} = \Gamma_2 \sum_{k=0}^n (I - \Gamma_2)^k,$$

and, by Lemma 3.5 (ii) in Jacka et al. (2005), Γ_2^{-1} exists, by letting $n \to +\infty$ we obtain

$$G(0,0) = \sum_{n=0}^{\infty} (I - \Gamma_2)^n = \Gamma_2^{-1}.$$
(3.1)

Suppose now that the process $(\varphi_t)_{t\geq 0}$ oscillates. Then again by (3.8) and Lemma 3.5 (iv) in Jacka et al. (2005), the matrices Π^+ and Π^- are stochastic. Thus, $(I - \Gamma_2)1 = 1$ and

$$G(0,0)1 = \sum_{n=0}^{\infty} (I - \Gamma_2)^n 1 = \sum_{n=0}^{\infty} 1 = +\infty.$$
 (3.2)

Since the matrix Q is irreducible, it follows that $G(0,0) = +\infty$.

Theorem 3.2 In the drift cases, the Green's function $G((e, \varphi), (f, y))$ of the process $(X_t, \varphi_t)_{t\geq 0}$ is given by the $E \times E$ matrix $G(\varphi, y)$, where

$$G(\varphi, y) = \begin{cases} \Gamma \ F(y - \varphi) \ \Gamma_2^{-1}, & \varphi \neq y \\ \Gamma_2^{-1}, & \varphi = y. \end{cases}$$

Proof: By Theorem 3.1, $G(y, y) = G(0, 0) = \Gamma_2^{-1}$, and by Lemma 3.5 (vii) in Jacka et al. (2005),

$$P_{(e,\varphi-y)}(X_{H_0} = e', H_0 < +\infty) = \Gamma \ F(y-\varphi)(e, e'), \qquad \varphi \neq y.$$

The theorem now follows from

$$G((e,\varphi),(f,y)) = \sum_{e' \in E} P_{(e,\varphi-y)}(X_{H_0} = e', H_0 < +\infty) \ G((e',0),(f,0)).$$

The Green's function $G_0((e,\varphi), (f,y))$, $(e,\varphi), (f,y) \in E \times \mathbb{R}$, of the process $(X_t, \varphi_t)_{t \geq 0}$ killed when the process $(\varphi_t)_{t \geq 0}$ crosses zero (in matrix notation $G_0(\varphi, y)$) is defined by

$$G_0((e,\varphi),(f,y)) = E_{(e,\varphi)}\Big(\sum_{0 \le s < H_0} I(X_s = f,\varphi_s = y)\Big).$$

It follows that $G_0(\varphi, y) = 0$ if $\varphi y < 0$, that $G_0(\varphi, 0) = 0$ if $\varphi \neq 0$, and that $G_0(0,0) = I$. To calculate $G_0(\varphi, y)$ for $|\varphi| \le |y|, \varphi y \ge 0, y \ne 0$, we use the following lemma:

Lemma 3.1 Let $(f, y) \in E^+ \times (0, +\infty)$ be fixed and let the process $(X_t, \varphi_t)_{t\geq 0}$ start at $(e, \varphi) \in E \times (0, y)$. Let $(e, \varphi) \mapsto h((e, \varphi), (f, y))$ be a bounded function on $E \times (0, y)$ such that the process $(h((X_{t \wedge H_0 \wedge H_y}, \varphi_{t \wedge H_0 \wedge H_y}), (f, y)))_{t\geq 0}$ is a uniformly integrable martingale and that

$$h((e,0),(f,y)) = 0, \qquad e \in E^-$$
 (3.3)

$$h((e,y),(f,y)) = G_0((e,y),(f,y)).$$
 (3.4)

Then

$$h((e,\varphi),(f,y)) = G_0((e,\varphi),(f,y)), \quad (e,\varphi) \in E \times (0,y).$$

Proof: The proof of the lemma is based on the fact that a uniformly integrable martingale in a region which is zero on the boundary of that region is zero everywhere. Therefore we omit the proof the lemma. \Box

Let A_y, B_y, C_y and D_y be components of the matrix $e^{-yV^{-1}Q}$ such that, for any $y \in \mathbb{R}$,

$$e^{-yV^{-1}Q} = \begin{pmatrix} A_y & B_y \\ C_y & D_y \end{pmatrix}.$$
(3.5)

Theorem 3.3 The Green's function $G_0((e, \varphi), (f, y)), |\varphi| \leq |y|, \varphi y \geq 0, y \neq 0, e, f \in E$, is given by the $E \times E$ matrix $G_0(\varphi, y)$ with the components

$$G_{0}(\varphi, y) = \begin{cases} \begin{pmatrix} A_{\varphi}(A_{y} - \Pi^{-}C_{y})^{-1} & A_{\varphi}(A_{y} - \Pi^{-}C_{y})^{-1}\Pi^{-} \\ C_{\varphi}(A_{y} - \Pi^{-}C_{y})^{-1} & C_{\varphi}(A_{y} - \Pi^{-}C_{y})^{-1}\Pi^{-} \end{pmatrix}, & 0 \leq \varphi < y \\ \begin{pmatrix} B_{\varphi}(D_{y} - \Pi^{+}B_{y})^{-1}\Pi^{+} & B_{\varphi}(D_{y} - \Pi^{+}B_{y})^{-1} \\ D_{\varphi}(D_{y} - \Pi^{+}B_{y})^{-1}\Pi^{+} & D_{\varphi}(D_{y} - \Pi^{+}B_{y})^{-1} \end{pmatrix}, & y < \varphi \leq 0, \\ \begin{pmatrix} (I - \Pi^{-}C_{y}A_{y}^{-1})^{-1} & \Pi^{-}(I - C_{y}A_{y}^{-1}\Pi^{-})^{-1} \\ C_{y}A_{y}^{-1}(I - \Pi^{-}C_{y}A_{y}^{-1})^{-1} & (I - C_{y}A_{y}^{-1}\Pi^{-})^{-1} \end{pmatrix}, & \varphi = y > 0 \\ \begin{pmatrix} (I - B_{y}D_{y}^{-1}\Pi^{+})^{-1} & ByD_{y}^{-1}(I - \Pi^{+}B_{y}D_{y}^{-1})^{-1} \\ \Pi^{+}(I - B_{y}D_{y}^{-1}\Pi^{+})^{-1} & (I - \Pi^{+}B_{y}D_{y}^{-1})^{-1} \end{pmatrix}, & \varphi = y < 0, \end{cases}$$

In the drift cases, $G_0(\varphi, y)$ written in matrix notation is given by

$$G_{0}(\varphi, y) = \begin{cases} \Gamma e^{-\varphi G} \Gamma_{2} F(y) \Gamma_{2}^{-1}, & 0 \leq \varphi < y \quad or \quad y < \varphi \leq 0\\ \Gamma F(-\varphi) \Gamma_{2} e^{yG} \Gamma_{2}^{-1}, & 0 < y < \varphi \quad or \quad \varphi < y < 0\\ \left(I - \Gamma F(-y) \Gamma F(y)\right) \Gamma_{2}^{-1}, & \varphi = y \neq 0. \end{cases}$$

In addition, the Green's function $G_0(\varphi, y)$ is positive for all $\varphi, y \in \mathbb{R}$ except for y = 0and for $\varphi y < 0$.

Proof: We prove the theorem for y > 0. The case y < 0 can be proved in the same way.

Let y > 0. First we calculate the Green's function $G_0(y, y)$. Let Y_y denote a matrix on $E^- \times E^+$ with entries

$$Y_y(e, e') = P_{(e,y)}(X_{H_y} = e', H_y < H_0).$$

Then

$$G_0(y,y) = \begin{pmatrix} I & \Pi^- \\ Y_y & I \end{pmatrix} \begin{pmatrix} \sum_{n=0}^{\infty} (\Pi^- Y_y)^n & 0 \\ 0 & \sum_{n=0}^{\infty} (Y_y \Pi^-)^n \end{pmatrix}$$

By Lemma 3.5 (vi) in Jacka et al. (2005), the matrix Y_y is positive and $0 < Y_y 1^+ < 1^-$. Hence, $\Pi^- Y_y$ is positive and therefore irreducible and its Perron-Frobenius eigenvalue λ satisfies $0 < \lambda < 1$. Thus,

$$\lim_{n \to \infty} \frac{(\Pi^- Y_y)^n}{(1+\lambda)^n} = const. \neq 0,$$

which implies that $(\Pi^- Y_y)^n \to 0$ elementwise as $n \to +\infty$. Similarly, $(Y_y \Pi^-)^n \to 0$ elementwise as $n \to +\infty$.

Furthermore, the essentially non-negative matrices $(\Pi^- Y_y - I)$ and $(Y_y \Pi^- - I)$ are invertible because their Perron-Frobenius eigenvalues are negative and, by the same argument, the matrices $(I - \Pi^- Y_y)^{-1}$ and $(I - Y_y \Pi^-)^{-1}$ are positive. Since

$$\sum_{k=0}^{n} (\Pi^{-} Y_{y})^{k} = (I - \Pi^{-} Y_{y})^{-1} (I - (\Pi^{-} Y_{y})^{n+1})$$

$$\sum_{k=0}^{n} (Y_{y} \Pi^{-})^{k} = (I - Y_{y} \Pi^{-})^{-1} (I - (Y_{y} \Pi^{-})^{n+1}).$$

by letting $n \to \infty$ we finally obtain

$$G_0(y,y) = \begin{pmatrix} (I - \Pi^- Y_y)^{-1} & \Pi^- (I - \Pi^- Y_y)^{-1} \\ Y_y (I - Y_y \Pi^-)^{-1} & (I - Y_y \Pi^-)^{-1} \end{pmatrix} = \begin{pmatrix} I & -\Pi^- \\ -Y_y^{-1} & I \end{pmatrix}^{-1}.$$
 (3.6)

By Lemma 3.5 (i) and (vi) in Jacka et al. (2005), the matrices Π^- and Y_y are positive. Since the matrices $(I - \Pi^- Y_y)^{-1}$ and $(I - Y_y \Pi^-)^{-1}$ are also positive, it follows that $G_0(y, y), y > 0$ is positive.

Now we calculate the Green's function $G_0(\varphi, y)$ for $0 \leq \varphi < y$. Let $(f, y) \in E^+ \times (0, +\infty)$ be fixed and let the process $(X_t, \varphi_t)_{t>0}$ start in $E \times (0, y)$. Let

$$h((e,\varphi),(f,y)) = e^{-\varphi V^{-1}Q} g_{f,y}(e), \qquad (3.7)$$

for some vector $g_{f,y}$ on E. Since by (3.6) in Jacka et.al (2005) $\mathcal{G}h = 0$, the process $(h((X_t, \varphi_t), (f, y)))_{t\geq 0}$ is a local martingale, and because the function h is bounded on every finite interval, it is a martingale. In addition, $(h((X_{t\wedge H_0\wedge H_y}, \varphi_{t\wedge H_0\wedge H_y}), (f, y)))_{t\geq 0}$ is a bounded martingale and therefore a uniformly integrable martingale.

We want the function h to satisfy the boundary conditions in Lemma 3.1. Let $h_y(\varphi)$ be an $E \times E^+$ matrix with entries

$$h_y(\varphi)(e, f) = h((e, \varphi), (f, y)).$$

Then, from (3.7) and the boundary condition (3.3),

$$h_y(\varphi) = \begin{pmatrix} A_\varphi & B_\varphi \\ C_\varphi & D_\varphi \end{pmatrix} \begin{pmatrix} M_y \\ 0 \end{pmatrix} = \begin{pmatrix} A_\varphi M_y \\ C_\varphi M_y \end{pmatrix}, \quad 0 \le \varphi < y,$$

for some $E^+ \times E^+$ matrix M_y . From the boundary condition (3.4),

$$A_y M_y = (I - \Pi^- Y_y)^{-1}$$
 and $C_y M_y = Y_y (I - \Pi^- Y_y)^{-1}$, (3.8)

which implies that $M_y = (A_y - \Pi^- C_y)^{-1}$ and $Y_y = C_y A_y^{-1}$. Hence,

$$h_y(\varphi) = \begin{pmatrix} A_\varphi(A_y - \Pi^- C_y)^{-1} \\ C_\varphi(A_y - \Pi^- C_y)^{-1} \end{pmatrix}, \qquad 0 \le \varphi < y,$$

and the function $h((e,\varphi),(f,y))$ satisfies the boundary conditions (3.3) and (3.4) in Lemma 3.1. Therefore, for $0 \leq \varphi < y$, $G_0(\varphi, y) = h_y(\varphi)$ on $E \times E^+$, and because $G_0(\varphi, y) = h_y(\varphi) \Pi^-$ on $E \times E^-$,

$$G_0(\varphi, y) = \begin{pmatrix} A_{\varphi}(A_y - \Pi^- C_y)^{-1} & A_{\varphi}(A_y - \Pi^- C_y)^{-1}\Pi^- \\ C_{\varphi}(A_y - \Pi^- C_y)^{-1} & C_{\varphi}(A_y - \Pi^- C_y)^{-1}\Pi^- \end{pmatrix}, \qquad 0 \le \varphi < y.$$

Finally, since $G_0(y, y)$, y > 0, is positive, by irreducibility $G_0(\varphi, y)$ for $0 \le \varphi < y$ is also positive.

Lemma 3.2 For $y \neq 0$ and any $(e, f) \in E \times E$

$$P_{(e,\varphi)}(X_{H_y} = f, H_y < H_0) = G_0(\varphi, y)(G_0(y, y))^{-1}(e, f), \qquad 0 < |\varphi| < |y|,$$

$$P_{(e,y)}(X_{H_y} = f, H_y < H_0) = \left(I - (G_0(y, y))^{-1}\right)(e, f).$$

Proof: By Theorem 3.3, the matrix $G_0(y, y)$ is invertible. Therefore, the equalities

$$G_0((e,\varphi),(f,y)) = \sum_{e' \in E} P_{(e,\varphi)}(X_{H_y} = e', H_y < H_0) \ G_0((e',y),(f,y)), \ \varphi \neq y \neq 0,$$

$$G_0((e,y),(f,y)) = I(e,f) + \sum_{e' \in E} P_{(e,y)}(X_{H_y} = e', H_y < H_0)G_0((e',y),(f,y)), y \neq 0,$$

prove the lemma. \Box

prove the lemma.

The oscillating case: Proof of Theorem 2.1 4

Let $t \geq 0$ be fixed and let $A \in \mathcal{F}_t$. We start by looking at the limit of $P_{(e,\varphi)}^{[y]}(A)$ as $y \to +\infty$. For $(e, \varphi) \in E_0^+$ and $y > \varphi$, by Lemma 3.5 (vi) in Jacka et al. (2005), $P_{(e,\varphi)}(H_y < H_0) > 0$ for all y > 0. Hence, by the Markov property, for any $(e,\varphi) \in E_0^+$ and any $A \in \mathcal{F}_t$,

$$P_{(e,\varphi)}^{[y]}(A) = P_{(e,\varphi)}(A \mid H_y < H_0)$$

= $\frac{1}{P_{(e,\varphi)}(H_y < H_0)} E_{(e,\varphi)} \Big(I(A)(I\{t < H_0 \land H_y\} P_{(X_t,\varphi_t)}(H_y < H_0) + I\{H_y \le t < H_0\} + I\{H_y < H_0 \le t\}) \Big).$ (4.9)

Lemma 4.1 Let r be a vector such that $V^{-1}Qr = 1$. Then,

(i)
$$h_r(e,\varphi) \equiv -e^{-\varphi V^{-1}Q} J_1 \Gamma_2 r(e) > 0, \quad (e,\varphi) \in E_0^+,$$

(ii) $\lim_{y \to +\infty} \frac{P_{(e',\varphi')}(H_y < H_0)}{P_{(e,\varphi)}(H_y < H_0)} = \frac{e^{-\varphi' V^{-1}Q} J_1 \Gamma_2 r(e')}{e^{-\varphi V^{-1}Q} J_1 \Gamma_2 r(e)}, \quad (e,\varphi), (e',\varphi') \in E_0^+.$

Proof: (i) For any $y \in \mathbb{R}$, let the matrices A_y and C_y be the components of the matrix $e^{-yV^{-1}Q}$ as given in (3.5), that is

$$e^{-yV^{-1}Q} = \begin{pmatrix} A_y & B_y \\ C_y & D_y \end{pmatrix}.$$

Then, for any $\varphi \in \mathbb{R}$.

$$h_r(\cdot,\varphi) = -e^{-\varphi V^{-1}Q} J_1 \Gamma_2 r = - \begin{pmatrix} A_{\varphi}(r^+ - \Pi^- r^-) \\ C_{\varphi}(r^+ - \Pi^- r^-) \end{pmatrix}.$$

The outline of the proof is the following: first we show that the vector $A_{\varphi}(r^+ - \Pi^- r^-)$ has a constant sign by showing that it is a Perron-Frobenius vector of some positive matrix. Then, because $C_{\varphi}(r^+ - \Pi^- r^-) = C_{\varphi}A_{\varphi}^{-1} A_{\varphi}(r^+ - \Pi^- r^-)$ and because by Lemma 3.2, Theorem 3.3 and by Lemma 3.5 (vi) in Jacka et al. (2005) the matrix $C_{\varphi}A_{\varphi}^{-1}$ is positive, we conclude that the vector $C_{\varphi}(r^+ - \Pi^- r^-)$ has the same constant sign and that the function h_r has a constant sign. Finally, by Lemma 4.1 (ii) in Jacka et al. (2005), we conclude that h_r is always positive.

Therefore, all we have to prove is that the vector $A_{\varphi}(r^+ - \Pi^- r^-)$ has a constant sign for any $\varphi \in \mathbb{R}$. Let r be fixed vector such that $V^{-1}Qr = 1$. Then

$$e^{yV^{-1}Q}r = r + y1 \quad \Leftrightarrow \quad \begin{array}{c} A_{-y}r^+ + B_{-y}r^- = r^+ + y1^+ \\ C_{-y}r^+ + D_{-y}r^- = r^- + y1^- \end{array}$$

By (3.8), the matrix A_{φ} is invertible. Thus, because $1^+ = \Pi^- 1^-$, $(A_{-y} - \Pi^- C_{-y}) = (A_y - \Pi^- C_y)^{-1}$ and $(B_{-y} - \Pi^- D_{-y}) = -(A_{-y} - \Pi^- C_{-y})\Pi^-$,

$$\left(A_{\varphi}(A_y - \Pi^- C_y)^{-1} A_{\varphi}^{-1}\right) A_{\varphi}(r^+ - \Pi^- r^-) = A_{\varphi}(r^+ - \Pi^- r^-).$$

By Theorem 3.3 the matrix $A_{\varphi}(A_y - \Pi^- C_y)^{-1}$ is positive for any $\varphi \neq y$. By Lemma 3.2, Theorem 3.3 and by Lemma 3.5 (vi) in Jacka et al. (2005), the matrix A_{φ}^{-1} is also positive. Hence, the matrix $A_{\varphi}(A_y - \Pi^- C_y)^{-1}A_{\varphi}^{-1}$, $\varphi \neq y$, is positive and it has the Perron-Frobenius eigenvector which has a constant sign.

Suppose that $A_{\varphi}(r^+ - \Pi^- r^-) = 0$. Then, because A_{φ} is invertible, $(r^+ - \Pi^- r^-) = 0$. If $r^+ = \Pi^- r^-$ then r is a linear combination of the vectors g_k , $k = 1, \ldots, m$ in the basis \mathcal{B} , but that is not possible because r is also in the basis \mathcal{B} and therefore independent from g_k , $k = 1, \ldots, m$. Hence, the vector $A_{\varphi}(r^+ - \Pi^- r^-) \neq 0$ and by the last equation it is the eigenvector of the matrix $A_{\varphi}(A_{-y} - \Pi^- C_{-y})A_{\varphi}^{-1}$ which corresponds to its eigenvalue 1.

We want to show that 1 is the Perron-Frobenius eigenvalue of the matrix $A_{\varphi}(A_{-y} - \Pi^{-}C_{-y})A_{\varphi}^{-1}$. It follows from

$$\left(A_{\varphi}(A_{y} - \Pi^{-}C_{y})^{-1}A_{\varphi}^{-1}\right)A_{\varphi}(I - \Pi^{-}\Pi^{+}) = A_{\varphi}(I - \Pi^{-}\Pi^{+})e^{yG^{+}}$$
(4.10)

that if α is a non-zero eigenvalue of the matrix G^+ with some algebraic multiplicity, then $e^{\alpha y}$ is an eigenvalue of the matrix $A_{\varphi}(A_y - \Pi^- C_y)^{-1}A_{\varphi}^{-1}$ with the same algebraic multiplicity. Since all n-1 non-zero eigenvalues of G^+ have negative real parts, all eigenvalues $e^{\alpha_j y}$, $\alpha_j \neq 0$, $j = 1, \ldots, n$, of $A_{\varphi}(A_y - \Pi^- C_y)^{-1}A_{\varphi}^{-1}$ have real parts strictly less than 1. Thus, 1 is the Perron-Frobenius eigenvalue of the matrix $A_{\varphi}(A_y - \Pi^- C_y)^{-1}A_{\varphi}^{-1}$ and the vector $A_{\varphi}(r^+ - \Pi^- r^-)$ is its Perron-Frobenius eigenvector, and therefore has a constant sign.

(ii) The statement follows directly from the equality

$$\lim_{y \to +\infty} \frac{P_{(e',\varphi')}(H_y < H_0)}{P_{(e,\varphi)}(H_y < H_0)} = \lim_{y \to +\infty} \frac{G_0(\varphi', y)1(e')}{G_0(\varphi, y)1(e)},$$

where $G_0(\varphi, y)$ is the Green's function for the killed process defined and determined in Section 3, and from the representation of $G_0(\varphi, y)$ given by

$$G_0(\varphi, y) 1 = \sum_{j, \alpha_j \neq 0} a_j \ e^{-\varphi V^{-1}Q} J_1 \Gamma_2 \ e^{yV^{-1}Q} f_j + \ c \ e^{-\varphi V^{-1}Q} J_1 \Gamma_2 r,$$

for some constants a_j , j = 1, ..., n and $c \neq 0$, where vectors f_j , j = 1, ..., n, form a part of the basis \mathcal{B} in the space of all vectors on E and are associated with the eigenvalues α_j , j = 1, ..., n, of the matrix G^+ . Since $Re(\alpha_j) < 0$ for all $\alpha_j \neq 0$, j = 1, ..., n, it can be shown that for every j, j = 1, ..., n, such that $\alpha_j \neq 0$, $e^{yV^{-1}Q}f_j \to 0$ as $y \to +\infty$, which proves the statement. For the details of the proof see Najdanovic (2003).

Proof of Theorem 2.1: By Lemmas 4.1 (ii) and 4.3 in Jacka et al. (2005), the function $h_r(e,\varphi)$ is positive and harmonic for the process $(X_t,\varphi_t)_{t\geq 0}$. Therefore, the measure $P_{(e,\varphi)}^{h_r}$ is well-defined.

For fixed $(e, \varphi) \in E_0^+$, $t \in [0, +\infty)$ and any $y \ge 0$, let Z_y be a random variable defined on the probability space $(\Omega, \mathcal{F}, P_{(e,\varphi)})$ by

$$Z_y = \frac{1}{P_{(e,\varphi)}(H_y < H_0)} \Big(I\{t < H_0 \land H_y\} P_{(X_t,\varphi_t)}(H_y < H_0) + I\{H_y \le t < H_0\} + I\{H_y < H_0 \le t\} \Big).$$

By Lemma 4.1 (ii) and by Lemmas 4.1 (ii) , 4.2 (i) and 4.3 in Jacka et al. (2005) the random variables Z_y converge to $\frac{h_r(X_t,\varphi_t)}{h_r(e,\varphi)}I\{t < H_0\}$ in $L^1(\Omega, \mathcal{F}, P_{(e,\varphi)})$ as $y \to +\infty$. Therefore, by (4.9), for fixed $t \ge 0$ and $A \in \mathcal{F}_t$,

$$\lim_{y \to +\infty} P_{(e,\varphi)}^{[y]}(A) = \lim_{y \to +\infty} E_{(e,\varphi)}\Big(I(A)Z_y\Big) = P_{(e,\varphi)}^{h_r}(A),$$

which, by Lemma 4.2 (ii) in Jacka et al. (2005), implies that the measures $(P_{(e,\varphi)}^{[y]}|_{\mathcal{F}_t})_{y\geq 0}$ converge weakly to $P_{(e,\varphi)}^{h_r}|_{\mathcal{F}_t}$ as $y \to \infty$.

5 The negative drift case: Proof of Theorem 2.2

Again, as in the oscillating case, we start with the limit of $P_{(e,\varphi)}^{[y]}(A)$ as $y \to +\infty$ by looking at $\lim_{y\to+\infty} \frac{P_{(e',\varphi')}(H_y < H_0)}{P_{(e,\varphi)}(H_y < H_0)}$. First we prove an auxiliary lemma.

Lemma 5.1 For any vector g on E $\lim_{y\to+\infty} F(y)g = 0$.

In addition, for any non-negative vector g on $E \lim_{y\to+\infty} e^{-\alpha_{max}y}F(y)g = c J_1 f_{max}$ for some positive constant $c \in \mathbb{R}$.

Proof: Let

$$g = \begin{pmatrix} g^+ \\ g^- \end{pmatrix}$$
 and $g^+ = \sum_{j=1}^n a_j f_j^+$,

for some coefficients a_j , j = 1, ..., n, where vectors f_j^+ , j = 1, ..., n, form the basis in the space of all vectors on E^+ and are associated with the eigenvalues α_j , j = 1, ..., n, of the matrix G^+ . Then, the first equality in the lemma follows from

$$F(y)g = \begin{pmatrix} e^{yG^+} & 0\\ 0 & 0 \end{pmatrix} \begin{pmatrix} g^+\\ g^- \end{pmatrix} = \begin{pmatrix} e^{yG^+}g^+\\ 0 \end{pmatrix} = \sum_{j=1}^n a_j \begin{pmatrix} e^{yG^+}f_j^+\\ 0 \end{pmatrix}, \qquad y > 0, \quad (5.11)$$

since, for $Re(\alpha_j) < 0, j = 1, \dots, n, e^{yG^+}f_j^+ \to 0$ as $y \to +\infty$.

Moreover, by Lemma 3.5 (iii) in Jacka et al. (2005), the matrix G^+ is an irreducible Q-matrix with the Perron-Frobenius eigenvalue α_{max} and Perron-Frobenius eigenvector f_{max}^+ . Thus, for any non-negative vector g on E^+ , by Lemma 3.6 (ii) in Jacka et al. (2005),

$$\lim_{y \to +\infty} e^{-\alpha_{max}y} e^{yG^+} g(e) = c f^+_{max}(e),$$
 (5.12)

for some positive constant $c \in \mathbb{R}$. Therefore, from (5.11) and (5.12)

$$\lim_{y \to +\infty} e^{-\alpha_{max}y} F(y)g = \lim_{y \to +\infty} \left(\begin{array}{c} e^{-\alpha_{max}y} e^{yG^+}g^+ \\ 0 \end{array} \right) = c \left(\begin{array}{c} f_{max}^+ \\ 0 \end{array} \right) = c J_1 f_{max}.$$

Now we find the limit $\lim_{y\to+\infty} \frac{P_{(e',\varphi')}(H_y < H_0)}{P_{(e,\varphi)}(H_y < H_0)}$.

Lemma 5.2

(i)
$$h_{f_{max}}(e,\varphi) \equiv e^{-\varphi V^{-1}Q} J_1 \Gamma_2 f_{max}(e) > 0, \quad (e,\varphi) \in E_0^+,$$

(ii) $\lim_{y \to +\infty} \frac{P_{(e',\varphi')}(H_y < H_0)}{P_{(e,\varphi)}(H_y < H_0)} = \frac{e^{-\varphi' V^{-1}Q} J_1 \Gamma_2 f_{max}(e')}{e^{-\varphi V^{-1}Q} J_1 \Gamma_2 f_{max}(e)}, \quad (e,\varphi), (e',\varphi') \in E_0^+.$

Proof: (i) The function $h_{f_{max}}$ can be rewritten as

$$h_{f_{max}}(\cdot,\varphi) = e^{-\varphi V^{-1}Q} J_1 \Gamma_2 f_{max} = \begin{pmatrix} A_{\varphi}(I - \Pi^-\Pi^+) f_{max}^+ \\ C_{\varphi}(I - \Pi^-\Pi^+) f_{max}^+ \end{pmatrix}$$

where A_{φ} and C_{φ} are given by (3.5).

First we show that the vector $A_{\varphi}(I - \Pi^{-}\Pi^{+})f_{max}^{+}$ is positive. By (3.8) the matrix A_{φ} is invertible and, by (3.8) and Lemma 3.5 (ii) and (iv) in Jacka et al. (2005), the matrix $(I - \Pi^{-}\Pi^{+})$ is invertible. Therefore,

$$A_{\varphi}(A_{-y} - \Pi^{-}C_{-y})A_{\varphi}^{-1} = A_{\varphi}(I - \Pi^{-}\Pi^{+})e^{yG^{+}}(I - \Pi^{-}\Pi^{+})^{-1}A_{\varphi}^{-1}.$$

By Theorem 3.3 the matrix $A_{\varphi}(A_y - \Pi^- C_y)^{-1}$, $\varphi \neq y$, is positive and by Lemma 3.2, Theorem 3.3 and by Lemma 3.5 (vi) in Jacka et al.(2005), the matrix A_{φ}^{-1} is also positive. Hence, the matrix $A_{\varphi}(A_{-y} - \Pi^- C_{-y})A_{\varphi}^{-1}$, $\varphi \neq y$ is positive and is similar to e^{yG^+} . Thus, $A_{\varphi}(A_{-y} - \Pi^- C_{-y})A_{\varphi}^{-1}$ and e^{yG^+} have the same Perron-Frobenius eigenvalue and because the Perron-Frobenius eigenvector of e^{yG^+} is f_{max}^+ , it follows that $A_{\varphi}(I - \Pi^- \Pi^+)f_{max}^+$ is the Perron-Frobenius eigenvector of $A_{\varphi}(A_{-y} - \Pi^- C_{-y})A_{\varphi}^{-1}$ and therefore positive. In addition,

$$C_{\varphi}(I - \Pi^{-}\Pi^{+})f_{max}^{+} = C_{\varphi}A_{\varphi}^{-1} A_{\varphi}(I - \Pi^{-}\Pi^{+})f_{max}^{+}$$

and by Lemma 3.2, Theorem 3.3 and by Lemma 3.5 (vi) in Jacka et al. (2005), the matrix $C_{\varphi}A_{\varphi}^{-1}$ is positive. Therefore, the function $h_{f_{max}}$ is positive.

(ii) By Lemmas 3.2, 5.1 and Theorem 3.3,

$$\lim_{y \to +\infty} \frac{P_{(e',\varphi')}(H_y < H_0)}{P_{(e,\varphi)}(H_y < H_0)} = \lim_{y \to +\infty} \frac{e^{-\varphi' V^{-1}Q} \Gamma \Gamma_2 F(y) 1(e')}{e^{-\varphi V^{-1}Q} \Gamma \Gamma_2 F(y) 1(e)}.$$

Since the vector 1 is non-negative and because $\Gamma\Gamma_2 J_1 f_{max} = J_1 \Gamma_2 f_{max}$, the statement in the lemma follows from Lemma 5.1.

The function $h_{f_{max}}$ has the property that the process $\{h_{f_{max}}(X_t, \varphi_t)I\{t < H_0\}, t \ge 0\}$ is a martingale under $P_{(e,\varphi)}$. We prove this in the following lemma.

Lemma 5.3 The function $h_{f_{max}}(e,\varphi)$ is harmonic for the process $(X_t,\varphi_t)_{t\geq 0}$ and the process $\{h_{f_{max}}(X_t,\varphi_t)I\{t < H_0\}, t \geq 0\}$ is a martingale under $P_{(e,\varphi)}$.

Proof: The function $h_{f_{max}}(e,\varphi)$ is continuously differentiable in φ and therefore by (3.6) in Jacka et al. (2005) it is in the domain of the infinitesimal generator \mathcal{G} of the process $(X_t,\varphi_t)_{t\geq 0}$ and $\mathcal{G}h_{f_{max}}=0$. Thus, the function $h_{f_{max}}(e,\varphi)$ is harmonic for the process $(X_t,\varphi_t)_{t\geq 0}$ and the process $(h_{f_{max}}(X_t,\varphi_t))_{t\geq 0}$ is a local martingale under $P_{(e,\varphi)}$. It follows that the process $(h_{f_{max}}(X_{t\wedge H_0},\varphi_{t\wedge H_0})=h_{f_{max}}(X_t,\varphi_t)I\{t< H_0\})_{t\geq 0}$ is also a local martingale under $P_{(e,\varphi)}$ and, because it is bounded on every finite interval, that it is a martingale.

Proof of Theorem 2.2: The proof is exactly the same as the proof of Theorem 2.1 with the function $h_{f_{max}}$ substituting for h_r (and we therefore appeal to Lemma 5.2 rather than Lemma 4.1 for the desired properties of $h_{f_{max}}$).

6 The negative drift case: conditioning $(\varphi_t)_{t\geq 0}$ to drift to $+\infty$

The process $(X_t, \varphi_t)_{t\geq 0}$ can also be conditioned first on the event that $(\varphi_t)_{t\geq 0}$ hits large levels y regardless of crossing zero (that is taking the limit as $y \to \infty$ of conditioning $(X_t, \varphi_t)_{t\geq 0}$ on $\{H_y < +\infty\}$), and then the resulting process can be conditioned on the event that $(\varphi_t)_{t\geq 0}$ stays non-negative. In this section we show that these two conditionings performed in the stated order yield the same result as the limit as $y \to +\infty$ of conditioning $(X_t, \varphi_t)_{t\geq 0}$ on $\{H_y < H_0\}$.

Let $(e, \varphi) \in E_0^+$ and $y > \varphi$. Then, by Lemma 3.5 (vii) in Jacka et al. (2005), the event $\{H_y < +\infty\}$ is of positive probability and the process $(X_t, \varphi_t)_{t\geq 0}$ can be conditioned on $\{H_y < +\infty\}$ in the standard way.

For fixed $t \geq 0$ and any $A \in \mathcal{F}_t$,

$$P_{(e,\varphi)}(A \mid H_y < +\infty) = \frac{E_{(e,\varphi)}\Big(I(A)P_{(X_t,\varphi_t)}(H_y < +\infty)I\{t < H_y\} + I(A)I\{H_y < t\}\Big)}{P_{(e,\varphi)}(H_y < +\infty)}.$$
(6.13)

Lemma 6.1 For any $(e, \varphi), (e', \varphi') \in E_0^+$,

$$\lim_{y \to +\infty} \frac{P_{(e',\varphi')}(H_y < +\infty)}{P_{(e,\varphi)}(H_y < +\infty)} = \frac{e^{-\alpha_{max}\varphi'}f_{max}(e')}{e^{-\alpha_{max}\varphi}f_{max}(e)}.$$

Proof: By Lemma 3.7 in Jacka et al. (2005), for $0 \le \varphi < y$,

$$P_{(e,\varphi)}(H_y < +\infty) = P_{(e,\varphi-y)}(H_0 < +\infty) = \Gamma F(y-\varphi)\mathbf{1}.$$

The vector 1 is non-negative. Hence, by Lemma 5.1 and because $\Gamma J_1 f_{max} = f_{max}$,

$$\lim_{y \to +\infty} \frac{P_{(e',\varphi')}(H_y < +\infty)}{P_{(e,\varphi)}(H_y < +\infty)} = \lim_{y \to +\infty} \frac{e^{-\alpha_{max}\varphi'}\Gamma e^{-\alpha_{max}(y-\varphi')}F(y-\varphi)\mathbf{1}(e')}{e^{-\alpha_{max}\varphi}\Gamma e^{-\alpha_{max}(y-\varphi)}F(y-\varphi)\mathbf{1}(e)} = \frac{e^{-\alpha_{max}\varphi'}f_{max}(e')}{e^{-\alpha_{max}\varphi}f_{max}(e)}.$$

Let $h_{max}(e,\varphi)$ be a function on $E \times \mathbb{R}$ defined by

$$h_{max}(e,\varphi) = e^{-\alpha_{max}\varphi} f_{max}(e).$$

Lemma 6.2 The function $h_{max}(e, \varphi)$ is harmonic for the process $(X_t, \varphi_t)_{t\geq 0}$ and the process $(h_{max}(X_t, \varphi_t))_{t\geq 0}$ is a martingale under $P_{(e,\varphi)}$.

Proof: The function $h_{max}(e,\varphi)$ is continuously differentiable in φ and therefore by (3.6) in Jacka et al. (2005) it is in the domain of the infinitesimal generator \mathcal{G} of the process $(X_t,\varphi_t)_{t\geq 0}$ and $\mathcal{G}h_{max} = 0$. It follows that the function $h_{max}(e,\varphi)$ is harmonic for the process $(X_t,\varphi_t)_{t\geq 0}$ and that the process $(h_{max}(X_t,\varphi_t))_{t\geq 0}$ is a local martingale under $P_{(e,\varphi)}$. Since the function $h_{max}(e,\varphi)$ is bounded on every finite interval, the process $(h_{max}(X_t,\varphi_t))_{t\geq 0}$ is a martingale under $P_{(e,\varphi)}$.

By Lemmas 6.1 and 6.2 we prove

Theorem 6.1 For fixed $(e, \varphi) \in E_0^+$, let $P_{(e,\varphi)}^{h_{max}}$ be a measure defined by

$$P_{(e,\varphi)}^{h_{max}}(A) = \frac{E_{(e,\varphi)}\Big(I(A) \ h_{max}(X_t,\varphi_t)\Big)}{h_{max}(e,\varphi)}, \qquad t \ge 0, A \in \mathcal{F}_t$$

Then, $P_{(e,\varphi)}^{h_{max}}$ is a probability measure and, for fixed $t \geq 0$,

$$\lim_{y \to +\infty} P_{(e,\varphi)}(A \mid H_y < +\infty) = P^{h_{max}}_{(e,\varphi)}(A), \quad A \in \mathcal{F}_t.$$

Proof: By the definition, the function h_{max} is positive. By Lemma 6.2, it is harmonic for the process $(X_t, \varphi_t)_{t\geq 0}$ and the process $(h_{max}(X_t, \varphi_t))_{t\geq 0}$ is a martingale under $P_{(e,\varphi)}$. Hence, $P_{(e,\varphi)}^{h_{max}}$ is a probability measure.

For fixed $(e, \varphi) \in E_0^+$ and $t \ge 0$ and any $y \ge 0$, let Z_y be a random variable defined on the probability space $(\Omega, \mathcal{F}, P_{(e,\varphi)})$ by

$$Z_y = \frac{P_{(X_t,\varphi_t)}(H_y < +\infty)I\{t < H_y\} + I\{H_y < t\}}{P_{(e,\varphi)}(H_y < +\infty)}.$$

By Lemma 6.1 and by Lemmas 4.2 (i) and 4.3 in Jacka et al. (2005) the random variables Z_y converge to $\frac{h_{max}(X_t,\varphi_t)}{h_{max}(e,\varphi)}$ in $L^1(\Omega, \mathcal{F}, P_{(e,\varphi)})$ as $y \to +\infty$. Therefore, by (6.13), for fixed $t \ge 0$ and $A \in \mathcal{F}_t$,

$$\lim_{y \to +\infty} P_{(e,\varphi)}(A \mid H_y < +\infty) = \lim_{y \to +\infty} E_{(e,\varphi)}\Big(I(A) \ Z_y\Big) = P^{h_{max}}_{(e,\varphi)}(A).$$

We now want to condition the process $(X_t, \varphi_t)_{t \ge 0}$ under $P_{(e,\varphi)}^{h_{max}}$ on the event $\{H_0 = +\infty\}$. By Theorem 7.1, $(X_t)_{t \ge 0}$ is Markov under $P_{(e,\varphi)}^{h_{max}}$ with the irreducible conservative Q-matrix $Q^{h_{max}}$ given by

$$Q^{h_{max}}(e, e') = \frac{f_{max}(e')}{f_{max}(e)} (Q - \alpha_{max}V)(e, e'), \qquad e, e' \in E,$$

and, by the same theorem, the process $(\varphi_t)_{t\geq 0}$ drifts to $+\infty$ under $P_{(e,\varphi)}^{h_{max}}$. We find the Wiener-Hopf factorization of the matrix $V^{-1}Q^{h_{max}}$.

Lemma 6.3 The unique Wiener-Hopf factorization of the matrix $V^{-1}Q^{h_{max}}$ is given by $V^{-1}Q^{h_{max}}$ $\Gamma^{h_{max}} = \Gamma^{h_{max}} G^{h_{max}}$, where, for any $(e, e') \in E \times E$,

$$G^{h_{max}}(e, e') = \frac{f_{max}(e')}{f_{max}(e)} \ (G - \alpha_{max}I)(e, e') \quad and \quad \Gamma^{h_{max}}(e, e') = \frac{f_{max}(e')}{f_{max}(e)} \ \Gamma(e, e').$$

In addition, if

$$G^{h_{max}} = \begin{pmatrix} G^{h_{max},+} & 0\\ 0 & -G^{h_{max},-} \end{pmatrix} \quad and \quad \Gamma^{h_{max}} = \begin{pmatrix} I & \Pi^{h_{max},-}\\ \Pi^{h_{max},+} & I \end{pmatrix},$$

then $G^{h_{max},+}$ is a conservative Q-matrix and $\Pi^{h_{max},+}$ is stochastic, and $G^{h_{max},-}$ is not a conservative Q-matrix and $\Pi^{h_{max},-}$ is strictly substochastic.

Proof: By the definition the matrices $G^{h_{max},+}$ and $G^{h_{max},-}$ are essentially non-negative. In addition, for any $e \in E^+$, $G^{h_{max},+}1(e) = 0$. Hence, $G^{h_{max},+}$ is a conservative Q-matrix. By Lemma 5.2 (i),

$$h_{f_{max}}^{-} = (\Pi^{+}e^{-\varphi G^{+}} - e^{\varphi G^{-}}\Pi^{+})f_{max}^{+} = e^{-\alpha_{max}\varphi}(I - e^{\varphi (G^{-} + \alpha_{max}I)})f_{max}^{-} > 0.$$

Since

$$\lim_{\varphi \to 0} \frac{(I - e^{\varphi(G^- + \alpha_{max}I)}) f_{max}^-}{\varphi} = -(G^- + \alpha_{max}I)f_{max}^-,$$

and $(I - e^{\varphi(G^- + \alpha_{max}I)})f_{max}^- > 0$, it follows that $(G^- + \alpha_{max}I)f_{max}^- \le 0$. Thus, $G^{h_{max},-1^-} \le 0$ and so $G^{h_{max},-}$ is a Q-matrix. Moreover, if $(G^- + \alpha_{max}I)f_{max}^- = 0$ then $h_{f_{max}}(e,\varphi) = 0$ for $e \in E^-$ which is a contradiction to Lemma 5.2. Therefore, the matrix $G^{h_{max},-}$ is not conservative.

The matrices $G^{h_{max}}$ and $\Gamma^{h_{max}}$ satisfy the equality $V^{-1}Q^{h_{max}}$ $\Gamma^{h_{max}} = \Gamma^{h_{max}} G^{h_{max}}$, which, by Lemma 3.4 in Jacka et al. (2005), gives the unique Wiener-Hopf factorization of the matrix $V^{-1}Q^{h_{max}}$. Furthermore, by Lemma 3.5 (iv) in Jacka et al. (2005), $\Pi^{h_{max},+}$ is a stochastic and $\Pi^{h_{max},-}$ is a strictly substochastic matrix.

Finally, we prove the main result in this section

Theorem 6.2 Let $P_{(e,\varphi)}^{h_{f_{max}}}$ be as defined in Theorem 2.2. Then, for any $(e,\varphi) \in E_0^+$ and any $t \ge 0$,

$$P_{(e,\varphi)}^{h_{max}}(A \mid H_0 = \infty) = P_{(e,\varphi)}^{h_{f_{max}}}(A), \qquad A \in \mathcal{F}_t$$

Proof: By Theorem 7.1 the process $(\varphi_t)_{t\geq 0}$ under $P_{(e,\varphi)}^{h_{max}}$ drifts to $+\infty$. Since in the positive drift case the event $\{H_0 = +\infty\}$ is of positive probability, for any $t \geq 0$ and any $A \in \mathcal{F}_t$,

$$P_{(e,\varphi)}^{h_{\max}}(A \mid H_0 = \infty) = \frac{E_{(e,\varphi)}^{h_{\max}}(I(A) \mid P_{(X_t,\varphi_t)}^{h_{\max}}(H_0 = +\infty) \mid I\{t < H_0\})}{P_{(e,\varphi)}^{h_{\max}}(H_0 = +\infty)},$$
(6.14)

where $E_{(e,\varphi)}^{h_{\max}}$ denotes the expectation operator associated with the measure $P_{(e,\varphi)}^{h_{\max}}$. By Lemma 3.7 in Jacka et al. (2005) and by Lemma 6.3, for $\varphi > 0$,

$$P_{(e,\varphi)}^{h_{max}}(H_0 = +\infty) = 1 - \frac{e^{\alpha_{max}\varphi}}{f_{max}(e)} \sum_{e' \in E} \Gamma e^{-\varphi G}(e, e') J_2 1(e') f_{max}(e')$$
$$= \frac{1}{h_{max}(e,\varphi)} \Big(e^{-\alpha_{max}\varphi} f_{max} - \Gamma F(-\varphi) f_{max} \Big)(e)$$
$$= \frac{h_{f_{max}}(e,\varphi)}{h_{max}(e,\varphi)}, \tag{6.15}$$

where $h_{f_{max}}$ is as defined in Lemma 5.2. Similarly, for $e \in E^+$,

$$P_{(e,0)}^{h_{max}}(H_0 = +\infty) = \frac{f_{max}^+ - \Pi^- f_{max}^-)(e)}{f_{max}^+(e)} = \frac{h_{f_{max}}(e,0)}{h_{max}(e,0)}.$$

Therefore, the statement in the theorem follows from Theorem 6.1, (6.14) and (6.15).

We summarize the results from this section: in the negative drift case, making the *h*-transform of the process $(X_t, \varphi_t)_{t\geq 0}$ by the function $h_{max}(e, \varphi) = e^{-\alpha_{max}\varphi} f_{max}(e)$ yields the probability measure $P_{(e,\varphi)}^{h_{max}}$ such that $(X_t)_{t\geq 0}$ is Markov under $P_{(e,\varphi)}^{h_{max}}$ and that $(\varphi_t)_{t\geq 0}$ has a positive drift under $P_{(e,\varphi)}^{h_{max}}$. The process $(X_t, \varphi_t)_{t\geq 0}$ under $P_{(e,\varphi)}^{h_{max}}$ is also the limiting process as $y \to +\infty$ in conditioning $(X_t, \varphi_t)_{t\geq 0}$ under $P_{(e,\varphi)}$ on $\{H_y < +\infty\}$. Further conditioning $(X_t, \varphi_t)_{t\geq 0}$ under $P_{(e,\varphi)}^{h_{max}}$ on $\{H_0 = +\infty\}$ yields the same result as the limit as $y \to +\infty$ of conditioning $(X_t, \varphi_t)_{t\geq 0}$ on $\{H_y < H_0\}$. In other words, the diagram in Figure 1 commutes.

7 The negative drift case: conditioning $(\varphi_t)_{t>0}$ to oscillate

In this section we condition the process $(\varphi_t)_{t\geq 0}$ with a negative drift to oscillate, and then condition the resulting oscillating process to stay non-negative.

Let $P_{(e,\varphi)}^h$ denote the h-transform of the measure $P_{(e,\varphi)}$ by a positive superharmonic function h for the process $(X_t, \varphi_t)_{t\geq 0}$. We want to find a function h such that $P_{(e,\varphi)}^h$ is honest; the process $(X_t)_{t\geq 0}$ is Markov under $P_{(e,\varphi)}^h$ and the process $(\varphi_t)_{t\geq 0}$ oscillates under $P_{(e,\varphi)}^h$. These desired properties of the function h necessarily imply that it has to be harmonic.

First we find a form of a positive and harmonic function for the process $(X_t, \varphi_t)_{t\geq 0}$ such that the process $(X_t)_{t\geq 0}$ is Markov under $P^h_{(e,\varphi)}$.

Lemma 7.1 Suppose that a function h is positive and harmonic for the process $(X_t, \varphi_t)_{t\geq 0}$ and that the process $(X_t)_{t\geq 0}$ is Markov under $P^h_{(e,\varphi)}$. Then h is of the form

$$h(e,\varphi) = e^{-\lambda\varphi}g(e), \qquad (e,\varphi) \in E \times \mathbb{R},$$

 \square

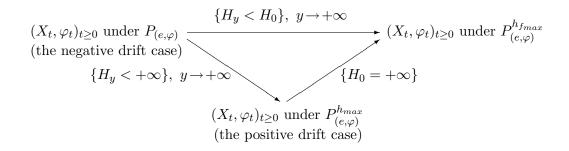


Figure 1: Conditioning of the process $(X_t, \varphi_t)_{t\geq 0}$ on the events $\{H_y < H_0\}, y \geq 0$, in the negative drift case.

for some $\lambda \in \mathbb{R}$ and some vector g on E.

Proof: By the definition of $P_{(e,\varphi)}^h$, for any $(e,\varphi) \in E \times \mathbb{R}$ and $t \ge 0$,

$$P^{h}_{(e,\varphi)}(X_{s} = e, 0 \le s \le t) = \frac{h(e,\varphi + v(e)t)}{h(e,\varphi)} P_{(e,\varphi)}(X_{s} = e, 0 \le s \le t).$$

Since the process $(X_t)_{t\geq 0}$ is Markov under $P^h_{(e,\varphi)}$, the probability $P^h_{(e,\varphi)}(X_s = e, 0 \leq s \leq t)$ does not depend on φ . Thus, the right-hand side of the last equation does not depend on φ . Since $P_{(e,\varphi)}(X_s = e, 0 \leq s \leq t)$ also does not depend on φ because $(X_t)_{t\geq 0}$ is Markov under $P_{(e,\varphi)}$, it follows that the ratio $\frac{h(e,\varphi+v(e)t)}{h(e,\varphi)}$ does not depend on φ . This implies that h satisfies

$$h(e,\varphi+y) = \frac{h(e,\varphi) \ h(e,y)}{h(e,0)}, \qquad e \in E, \ \varphi, y \in \mathbb{R}.$$
(7.16)

Let $e \in E$ be fixed. Since the function h is positive, we define a function $k_e(\varphi)$ by

$$k_e(\varphi) = \log\left(\frac{h(e,\varphi)}{h(e,0)}\right), \qquad \varphi \in (0,+\infty).$$

Then, by (7.16), the function k_e is additive. In addition, it is measurable because the function h is measurable as a harmonic function. Therefore, it is linear (see Aczel (1966)). It follows that the function h is exponential, that is

$$h(e,\varphi) = h(e,0) \ e^{\lambda(e)\varphi}, \qquad (e,\varphi) \in E_0^+$$

for some function $\lambda(e)$ on E.

Hence, the function h is continuously differentiable in φ which implies by (3.6) in Jacka et al. (2005) that the *Q*-matrix of the process $(X_t)_{t\geq 0}$ under $P^h_{(e,\varphi)}$ is given by

$$Q^{h}(e, e') = \frac{h(e', \varphi)}{h(e, \varphi)}Q + \frac{\frac{\partial h}{\partial \varphi}(e, \varphi)}{h(e, \varphi)}V(e, e')$$
$$= \frac{h(e', 0)}{h(e, 0)}e^{(\lambda(e) - \lambda(e'))\varphi}Q + \lambda(e)V(e, e), \quad e, e' \in E.$$

But, because $(X_t)_{t\geq 0}$ is Markov under $P^h_{(e,\varphi)}$, Q^h does not depend on φ . This implies that $\lambda(e) = -\lambda = const$.

Finally, putting $g(e) = h(e, 0), e \in E$, proves the theorem.

The following theorem characterizes all positive harmonic functions for the process $(X_t, \varphi_t)_{t>0}$ with the properties stated at the beginning of the section.

Theorem 7.1 There exist exactly two positive harmonic functions h for the process $(X_t, \varphi_t)_{t\geq 0}$ such that the measure $P_{(e,\varphi)}^h$ is honest and that the process $(X_t)_{t\geq 0}$ is Markov under $P_{(e,\varphi)}^h$. They are given by

$$h_{max}(e,\varphi) = e^{-\alpha_{max}\varphi} f_{max}(e)$$
 and $h_{min}(e,\varphi) = e^{-\beta_{min}\varphi} g_{min}(e).$

Moreover,

(i) if the process $(\varphi_t)_{t\geq 0}$ drifts to $+\infty$ then $h_{max} = 1$ and the process $(\varphi_t)_{t\geq 0}$ under $P_{(e,\varphi)}^{h_{min}}$ drifts to $-\infty$;

(ii) if the process $(\varphi_t)_{t\geq 0}$ drifts to $-\infty$ then $h_{min} = 1$ and the process $(\varphi_t)_{t\geq 0}$ under $P_{(e,\varphi)}^{h_{max}}$ drifts to $+\infty$;

(iii) if the process $(\varphi_t)_{t\geq 0}$ oscillates then $h_{max} = h_{min} = 1$.

Proof: We give a sketch of the proof. For the details see Najdanovic (2003).

Let a function h be positive and harmonic for the process $(X_t, \varphi_t)_{t\geq 0}$ and let the process $(X_t)_{t\geq 0}$ be Markov under $P^h_{(e,\varphi)}$. Then by Lemma 7.1 the function h is of the form

$$h(e,\varphi) = e^{-\lambda\varphi}g(e), \qquad (e,\varphi) \in E \times \mathbb{R},$$

for some $\lambda \in \mathbb{R}$ and some vector g on E.

Since the function h is harmonic for the process $(X_t, \varphi_t)_{t\geq 0}$ it satisfies the equation $\mathcal{G}h = 0$ where \mathcal{G} is the generator of the process $(X_t, \varphi_t)_{t\geq 0}$ given by (3.6) in Jacka et al. (2005). Hence, $\mathcal{G}h = (Q + V\frac{d}{d\varphi})h = 0$ and $h(e, \varphi) = e^{-\lambda\varphi}g(e)$ imply that $V^{-1}Qg = \lambda g$, that is λ is an eigenvalue and g its associated eigenvector of the matrix $V^{-1}Q$. In addition, by Lemma 3.6 (i) in Jacka et al. (2005) the only positive eigenvectors of the matrix $V^{-1}Q$ are f_{max} and g_{min} . Hence, $h(e, \varphi) = e^{-\alpha_{max}\varphi}f_{max}(e)$ or $h(e, \varphi) = e^{-\beta_{min}\varphi}g_{min}(e)$.

The equality $\mathcal{G}h = 0$ implies that the process $(h(X_t, \varphi_t))_{t \geq 0}$ is a local martingale. Since the function $h(e, \varphi) = e^{-\lambda \varphi} g(e)$ is bounded on every finite interval, the process $(h(X_t, \varphi_t))_{t \geq 0}$ is a martingale. It follows that the measure $P_{(e,\varphi)}^h$ is honest.

Let Q^h be the Q-matrix of the process $(X_t)_{t\geq 0}$ under $P^h_{(e,\varphi)}$. It can be shown that the eigenvalues of the matrix $V^{-1}Q^{h_{min}}$ coincide with the eigenvalues of the matrix $V^{-1}(Q - \beta_{min}I)$, and that the eigenvalues of the matrix $V^{-1}Q^{h_{max}}$ coincide with the eigenvalues of the matrix $V^{-1}(Q - \alpha_{max}I)$. These together with (3.8) in Jacka et al. (2005) prove statements (i)-(iii).

By Theorem 7.1 (ii) there does not exist a positive function h harmonic for the process $(X_t, \varphi_t)_{t\geq 0}$ such that $P_{(e,\varphi)}^h$ is honest, that the process $(X_t)_{t\geq 0}$ is Markov under $P_{(e,\varphi)}^h$ and that the process $(\varphi_t)_{t\geq 0}$ oscillates under $P_{(e,\varphi)}^h$ (we recall that initially the process $(\varphi_t)_{t\geq 0}$ drifts to $-\infty$ under $P_{(e,\varphi)}^h$). However, we can look for a positive space-time harmonic function h for the process $(X_t, \varphi_t)_{t\geq 0}$ that has the desired properties.

Lemma 7.2 Suppose that a function h is positive and space-time harmonic for the process $(X_t, \varphi_t)_{t\geq 0}$ and that the process $(X_t)_{t\geq 0}$ is Markov under $P^h_{(e,\varphi)}$. Then h is of the form

$$h(e,\varphi,t) = e^{-\alpha t} e^{-\beta \varphi} g(e), \qquad (e,\varphi) \in E \times \mathbb{R},$$

for some $\alpha, \beta \in \mathbb{R}$ and some vector g on E.

Proof: By the definition of $P^h_{(e,\varphi)}$, for any $(e,\varphi) \in E \times \mathbb{R}$ and $t \ge 0$, and any $s \ge 0$ and $y \in \mathbb{R}$,

$$P^{h}_{(e,\varphi,t)}(X_{t+s}=e,\varphi_{t+s}\in\varphi+y) = \frac{h(e,\varphi+y,t+s)}{h(e,\varphi,t)} P_{(e,\varphi,t)}(X_{t+s}=e,\varphi_{t+s}\in\varphi+y).$$
(7.17)

Since the process $(X_t)_{t\geq 0}$ is Markov under $P_{(e,\varphi)}^h$, we have

$$P^{h}_{(e,\varphi,t)}(X_{t+s} = e, \varphi_{t+s} \in \varphi + y) = P^{h}_{(e,0,0)}(X_s = e, \varphi_s \in y).$$

And similarly

$$P_{(e,\varphi,t)}(X_{t+s} = e, \varphi_{t+s} \in \varphi + y) = P_{(e,0,0)}(X_s = e, \varphi_s \in y).$$

Therefore, it follows from (7.17) that the ratio $\frac{h(e,\varphi+y,t+s)}{h(e,\varphi,t)}$ does not depend on φ and t. This implies that h satisfies

$$h(e, \varphi + y, t + s) = \frac{h(e, \varphi, t) \ h(e, y, s)}{h(e, 0, 0)}, \qquad e \in E, \ \varphi, y \in \mathbb{R}, t, s \ge 0.$$
(7.18)

Since the function h is positive, we define a function $k(e, \varphi, t)$ by

$$k(e,\varphi,t) = \log\left(\frac{h(e,\varphi,t)}{h(e,0,0)}\right), \qquad (e,\varphi,t) \in E_0^+ \times [0,+\infty).$$

Then, by (7.18),

$$k(e,\varphi+y,t+s) = k(e,\varphi,t) + k(e,y,s), \qquad e \in E, \ \varphi,y \in \mathbb{R}, \ t,s \ge 0.$$

Let t = s = 0. Then

$$k(e,\varphi+y,0)=k(e,\varphi,0)+k(e,y,0), \qquad e\in E, \ \varphi,y\in\mathbb{R}.$$

Hence, $k(e, \varphi, 0)$ is additive in φ and is measurable because the function h is measurable as a harmonic function. It follows (see Aczel (1966)) that $k(e, \varphi, 0)$ is linear in φ , that is

$$k(e,\varphi,0) = \beta(e) \varphi$$

for some function β on E. Similarly, for $\varphi = y = 0$, we have

$$k(e, 0, t+s) = k(e, 0, t) + k(e, 0, s),$$

which implies that

$$k(e,0,t) = \alpha(e) t$$

for some function α on E. Putting the pieces together, we obtain

$$k(e,\varphi,t) = \alpha(e) \ t + \beta(e) \ \varphi, \qquad (e,\varphi,t) \in E_0^+ \times [0,+\infty).$$

Then it follows from the definition of the function $k(e, \varphi, t)$ that

$$h(e,\varphi,t) = h(e,0,0) \ e^{\alpha(e)t} \ e^{\beta(e)\varphi}, \qquad (e,\varphi,t) \in E_0^+ \times [0,+\infty)$$

for some functions α and β on E.

Hence, the function h is continuously differentiable in φ and t which implies by (3.7) in Jacka et al. (2005) that the Q-matrix of the process $(X_t)_{t\geq 0}$ under $P^h_{(e,\varphi)}$ is given by

$$Q^{h}(e, e') = \frac{h(e', \varphi, t)}{h(e, \varphi, t)}Q + \frac{\frac{\partial h}{\partial \varphi}(e, \varphi, t)}{h(e, \varphi, t)}V(e, e') + \frac{\frac{\partial h}{\partial t}(e, \varphi, t)}{h(e, \varphi, t)}I(e, e')$$
$$= \frac{h(e', 0, 0)}{h(e, 0, 0)}e^{(\alpha(e') - \alpha(e))t}e^{(\beta(e') - \beta(e))\varphi}Q + \beta(e)V(e, e)$$
$$+\alpha(e)I(e, e), \quad e, e' \in E.$$

But, because $(X_t)_{t\geq 0}$ is Markov under $P_{(e,\varphi)}^h$, Q^h does not depend on φ and t. This implies that $\alpha(e) = -\alpha = const.$ and $\beta(e) = -\beta = const.$.

Finally, putting $g(e) = h(e, 0, 0), e \in E$, proves the theorem.

Theorem 7.2 All positive space-time harmonic functions h for the process $(X_t, \varphi_t)_{t\geq 0}$ continuously differentiable in φ and t such that $P^h_{(e,\varphi)}$ is honest and that $(X_t)_{t\geq 0}$ is Markov under $P^h_{(e,\varphi)}$ are of the form

$$h(e,\varphi,t) = e^{-\alpha t} e^{-\beta \varphi} g(e), \quad (e,\varphi,t) \in E \times \mathbb{R} \times [0,+\infty)$$

where, for fixed $\beta \in \mathbb{R}$, α is the Perron-Frobenius eigenvalue and g is the right Perron-Frobenius eigenvector of the matrix $(Q - \beta V)$.

Moreover, there exists unique $\beta_0 \in \mathbb{R}$ such that

$(\varphi_t)_{t\geq 0}$ under $P^h_{(e,\varphi)}$ drifts to $+\infty$	$i\!f\!f$	$\beta < \beta_0$
$(\varphi_t)_{t\geq 0}$ under $P^h_{(e,\varphi)}$ oscillates	$i\!f\!f$	$\beta=\beta_0$
$(\varphi_t)_{t\geq 0} \text{ under } P^h_{(e,\varphi)} \text{ drifts to } -\infty$	$i\!f\!f$	$\beta > \beta_0,$

and β_0 is determined by the equation $\alpha'(\beta_0) = 0$, where $\alpha(\beta)$ is the Perron-Frobenius eigenvalue of $(Q - \beta V)$.

Proof: We again give a sketch of the proof. For the details see Najdanovic (2003).

Let a function h be positive and space-time harmonic for the process $(X_t, \varphi_t)_{t\geq 0}$ and let the process $(X_t)_{t\geq 0}$ be Markov under $P^h_{(e,\varphi)}$. Then by Lemma 7.2 the function h is of the form

$$h(e,\varphi,t) = e^{-\alpha t} e^{-\beta \varphi} g(e), \qquad (e,\varphi,t) \in E \times \mathbb{R} \times [0,+\infty),$$

for some $\alpha, \beta \in \mathbb{R}$ and some vector g on E.

Since the function h is harmonic for the process $(X_t, \varphi_t)_{t\geq 0}$ it satisfies the equation $\mathcal{A}h = 0$ where \mathcal{A} is the generator of the process $(X_t, \varphi_t)_{t\geq 0}$ given by (3.7) in Jacka et al. (2005). Hence, $\mathcal{A}h = (Q + V\frac{d}{d\varphi} + \frac{d}{dt})h = 0$ and $h(e, \varphi, t) = e^{-\alpha t}e^{-\beta\varphi}g(e)$ imply that $(Q - \beta V)g = \alpha g$, that is α is an eigenvalue and g its associated eigenvector of the matrix $(Q - \beta V)$. In addition, By Lemma 3.1 in Jacka et al. (2005) the matrix $(Q - \beta V)$ is irreducible and essentially non-negative. By the Perron-Frobenius theorem the only positive eigenvector of an irreducible and essentially non-negative matrix is its Perron-Frobenius eigenvector. Thus, α and g are Perron-Frobenius eigenvalue and eigenvector, respectively, of the matrix $(Q - \beta V)$.

The equation $\mathcal{A}h = 0$ implies that the process $h(X_t, \varphi_t, t)_{t\geq 0}$ is a local martingale. Since the function $h(e, \varphi, t) = e^{-\alpha t} e^{-\beta \varphi} g(e)$ is bounded on every finite interval, the process $h(X_t, \varphi_t, t)_{t\geq 0}$ is a martingale. It follows that the measure $P^h_{(e,\varphi)}$ is honest.

Let, for fix $\beta \in \mathbb{R}$, $h(e, \varphi, t) = e^{-\alpha(\beta)t}e^{-\beta\varphi}g(\beta)(e)$, where $\alpha(\beta)$ and $g(\beta)$ are Perron-Frobenius eigenvalue and right eigenvector, respectively, of the matrix $(Q - \beta V)$. Let μ_{β} denote the invariant measure of the process $(X_t)_{t\geq 0}$ under $P^h_{(e,\varphi)}$, and let $g^{left}(\beta)$ denote the left eigenvector of the matrix $(Q - \beta V)$. Then it can be shown that $\mu_{\beta}V1 = g^{left}(\beta)Vg(\beta)$. Since $g^{left}(\beta)(e)g(\beta)(e) > 0$ for every $e \in E$, Lemma 3.9 and (3.8) in Jacka et al. (2005) imply the statement in the second part of the theorem.

By Theorem 7.2, there exists exactly one positive space-time harmonic function hfor the process $(X_t, \varphi_t)_{t>0}$ with the desired properties and it is given by

$$h_0(e,\varphi,t) = e^{-\alpha_0 t} e^{-\beta_0 \varphi} g_0(e), \quad (e,\varphi,t) \in E \times \mathbb{R} \times [0,+\infty).$$

For fixed $(e, \varphi) \in E_0^+$, let a measure $P_{(e,\varphi)}^{h_0}$ be defined by

$$P_{(e,\varphi)}^{h_0}(A) = \frac{E_{(e,\varphi)}\Big(I(A)h_0(X_t,\varphi_t,t)\Big)}{h_0(e,\varphi,0)}, \quad A \in \mathcal{F}_t, \ t \ge 0,$$
(7.19)

and let $E_{(e,\varphi)}^{h_0}$ denote the expectation operator associated with the measure $P_{(e,\varphi)}^{h_0}$. Then, the process $(X_t)_{t\geq 0}$ under $P_{(e,\varphi)}^{h_0}$ is Markov with the *Q*-matrix Q^0 given by

$$Q^{0}(e,e') = \frac{g_{0}(e')}{g_{0}(e)}(Q - \alpha_{0}I - \beta_{0}V)(e,e'), \qquad e,e' \in E.$$
(7.20)

and, by Theorem 7.2, the process $(\varphi_t)_{t\geq 0}$ under $P_{(e,\varphi)}^{h_0}$ oscillates. The aim now is to condition $(X_t, \varphi_t)_{t\geq 0}$ under $P_{(e,\varphi)}^{h_0}$ on the event that $(\varphi_t)_{t\geq 0}$ stays non-negative. The following theorem determines the law of this new conditioned process.

Theorem 7.3 For fixed $(e, \varphi) \in E_0^+$, let a measure $P_{(e,\varphi)}^{h_0,h_r^0}$ be defined by

$$P_{(e,\varphi)}^{h_0,h_r^0}(A) = \frac{E_{(e,\varphi)}^{h_0}\Big(I(A)h_r^0(X_t,\varphi_t)I\{t < H_0\}\Big)}{h_r^0(e,\varphi)}, \quad A \in \mathcal{F}_t, \ t \ge 0.$$

where the function h_r^0 is given by $h_r^0(e, y) = e^{-yV^{-1}Q^0}J_1\Gamma_2 r^0(e)$, $(e, y) \in E \times \mathbb{R}$, and $V^{-1}Q^0r^0 = 1$. Then, $P_{(e,\varphi)}^{h_0,h_r^0}$ is a probability measure. In addition, for $t \ge 0$ and $A \in \mathcal{F}_t$,

$$P_{(e,\varphi)}^{h_0,h_r^{\flat}}(A) = \lim_{y \to \infty} P_{(e,\varphi)}^{h_0}(A \mid H_y < H_0) = \lim_{T \to \infty} P_{(e,\varphi)}^{h_0}(A \mid H_0 > T),$$

and

$$P^{h_0,h^0_r}_{(e,\varphi)}(A) = P^{h_{r^0}}_{(e,\varphi)}(A),$$

where $P_{(e,\varphi)}^{h_{r^0}}$ is as defined in Theorem 2.2 in Jacka et al. (2005).

Proof: By definition (7.19) of the measure $P_{(e,\varphi)}^{h_0}$, for $t \ge 0$ and $A \in \mathcal{F}_t$,

$$P_{(e,\varphi)}^{h_0,h_r^0}(A) = \frac{E_{(e,\varphi)}\Big(I(A) \ h_0(X_t,\varphi_t,t) \ h_r^0(X_t,\varphi_t) \ I\{t < H_0\}\Big)}{h_0(e,\varphi,0) \ h_r^0(e,\varphi)}$$
$$= \frac{E_{(e,\varphi)}\Big(I(A) \ h_{r^0}(X_t,\varphi_t,t) \ I\{t < H_0\}\Big)}{h_{r^0}(e,\varphi,t),}$$

where $h_{r^0}(e,\varphi,t) = h_0(e,\varphi,t) h_r^0(e,\varphi) = e^{-\alpha_0 t} e^{-\beta_0 \varphi} G_0 e^{-\varphi V^{-1}Q^0} J_1 \Gamma_2^0 r^0(e)$ is as defined in Theorem 2.2 in Jacka et al. (2005). By Lemma 5.1 (i) in Jacka et al. (2005), the function $h_{r^0}(e,\varphi,t)$ is positive and by Lemma 5.5 in Jacka et al. (2005), the function $h_{r^0}(e,\varphi,t)$ is space-time harmonic for the process $(X_t,\varphi_t,t)_{t\geq 0}$. Thus, $P_{(e,\varphi)}^{h_0,h_r^0}$ is a probability measure, and by the definition of the measure $P_{(e,\varphi)}^{h_r^0}$ in Theorem 2.2 in Jacka et al. (2005),

$$P_{(e,\varphi)}^{h_0,h_r^0}(A) = P_{(e,\varphi)}^{h_{r^0}}(A), \quad A \in \mathcal{F}_t, \quad t \ge 0.$$

In addition, by (3.8) and Lemma 3.11 in Jacka et al. (2005), the *Q*-matrix Q^0 of the process $(X_t)_{t\geq 0}$ under $P_{(e,\varphi)}^{h_0}$ is conservative and irreducible and the process $(\varphi_t)_{t\geq 0}$ under $P_{(e,\varphi)}^{h_0}$ oscillates. Thus, by Theorem 2.1 and by Theorem 2.1 in Jacka et al. (2005), $P_{(e,\varphi)}^{h_0,h_r^0}$ denotes the law of $(X_t,\varphi_t)_{t\geq 0}$ under $P_{(e,\varphi)}^{h_0}$ conditioned on $\{H_0 = +\infty\}$, and for any $t \geq 0$ and $A \in \mathcal{F}_t$,

$$P_{(e,\varphi)}^{h_0,h_r^0}(A) = \lim_{y \to \infty} P_{(e,\varphi)}^{h_0}(A|H_y < H_0) = \lim_{T \to \infty} P_{(e,\varphi)}^{h_0}(A|H_0 > T).$$

We summarize the results in this section: in the negative drift case, making the *h*-transform of the process $(X_t, \varphi_t, t)_{t\geq 0}$ with the function $h_0(e, \varphi) = e^{-\alpha_0 \varphi} e^{-\beta_0 \varphi} g_0(e)$ yields the probability measure $P_{(e,\varphi)}^{h_0}$ such that $(X_t)_{t\geq 0}$ under $P_{(e,\varphi)}^{h_0}$ is Markov and that $(\varphi_t)_{t\geq 0}$ under $P_{(e,\varphi)}^{h_0}$ oscillates. Then the law of $(X_t, \varphi_t)_{t\geq 0}$ under $P_{(e,\varphi)}^{h_0}$ conditioned on the event $\{H_0 = +\infty\}$ is equal to $P_{(e,\varphi)}^{h_0,h_v^n} = P_{(e,\varphi)}^{h_v^n}$. On the other hand, by Theorem 2.2 in Jacka et al. (2005), under the condition that all non-zero eigenvalues of the matrix $V^{-1}Q^0$ are simple, $P_{(e,\varphi)}^{h_v^n}$ is the limiting law as $T \to +\infty$ of the process $(X_t, \varphi_t)_{t\geq 0}$ under $P_{(e,\varphi)}^{h_v^n}$ conditioned on $\{H_0 > T\}$. Hence, under the condition that all non-zero eigenvalues of the matrix $V^{-1}Q^0$ are simple, the diagram in Figure 2 commutes.

References

- [1] Aczel, J. (1966) Lectures on functional equations and their applications. Academic Press, New York.
- [2] Bertoin, J. and Doney, R. A. (1994). On conditioning a random walk to stay nonnegative. Ann. Prob. Vol. 22, No. 4, 2152-2167.
- [3] Jacka, S. D., Lazic, Z., Warren, J. (2005). Conditioning an additive functional of a Markov chain to stay non-negative I: survival for a long time. Submitted to J. Appl. Prob.

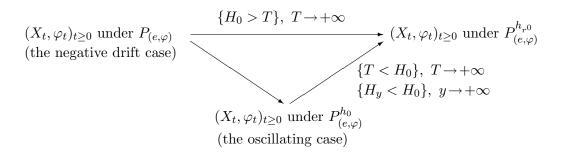


Figure 2: Conditioning of the process $(X_t, \varphi_t)_{t \ge 0}$ on the events $\{H_0 > T\}, T \ge 0$, in the negative drift case.

- [4] Najdanovic, Z. (2003). Conditioning a Markov chain upon the behaviour of an additive functional. PhD thesis, University of Warwick.
- [5] Seneta, E. (1981). Non-negative Matrices and Markov Chains. New York Heidelberg Berlin: Springer-Verlag.

Authors:

Saul D. Jacka, Department of Statistics, University of Warwick, Coventry, CV4 7AL, S.D.Jacka@warwick.ac.uk

Zorana Lazic, Department of Mathematics, University of Warwick, Coventry, CV4 7AL, Z.Lazic@warwick.ac.uk

Jon Warren, Department of Statistics, University of Warwick, Coventry, CV4 7AL, J.Warren@warwick.ac.uk