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Change Detection: Streaming Data

We define a data stream to be a sequence of random observations
x1, x2, . . . . We assume that these observations are:

◮ sequential

◮ unpredictable when and how they change

For convenience, we treat the observations as arriving at regularly
spaced intervals.

Goals:

◮ To detect changes in the data stream sequentially,

◮ Algorithm should restart and continue after a change

We are mainly interested in regime changes, such as
mean/variance change, e.g. N(0, 1) → N(2, 1)



Control Charts
A control chart consists of points z1, z2, . . . representing a
statistic and control limits a, b, where a < b. When

◮ zk ∈ (a, b) ⇒ process is in-control

◮ zk 6∈ (a, b) ⇒ process is out-of-control
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We call τ the changepoint of the data stream if

◮ zτ 6∈ (a, b), but

◮ zk ∈ (a, b) for all k < τ
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CUSUM (Page, 1954)

Parameters chosen: d ,B

Observations: x1, x2 . . . , with E[xk ] = µ and Var[xk ] = σ2.

To detect an increase in the mean, define:

Tk = xk − µ+ dσ

⇒ E[Tk ] = dσ

Now define the CUSUM:

S0 = 0

Sk+1 = max{0, Sk + Tk+1}

A change is detected when:

Sk > Bσ



EWMA (Roberts, 1959)

Parameters chosen: r , L, (L = 3, usually)

Observations: x1, x2 . . . , as before.

To detect an increase in the mean, define:

z0 = µ

zk = rxk + (1− r)zk−1, k > 0

It can be shown that the standard deviation of zk is

σzk =

√

r

2− r

[

1− (1− r)2k
]

σ

A change is detected when:

zk > µ+ Lσzk



Review of CUSUM and EWMA

Although both CUSUM and EWMA are excellent sequential
change-detection algorithms, we would like an algorithm that:

◮ does not require knowledge of the parameters of the
underlying distributions

◮ does not require a “subjective” choice of free parameters
◮ CUSUM needs (d ,B), EWMA needs (r , L)

◮ can operate well on a stream; does not require/learns new
parameters after a change
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Performance Measures: Average Run Length (ARL)

ARL0: average number of observations until a false alarm.
ARL1: average delay in detecting a changepoint.

We would like our algorithm to have:

◮ High ARL0

◮ Low ARL1
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Tracking the mean

Suppose we want to monitor a stream x1, x2, . . . , xN , . . . .

We could calculate the mean x̄N of the first N observations as

x̄N =
1

N

N
∑

k=1

xk (1)

Or, we could calculate it sequentially as

mk = mk−1 + xk , m0 = 0 (mass) (2)

wk = wk−1 + 1, w0 = 0 (weight) (3)

x̄N =
mN

wN

(mean) (4)

However, this formulation gives equal importance (weight) to
each observation.



Calculating the mean: Forgetting Factor

We introduce an exponential forgetting factor λ ∈ [0, 1], and
calculate the forgetting factor mean x̄N,λ

x̄N,λ =
1

wN,λ

N
∑

k=1

λN−kxk (5)

where

wN,λ =

N
∑

k=1

λN−k (6)

Example: N = 3 and λ = 0.9:

x̄3,λ =

[

(0.9)2x1 + (0.9)x2 + x3

]

· 1

w3,λ

w3,λ = (0.9)2 + (0.9) + 1



Forgetting Factor Mean

In general:

x̄N,λ =
1

wN,λ

[

(

λN−1
)

x1 +
(

λN−2
)

x2 + · · ·+
(

λ
)

xN−1 + xN

]

The extreme cases of λ = 1 and λ = 0:

◮ when λ = 1, x̄N,λ = x̄N (unweighted mean, no forgetting)

◮ when λ = 0, x̄N,λ = xN (last observation, forgets everything)

The forgetting factor λ ∈ (0, 1):

◮ downweights early observations (x1, x2, . . . ), and therefore

◮ more weight on recent observations (. . . , xN−1, xN)



Forgetting Factor Mean

We can also define x̄N,λ sequentially as:

mk,λ = λmk−1,λ + xk , m0,λ = 0 (mass)

wk,λ = λwk−1,λ + 1, w0,λ = 0 (weight)

x̄N,λ =
mN,λ

wN,λ

(mean)

Compared to the unweighted mean from before:

mk = mk−1 + xk , m0 = 0 (mass)

wk = wk−1 + 1, w0 = 0 (weight)

x̄N =
mN

wN

(mean)



Plots of the forgetting factor mean x̄N,λ

Forgetting factor mean for different values of λ
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Control chart for x̄N,λ: assuming normality

If x1, x2, . . . , xN ∼ N(µ, σ2), then

x̄N,λ ∼ N(µ, (uN,λ)σ
2) (7)

where uN,λ is a function of N and λ.

We can then calculate a confidence interval (a, b) for x̄N,λ

(quantile function of normal distribution). Then

◮ x̄N,λ ∈ (a, b) ⇒ in-control

◮ x̄N,λ 6∈ (a, b) ⇒ out-of-control
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How do we choose forgetting factor λ?

What value should we choose for λ? 0.9? 0.95? 0.8?

Same situation as CUSUM or EWMA: need to subjectively choose
a parameter λ.

One approach: instead of having a fixed forgetting factor λ, we use

a forgetting factor
−→
λ that changes after every observation

−→
λ = (λ1, λ2, . . . , λN , . . . )



Adaptive Forgetting Factor Mean x̄
N,

−→
λ

We then define the adaptive forgetting factor (AFF) mean x̄
N,

−→

λ
as

m
N,

−→

λ
= λN−1mN−1,

−→

λ
+ xN , m

0,
−→

λ
= 0 (8)

w
N,

−→

λ
= λN−1wN−1,

−→

λ
+ 1, w

0,
−→

λ
= 0

x̄
N,

−→

λ
=

m
N,

−→

λ

w
N,

−→

λ

There are non-recursive definitions, e.g.

m
N,

−→

λ
=

N
∑

k=1

[

(

N−1
∏

p=k

λp

)

xk

]

(9)



Adaptive Forgetting Factor Mean
−→
λ

To clarify the difference, below are:

The fixed forgetting factor (FFF) mean x̄3,λ:

x̄3,λ =
1

w3,λ

[

λ2x1 + λx2 + x3
]

(10)

The AFF mean x̄
3,
−→

λ
:

x̄
3,
−→

λ
=

1

w
3,
−→

λ

[

λ2λ1x1 + λ2x2 + x3
]

(11)



Control chart: Assuming normality

As before, if x1, x2, . . . , xN ∼ N(µ, σ2), then

x̄
N,

−→

λ
∼ N(µ, (u

N,
−→

λ
)σ2) (12)

where u
N,

−→

λ
is defined recursively.

Again, we calculate a confidence interval (a, b) for x̄
N,

−→

λ
, and

◮ x̄
N,

−→

λ
∈ (a, b) ⇒ in-control

◮ x̄
N,

−→

λ
6∈ (a, b) ⇒ out-of-control



Updating
−→
λ : λN → λN+1

We update our AFF λN → λN+1 in three steps:

1. Choose a cost function CN+1 we would like to minimize, e.g.

CN+1 = [xN+1 − x̄
N,

−→

λ
]2 (13)

2. Find ∂

∂
−→

λ
CN+1 (later)

3. Update
−→
λ :

λN+1 = λN − η
∂

∂
−→
λ
CN+1 (14)

(One-step gradient descent, η << 1)



Adaptive Forgetting Factor: one simulation
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Adaptive Forgetting Factor: on average
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Plots of x̄N,λ and x̄
N,

−→
λ

Forgetting factor mean for different values of λ
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Everything is sequential!

There are sequential update equations for

◮ x̄
N,

−→

λ
, the AFF mean,

◮ u
N,

−→

λ
, (used for the confidence interval of normal x̄

N,
−→

λ
),

◮
∂

∂
−→

λ
x̄
N,

−→

λ
, (long derivation), and therefore

◮
∂

∂
−→

λ
F (x̄

N,
−→

λ
), for some function F ,

e.g. F (x̄
N,

−→

λ
) = [xN+1 − x̄

N,
−→

λ
]2
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Experiments and Results

Usual comparison: fix ARL0 and then compare ARL1.

Instead, we are just trying to show that the pairs are roughly
comparable - the advantage of the FF methods is that they will
not rely (too much) on chosen parameters.

Algorithm Parameters Values ARL0 ARL1

CUSUM (d , B) (0.25, 8) 382.17 2.97
EWMA (r , L) (0.2, 3) 618.09 2.40
FFF (λ, p) (0.95, 0.99) 488.67 3.41
AFF (η, p) (0.01, 0.99) 761.53 3.74

Table: ARL0: number of observations = 100000, ARL1: 10000 runs of
N(0, 1) → N(3, 1) at τ = 50

Note: p = 0.99 indicates we are using a 99% confidence interval.



Related aspects

◮ Combining AFF and FFF: tuned forgetting factor
◮ using a burn-in period and the AFF algorithm to tune fixed λ

◮ Forgetting factor variance

◮ Non-parametric – Chebyshev’s Inequality



Future Work

◮ Self-starting/unsupervised restarting
◮ Estimation of parameters (µ, σ2) during burn-in
◮ Non-parametric methods

◮ Multivariate case

◮ AFF - different cost functions, choice of η
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Derivatives with respect to
−→
λ

Sequential definition of m
N,

−→

λ
:

m
N,

−→

λ
= λN−1mN−1,

−→

λ
+ xN (15)

Non-recursive definition of m
N,

−→

λ

m
N,

−→

λ
=

N
∑

k=1

[

(

N−1
∏

p=k

λp

)

xk

]

(16)

We consider an ǫ-perturbation around
−→
λ :

m
N,

−→

λ+ǫ
=

N
∑

k=1

[

(

N−1
∏

p=k

(

λp + ǫ
)

)

xk

]

(17)

and define

∂

∂
−→
λ
m

N,
−→

λ
= lim

ǫ→0

1

ǫ

[

m
N,

−→

λ+ǫ
−m

N,
−→

λ

]

(18)

using “first principles”.



Derivatives with respect to
−→
λ

Main part is to show

m
N,

−→

λ+ǫ
=

N
∑

k=1

[

(

N−1
∏

p=k

(

λp + ǫ
)

)

xk

]

= m
N,

−→

λ
+ ǫ∆

N,
−→

λ
+ O(ǫ2) (19)

Then

∂

∂
−→
λ
m

N,
−→

λ
= lim

ǫ→0

1

ǫ

[

m
N,

−→

λ+ǫ
−m

N,
−→

λ

]

= lim
ǫ→0

[

∆
N,

−→

λ
+ O(ǫ)

]

= ∆
N,

−→

λ

follows easily.



Derivatives with respect to
−→
λ

We can define ∂

∂
−→

λ
m

N,
−→

λ
sequentially:

∆
N,

−→

λ
=

∂

∂
−→
λ
m

N,
−→

λ

∆
1,
−→

λ
= 0

∆
N+1,

−→

λ
= λN∆N,

−→

λ
+m

N,
−→

λ
(20)

Similar for ∂

∂
−→

λ
w
N,

−→

λ
.

With sequential equations for the derivatives of m
N,

−→

λ
and w

N,
−→

λ
,

we get sequential equations for

∂

∂
−→
λ
x̄N =

∂

∂
−→
λ

[m
N,

−→

λ

w
N,

−→

λ

]



Using Chebyshev’s inequality

Suppose X is a random variable with known expected value
µ = E[X ] and variance σ2 = Var[X ]. Then for any real number
k > 0 we have Chebyshev’s inequality

Pr
(

|X − E[X ]| ≥ kσ
)

≤ 1

k2
. (21)

Stream x1, x2, . . . , with E[xk ] = µ, Var[xk ] = σ2.

For a 99% confidence interval for x̄N,λ, choose k = 10
√
2 to get

C =
(

µ− 10
√
2σ

√

(uN,λ), µ+ 10
√
2σ

√

(uN,λ)
)


