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Introduction

Goal: Parametric estimation in contaminated data

Huber’s ε-contamination model: Observations zi ∼ (1− ε)Pθ∗ + εQ,
where Q is arbitrary

Our method is also applied to heavy-tailed parametric estimation (no
contamination)
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Introduction

Traditional approach via M-estimators: Suppose

θ∗ = arg min
θ

Exi∼Pθ∗ [L(θ, xi )]︸ ︷︷ ︸
R(θ)

Use empirical risk minimizer

θ̂ ∈ arg min
θ

1

n

n∑
i=1

L(θ, zi ),

for appropriately defined L
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Alternative approach: Use “non-robust” L (e.g., based on
log-likelihood of Pθ) and robustify optimization procedure
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Previous work

Robust gradient descent algorithm (Prasad, Suggala, Balakrishnan,
and Ravikumar (2020)):

θt+1 = θt − ηg(θt),

where g(θt) is an estimate of ∇R(θt)
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Previous work

SEVER algorithm (Diakonikolas, Kamath, Kane, Li, Steinhardt, and
Stewart (2019)) uses an “approximate learner” algorithm which finds
approximately critical points

Iteratively filters out data points with outlying gradients computed at
θt , chosen by the approximate learner

Po-Ling Loh (University of Cambridge) Robust ERM via Newton’s method 11 Jan 2023 6 / 29



Previous work

Median-of-means minimization approach (Lecué, Lerasle, and Mathieu
(2020)) performs gradient descent by computing gradients w.r.t. a
median block (computed w.r.t. empirical mean of L) on each iterate

Derives excess risk bounds on final iterate
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Robust Newton’s method

We analyze a second-order version of Prasad et al. (2020), based on
Newton’s method:

θt+1 = θt − αtH(θt)
−1g(θt),

where (g(θt),H(θt)) are estimates of
(
∇R(θt),∇2R(θt)

)
and αt is a

step size

Benefit of second-order algorithm: faster convergence to optimum
(quadratic rather than linear convergence)
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Robust estimators: Huber contamination

Algorithm of Lai, Rao, and Vempala (2016) for multivariate mean
estimation
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Robust estimators: Huber contamination

For gradients, we treat vectors {∇L(θ, zi )}ni=1 as contaminated
samples from a distribution with mean ∇R(θ) ∈ Rp

For Hessians, we vectorize matrices {∇2L(θ, zi )}ni=1 and treat them as
contaminated samples from a distribution with mean ∇2R(θ) ∈ Rp×p
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Backtracking linesearch

Traditional Newton’s method analysis (e.g., Boyd and Vandenberghe
(2004)) involves picking step size αt using a linesearch algorithm

Robust version involves a slightly modified version of loss function
evaluation and introduction of error parameter

Set α = 1
while RobustEstimate({L(θ + α∆θnt , zi )}ni=1) >
RobustEstimate({L(θ, zi )}ni=1) + κ1αg(θ)∆θnt + ζ do

Update α = κ2α
end while

Newton direction is ∆θnt := −H(θt)
−1g(θt), contraction parameter

is κ2 ∈ (0, 1), and step size is output of backtracking algorithm
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Convergence guarantees

Assume population-level objective satisfies strong
convexity/smoothness:

mI � ∇2R(θ) � MI

(in a local region around θ∗)

Also assume ∇2R is L-Lipschitz

In traditional Newton’s method analysis, iterates decrease objective
by constant increments during damped Newton phase, then exhibit
fast convergence with step size αt = 1 (pure Newton phase)
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Convergence guarantees

Assume gradient/Hessian errors are small:

‖g(θt)−∇R(θt)‖2 ≤ αg‖θt − θ∗‖2 + βg ,

‖H(θt)−∇2R(θt)‖2 ≤ αh‖θt − θ∗‖2 + βh,

for all 1 ≤ t ≤ T

Also assume robust loss estimates are smaller than ζ
4 for all

evaluations of backtracking linesearch
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Convergence guarantees

Theorem (Pure Newton phase)

Suppose ‖∇R(θ0)‖2 < η(m, L). Then backtracking linesearch chooses
αt = 1 on all successive iterates, and ‖∇R(θt)‖2 < η and

‖θt − θ∗‖2 ≤
m

L

(
1

2

)2t

+ c(m, L)
(
O(αg + βg + αh + βh)

)
︸ ︷︷ ︸

ω

,

for all 1 ≤ t ≤ T.

For Huber contamination, parameters (αg , βg , αh, βh) will be
functions of ε (e.g., all are O(

√
ε) in GLMs)

Proper choice of ζ is also O(αg + βg + αh + βh)

After log log
(

1
ω

)
iterations (as opposed to log

(
1
ω

)
, for robust

gradient descent), error becomes O(ω)
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Convergence guarantees

Theorem (Damped Newton phase)

Suppose ‖∇R(θt)‖2 ≥ η(m, L). There exists some γ(m,M, L) > 0 such
that after a constant number of function evaluations, backtracking
linesearch chooses a step size such that

R(θt+1)−R(θt) < −γ(m,M, L).

Thus, number of iterates in damped Newton phase is upper-bounded
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Proof elements

At some level, “just add some error terms to usual Newton analysis”

In pure Newton phase, need to show backtracking linesearch still only
chooses αt = 1

In damped Newton phase, show backtracking linesearch still chooses
descent directions (in fact, R(θt+1)−R(θt) < −γ)

Although linesearch exit condition is

R(θt + α∆θt) ≤ R(θt)− καλ2(θt) + ζ,

can show lower bound on step size, leading to sufficient decrease

Also need to show that iterates lie in a ball around θ∗, in order to
obtain uniform upper bound on gradient/Hessian errors:

‖θt − θ∗‖2 ≤ γ0
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Heavy-tailed distributions

Can use same Newton’s method framework to obtain parameter
estimates for heavy-tailed data

Median-of-means algorithm of Minsker (2015)

Require: Samples S = {si}ni=1, Failure probability δ
1: function HeavyTailedEstimator(S = {si}ni=1, δ)
2: Set b = 1 + b3.5 log 1/δc, the number of buckets.
3: Partition S into b blocks B1, . . . ,Bb, each of size bn/bc.
4: for i = 1 . . . n do
5: µ̂i = 1

|Bi |

∑
s∈Bi

s.

6: end for

7: Set µ̂ = arg min
µ

b∑
i=1

‖µ− µ̂i‖2.

return µ̂.
8: end function
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Application to GLMs

Assume

Pθ∗(y |x) ∝ exp

(
yxT θ∗ − Φ(xT θ∗)

c(σ)

)
,

where Φ is the link function and

L(θ, (xi , yi )) = −yxT θ + Φ(xT θ)

is the negative log-likelihood

Assume regularity conditions on Φ (bounded derivatives and moments
of derivatives)

Assume bounded eighth moments of xi ’s
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Application to GLMs

Theorem (Huber contamination)

Suppose {zi}ni=1 are i.i.d. draws from a Huber ε-contaminated GLM.

Suppose n = Ω
(
p + εp2 + 1√

δ

)
. Then the robust Newton method with

T � log log
(

1
ε

)
returns an output satisfying

‖θT − θ∗‖2 = O
(
p2
√
ε log p

)
,

with probability at least 1− T ′δ

Under additional assumptions on the covariates (e.g., 4-wise
independence of coordinates), estimation error can be reduced to
O(
√
ε log p)
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Application to GLMs

In order to apply earlier theorem, need to determine (αg , βg , αh, βh)

Analysis of Lai et al. (2016) shows

‖g(θ)−∇R(θ)‖2 = O
(√
‖Cov(∇R(θ))‖2ε log p

)
Thus, we need bounds on ‖Cov(∇R(θ))‖2 (and similarly, on
‖Cov(flatten(∇2R(θ)))‖2)
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Application to GLMs

Theorem (Heavy-tailed distributions)

Suppse {zi}ni=1 are i.i.d. draws from a heavy-tailed distribution. Suppose
n = Ω

(
p2 log

(
1
δ

))
. Then the robust Newton method with

T � log log
(

n
p2

)
returns an output satisfying

‖θT − θ∗‖2 = O

(√
p2

n

)
,

with probability at least 1− T ′δ

Again, assuming 4-wise independence of coordinates of the covariates,

we can tighten the error bound to O
(√

p
n

)
Here, we can show that αg , βg , αh, βh = O

(
p2 log(1/δ)

n

)
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Conjugate gradient method

Alternative version of robust Newton’s method, inspired by Martens
(2010), approximates Hessian-vector products via finite differences:

∇2f (θ)v ≈ ∇f (θ + δv)−∇f (θ)

δ

Newton direction ∆θt (for population-level objective) satisfies
∇2R(θt)∆θt = −∇R(θt)
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Conjugate gradient method

Conjugate gradient algorithm (Wright & Nocedal (1999)) provides
iterative method for solving linear system Ax = b, where only
products of the form Av are required for updates

Set r0 = h∆θ(0) (θ) + g(θ)
Set p0 = −r0
for k = 1 to p − 1 do

Compute Hessian-vector product estimate,
hpk (θ) = HVProduct(θ, pk)

Set αk =
rTk rk

pT
k hpk (θ)

Set ∆θ(k+1) = ∆θ(k) + αkpk
Set rk+1 = rk + αkhpk (θ)

Set βk+1 =
rTk+1rk+1

rTk rk

Set pk+1 = −rk+1 + βk+1pk
end for

Po-Ling Loh (University of Cambridge) Robust ERM via Newton’s method 11 Jan 2023 23 / 29



Conjugate gradient method

Our idea: Run conjugate gradient algorithm to obtain approximate
Newton steps, so only robust gradient vector evaluations are required

(In practice, also need to choose parameter δ > 0 for finite difference
calculations)
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Conjugate gradient method: Theory?

Preceding analysis of robust Newton’s method only requires that
Newton directions satisfy

∇R(θt) = −∇2R(θt)∆θt + χt ,

where χt is a small, bounded error

We can also think of conjugate gradient method as providing a
direction that satisfies this approximate equation

However, we need to quantify propagation of errors through conjugate
gradient iterates, due to robust estimators/finite difference
approximation

This seems to be an open question in optimization . . .
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Conjugate gradient method: Theory?

Conjecture: Approximate conjugate gradient method may converge
geometrically to a small ball around true solution to linear system: If
Ax∗ = b, then

‖xs − x∗‖A ≤ 2κs‖x0 − x∗‖A + err

Taylor expansion implies optimal choice of δ would be Cε1/4, leading
to overall error rate of O(ε1/4) (possibly more widely applicable than
the robust Newton method, which gives O(ε1/2) error rate in
analyzable settings, e.g., GLMs)
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Contributions

Established framework of analysis for robust second-order
optimization algorithm for parameter estimation

Noisy analysis of backtracking linesearch succeeds in finding
approximate Newton directions

Proposed alternative robust Newton method based on conjugate
gradient method
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Open questions

Better robust matrix estimators

High-dimensional extensions

Theory for conjugate gradient version

Inexact Newton methods
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Reference

Ioannou, Pydi & Loh (2023). Robust empirical risk minimization via
Newton’s method. arXiv version coming soon.

Thank you!!
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