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1-D signal (example)
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1-D signal (example): Find abrupt changes in the mean
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Estimation rather than identification

Fact:
With finite sample, it is
impossible to recover
change-point in noisy regions.
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Purpose:

Estimate the regression function.

Idea:

−→ Without too strong noise, recover true change-points.
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Example 1: Changes in the distribution

Description:

Observations generated along the time.

Observation distribution is piecewise constant along the time.

Observations have the same mean and variance.

−→ Detecting changes in the mean and variance is useless.
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Example 2: Working with non-vectorial objects

Description:

Video sequences from “Le grand échiquier”, 70s-80s French
talk show.
At each time, one observes an image (high-dimensional).
Each image is summarized by a histogram.
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Example 2: Working with non-vectorial objects

Preprocessing images
(patches in yellow).

Each histogram bin
corresponds to a patch.

Non-vectorial object:
Histograms with D bins belong to{

(p1, . . . , pD) ∈ [0, 1]D ,
∑D

i=1 pi = 1
}

.

−→ Algorithms for vectorial data are useless.
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Detect abrupt changes. . .

General purposes:

1 Detect changes in the whole distribution (not only in the
mean)

2 High-dimensional data of different nature:

Vectorial: measures in Rd , curves (sound recordings,. . . )
Non vectorial: phenotypic data, graphs, DNA sequence,. . .
Both vectorial and non vectorial data.

3 Efficient algorithm allowing to deal with large data sets
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Kernel and Reproducing Kernel Hilbert Space (RKHS)

X1, . . . ,Xn ∈ X : initial observations.

k(·, ·) : X × X → R: reproducing kernel (H: RKHS).

φ(·) : X → H s.t. φ(x) = k(x , ·): canonical feature map.

< ·, · >H: inner-product in H.

Asset:

Enables to work with high-dimensional heterogeneous data.
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Model

Mapping of the initial data

∀1 ≤ i ≤ n, Yi = φ(Xi ) ∈ H .

−→ (t1,Y1), . . . , (tn,Yn) ∈ [0, 1]×H : independent .

Mean element
The mean element of PXi

(distribution of Xi ) is µ?i :

< µ?i , f >H= EXi
[< φ(Xi ), f >H ] , ∀f ∈ H .

Fact:
With characteristic kernels,

PXi
6= PXj

⇒ µ?i 6= µ?j .
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Model

∀1 ≤ i ≤ n, Yi = µ?i + εi ∈ H ,
where

µ?i ∈ H: mean element of PXi
(distribution of Xi )

∀i , εi := Yi − µ?i , with Eεi = 0, vi := E
[
‖εi‖2

H

]
.

Assumptions

1 maxi ‖Yi‖H ≤ M a.s. (Db) .

2 maxi vi ≤ vmax (Vmax) .

3 µ? = (µ?1, . . . , µ
?
n)′ ∈ Hn: piecewise constant.

‖µ? − µ‖2 :=
∑n

i=1 ‖µ?i − µi‖
2
H.

Goal: −→ Estimate µ? to recover change-points.
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Model selection

Models:

Mn = {m, segmentation of {1, . . . , n}}, Dm = Card(m).

Sm = {µ : (t1, . . . , tn)→ H, piecewise const. on (Iλ)λ∈m},
(Iλ)λ∈m: I1 = [0, tλ1 ], I2 =]tλ1 , tλ2 ], . . . , IDm =]tλDm−1

, 1].

Strategy:

(Sm)m∈Mn −→ (µ̂m)m∈Mn −→ µ̂m̂ ???

Goal:
Oracle inequality (in expectation, or with large probability):

‖µ? − µ̂m̂‖2 ≤ C inf
m∈Mn

{
‖µ? − µ̂m‖2

}
+ rn .
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Least-squares estimator

Empirical risk minimizer over Sm (= model):

µ̂m ∈ arg min
u∈Sm

1

n

n∑
i=1

‖u(ti )− Yi‖2
H

(
=: arg min

u∈Sm
Pnγ(u)

)
.

Regressogram:

µ̂m =
∑
λ∈m

β̂λ1Iλ β̂λ =
1

Card {ti ∈ Iλ}
∑
ti∈Iλ

Yi .
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Choose D − 1 change-points. . .

Assumption: (Harchaoui, Cappé (2007))

The number D − 1 of change-points is known.

Strategy:

Choose m̂(D) among {m ∈Mn, Dm = D}.

ERM algorithm:

m̂(D) = m̂ERM(D) = Argminm|Dm=D ‖Y − µ̂m‖
2 .

(dynamic programming).
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Quality of the segmentations
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Elementary calculations

Expectations (vλ = 1
Card(λ)

∑
i∈λ vi )

E
[
‖µ? − µ̂m‖2

]
= ‖µ? − Πmµ

?‖2 +
∑
λ∈m

vλ ,

E
[
‖Y − µ̂m‖2

]
= ‖µ? − Πmµ

?‖2−
∑
λ∈m

vλ + Cste ,

(Πm: orthog. proj. operator onto Sm).

Conclusion:

−→ ERM prefers models with large
∑

λ∈m vλ (overfitting).
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Overfitting illustration
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Choose the number of change-points

From
{
µ̂m̂D

}
D

, choose D amounts to choose the “best model”.
Ideal penalty:

m∗ ∈ Argminm∈M ‖µ? − µ̂m‖
2 (oracle segmentation)

= Argminm∈M

{
‖Y − µ̂m‖2 + penid(m)

}
,

with penid(m) := 2 ‖Πmε‖2 − 2 < (I − Πm)µ?, ε >.
Strategy

1 Concentration inequalities for linear and quadratic terms.

2 Derive a tight upper bound pen ≥ penid with high probability.

Previous work:
Birgé, Massart (2001): Gaussian assump. + real valued functions.
−→ cannot be extended to Hilbert framework.
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Concentration of the linear term

Theorem (Linear term)

Let us consider a segmentation m and assume (Db)− (Vmax)
hold true. Then for every x > 0 with probability at least 1− 2e−x ,

|< Πmµ
? − µ?, ε >| ≤ θ ‖Πmµ

? − µ?‖2 +

(
vmax

θ
+

4M2

3

)
x ,

for every θ > 0.

Kernel change-point detection Alain Celisse



17/24

Intro. Framework Which change-points? (D known) How many change-points? Empirical assessment

Concentration of the quadratic term

Theorem (Quadratic term)

Assuming (Db)-(Vmax), and

∃κ ≥ 1, 0 <
M2

κ
≤ min

i
vi (Vmin)

for every m ∈Mn, x > 0, and θ ∈ (0, 1],∣∣∣‖Πmε‖2 − E
[
‖Πmε‖2

]∣∣∣ ≤ θE [ ‖Πmµ
? − µ̂m‖2

]
+ θ−1L(κ)vmaxx ,

with probability at least 1− 2e−x , where L(κ) is a constant.

Idea of the proof:

Pinelis-Sakhanenko’s inequality (
∥∥∑

i∈λ εi
∥∥
H).

Bernstein’s inequality (upper bounding moments)
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Oracle inequality

Theorem

Let us assume (Db)-(Vmin)-(Vmax) and for every x > 0, define

m̂ ∈ Argminm

{
‖Y − µ̂m‖2 + pen(m)

}
,

where pen(m) = vmaxDm

[
C1 ln

(
n
Dm

)
+ C2

]
for constants

C1,C2 > 0. Then, there exists an event of probability larger than
1− 2e−x on which

‖µ? − µ̂m̂‖2 ≤ ∆1 inf
m

{
‖µ? − µ̂m‖2 + pen(m)

}
+ ∆2 ,

where ∆1 ≥ 1 and ∆2 > 0 is a remainder term.

Rk:
In Birgé, Massart (2001), pen(m) = σ2Dm

[
c1 ln

(
n
Dm

)
+ c2

]
.
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Model selection procedure

Penalty:

pen(m) = vmaxDm

[
C1 ln

(
n

Dm

)
+ C2

]
= pen(Dm) .

Algorithm

1 For every 1 ≤ D ≤ Dmax,

m̂D ∈ Argminm, Dm=D

{
‖Y − µ̂m‖2

}
,

2 Define

D̂ = ArgminD

{∥∥Y − µ̂m̂D

∥∥2
+ vmaxD

[
C1 ln

( n

D

)
+ C2

]}
.

where C1,C2: computed by simulation experiments.
3 Final estimator:

µ̂m̂ := µ̂m̂
D̂

.
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Changes in the distribution (synthetic data)

Description:

1 n = 1 000, D∗ = 4, Nrep = 100.

2 In each segment, observations generated according to one
distribution within a pool of 10 distributions with same mean
and variance.

3 Our kernel based approach enables to distinguish them (higher
order moments)
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Changes in the distribution (synthetic data) (Cont’.)

Results
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“Le grand échiquier”, 70s-80s French talk show

Audio and video recordings.

Audio: different situations can be distinguished from sound
recordings (music, applause, speech,. . . ).

Video: different video scenes can be distinguished by their
backgrounds or specific actions of people (clapping hands,
discussing,. . . ).
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Video sequence

Description:

n = 10 000, D∗ = 4.

Each image summarized by a histogram with 1 024 bins.

χ2 kernel: kd(x , y) =
∑d

i=1
(xi−yi )2

xi+yi
·

Results:

Kernel change-point detection Alain Celisse
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Concluding remarks

Open questions:

1 Relax the assumption on the variance.

2 Use resampling strategies (hetoroscedasticity).

3 Influence of the choice of kernel.

Preprint:

ArXiv

http://www.math.univ-lille1.fr/~celisse/

Thank you!
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Sketch of proof

1 ‖Πmε‖2 =
∑

λ∈m
1
nλ

∥∥∑
i∈λ εi

∥∥2

H =
∑

λ∈m Tλ.

2

{∥∥∑
i∈λ εi

∥∥2

H

}
λ∈m

are independent r.v. .

3 Bernstein’s inequality to ‖Πmε‖2 (?).

4 For every q ≥ 2, upper bound of E
[

T q
λ

]
.

5 Pinelis-Sakhanenko’s inequality on
∥∥∑

i∈λ εi
∥∥
H:

∀x > 0, P

∥∥∥∥∥∑
i∈λ

εi

∥∥∥∥∥
H

> x

 ≤ 2 exp

[
− x2

2
(
σ2
λ + bλx

) ] ,

with bλ = 2M/3 and σ2
λ =

∑
i∈λ vi .
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Bernstein rather than Talagrand

Talagrand’s inequality
‖Πmε‖ = supf ∈Bn

< f ,Πmε >= supf ∈Bn

∑n
i=1 < fi , (Πmε)i >H

P
[
‖Πmε‖ ≤ E [ ‖Πmε‖ ] +

√
2vx +

b

3
x

]
,

with v =
∑n

i=1 supf E
(
< fi , (Πmε)i >

2
H
)

+ 16bE [ ‖Πmε‖ ].

Bernstein’s inequality

σ2 = sup
f

n∑
i=1

E
(
< fi , (Πmε)i >

2
H
)

= E
[
‖Πmε‖2

]
.
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