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1-D signal (example)
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Intro.
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1-D signal (example): Find abrupt changes in the mean
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Intro.
oe

Estimation rather than identification

. - = =signal:Y |]
= Reg. func. s

Fact:

With finite sample, it is
impossible to recover
change-point in noisy regions.

Purpose:
Estimate the regression function.
Idea:

— Without too strong noise, recover true change-points.
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Intro.
0

Example 1: Changes in the distribution

| =
=

@ Observations generated along the time.

Description:

o Observation distribution is piecewise constant along the time.

@ Observations have the same mean and variance.

— Detecting changes in the mean and variance is useless.
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Intro.
(o] )

Example 2: Working with non-vectorial objects

music applause speech

Description:
o Video sequences from “Le grand échiquier”, 70s-80s French
talk show.
@ At each time, one observes an image (high-dimensional).
o Each image is summarized by a histogram.
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Intro.
(o] )

Example 2: Working with non-vectorial objects

@ Preprocessing images
(patches in yellow).

@ Each histogram bin
corresponds to a patch.

Non-vectorial object:
Histograms with D bins belong to

(p1,.-.,pp) €[0,1]°, ZiDzlp,-:l .
{

— Algorithms for vectorial data are useless.
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Detect abrupt changes. ..

General purposes:

@ Detect changes in the whole distribution (not only in the
mean)

@ High-dimensional data of different nature:

o Vectorial: measures in R9, curves (sound recordings,. .. )
o Non vectorial: phenotypic data, graphs, DNA sequence,. ..
e Both vectorial and non vectorial data.

© Efficient algorithm allowing to deal with large data sets
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Framework
L o]

Kernel and Reproducing Kernel Hilbert Space (RKHS)

o Xi,..., X, € &X: initial observations.

® k(-,-): X x X — R: reproducing kernel (#: RKHS).

o ¢(-): X = H s.t. ¢(x) = k(x,-): canonical feature map.
@ < -, - >y inner-product in H.

T OX)=k( , X)

X
—
(0]
(original space) ~ Mapping to
a Hilbert space / RKHS

Asset:

Enables to work with high-dimensional heterogeneous data.
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Model

Mapping of the initial data

Vi<i<n, Y.=¢(X)EH .

— (t1, Y1), ..., (tn, Yn) € [0,1] x H : independent .
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Framework
oe®

Model

Mapping of the initial data

Vi<i<n, Y.=¢(X)EH .

— (t1, Y1), ..., (tn, Yn) € [0,1] x H : independent .

Mean element
The mean element of Px. (distribution of X;) is u’:

<:U’77 f>’}.[:EX,-[<¢(X,‘), f>7'l]7 VfeH .

Fact:
With characteristic kernels,

Px. # Px; = i #uj
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oe®

V1<i<n, Yi=ur+e €H,
where

e uF € H: mean element of Py, (distribution of X;)
o Vi, g =Y;—u, with Eg =0, v;:=E [He,”i]
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Framework
oe®

V1<i<n, Yi=ur+e €H,
where

e uF € H: mean element of Py, (distribution of X;)

o Vi, g =Y;—u, with Eg =0, v;:=E [He,”i]
Assumptions

o max; || Yill, <M as. (Db).

Q max; Vi < Vmax (Vmax) .
Q@ = (u3,...,u5) € H" piecewise constant.
2 2
[l = pll™ o= 22 M7 = milly

Goal: — Estimate p* to recover change-points.
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Model selection

Models:
e M, = {m, segmentation of {1,...,n}}, D, = Card(m).

© Spy={p: (t1,...,ts) = H, piecewise const. on (/\)rxem},
(I)\))\Em: h = [0, t)\1]7 > :]t)\l, t)\2], ceey /Dm :]t)\Dm—l’ 1]

Strategy:

(Sm)mem, —  (Bm)mem, —> Bm 77
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Framework
L 1)

Model selection

Models:
e M, = {m, segmentation of {1,...,n}}, D, = Card(m).

o Spy={p: (t1,...,ty) = H, piecewise const. on (I\)rem},
(I)\))\Em: h = [0, t)\1]7 > :]t)\l, t)\2], ceey /Dm :]t)\Dm—l’ 1]

Strategy:
(Sm)mem, —  (Bm)mem, —> Bm 77

Goal:
Oracle inequality (in expectation, or with large probability):

It = fimll? < € inf {llu* = finl*} + 1o
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Framework
oe

L east-squares estimator

e Empirical risk minimizer over S,, (= model):
i € arg min 2 " Ju(e) — il (= arg min Pro()
rg min — u(t)) =Y =: arg min u)|.
Him = 218 B P 7 Saes, "
@ Regressogram:

Iim=> Al B Y;.
fm=2 Bl b= Card{t,eb\}z

AEM tiely
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Which change-points? (D known)
[ leJele]

Choose D — 1 change-points. . .

Assumption: (Harchaoui, Cappé (2007))

The number D — 1 of change-points is known.

Strategy:
Choose m(D) among {m € M,, D, = D}.
ERM algorithm:
m(D) = mprm(D) = Argming, p _p ||V — fiml®

(dynamic programming).
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Which change-points? (D known)
[e] Tele]

Quality of the segmentations

0451 o

04r =
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Which change-points? (D known)
[e]e] o]

Elementary calculations

Expectations (va = 7(;3&» Diea Vi)

E |l = fimll? ] = " = Mg [P+ 3" v

AEM

E Y = fimll | = " = Mo 2= 3" v + Cte
AEM

(M,: orthog. proj. operator onto Sp,).

Conclusion:

— ERM prefers models with large >, va (overfitting).
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Which change-points? (D known)
[e]e]e] )

Overfitting illustration
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Emp. ri
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How many change-points?
@00

Choose the number of change-points

From {ﬁﬁ,D}D, choose D amounts to choose the “best model” .
Ideal penalty:

m* € Argmin,,c v, ||0* — fim||>  (oracle segmentation)

= Argminger {[|Y  fim” + penig(m) | .

with  penyg(m) := 2|[Mpmel®> =2 < (I = Np)ut, & >.
Strategy

© Concentration inequalities for linear and quadratic terms.

@ Derive a tight upper bound pen > pen;y with high probability.
Previous work:

Birgé, Massart (2001): Gaussian assump. + real valued functions.
— cannot be extended to Hilbert framework.
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How many change-points?
(o] le}

Concentration of the linear term

Theorem (Linear term)

Let us consider a segmentation m and assume (Db) — (Vmax)
hold true. Then for every x > 0 with probability at least 1 — 2e™*

7

4M?
< Mot — i, & | < O Mapt* — |2 + ("’ i —) .

0 3

for every 6 > 0.
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How many change-points?
[efe] ]

Concentration of the quadratic term

Theorem (Quadratic term)
Assuming (Db)-(Vmax), and

M2
dk>1, 0<— <miny; (Vmin)
K i

for every m € M,, x >0, and 0 € (0, 1],

IMmel® = E [ Imell? ]| < OF [ 1Mmse* = Bonll* | + 072 L) v

X

with probability at least 1 — 2e™, where L(k) is a constant.

Idea of the proof:
@ Pinelis-Sakhanenko's inequality (HZ;@\ €iHH)-

@ Bernstein's inequality (upper bounding moments)
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How many change-points?
D00@0

Oracle mequallty

Let us assume (Db)-(Vmin)-(Vmax) and for every x > 0, define
N . 1
m € Argmin,, {H Y — Um|* + pen(m)} :

where pen(m) = Va5 D [Cl In ( ) -+ C2:| for constants

Ci1, G > 0. Then, there exists an event of probability larger than
1 —2e* on which

I = Tl < Aainf {1w* = fim|* + pen(m) | + Az

where A1 > 1 and As > 0 is a remainder term.

Rk:
In Birgé, Massart (2001), pen(m) = 02D, {cl In ( ) + Cz]
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How many change-points?
oe

Model selection procedure

Penalty:

pen(m) = VimaxDim [cl In (D”) + Cz] = pen(Dp)

m

Algorithm
@ For every 1 < D < Dpax,

mp € Argmin,, p _p {HY - ﬁmHZ} ;
@ Define
D = Argming {||Y = imy > + vimaxD | G In (5 ) + & ] }

where Ci, C;: computed by simulation experiments.
© Final estimator:

L = -
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Empirical assessment
[ o]

Changes in the distribution (synthetic data)

Description:

@ n=1000, D* =4, N, = 100.

@ In each segment, observations generated according to one
distribution within a pool of 10 distributions with same mean
and variance.

@ Our kernel based approach enables to distinguish them (higher
order moments)

ALAIN CELISSE
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Empirical assessment
oe

Changes in the distribution (synthetic data) (Cont’.)

Results
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Empirical assessment
[ ele}

“Le grand échiquier”, 70s-80s French talk show

music applause speech

@ Audio and video recordings.

@ Audio: different situations can be distinguished from sound
recordings (music, applause, speech,...).

@ Video: different video scenes can be distinguished by their
backgrounds or specific actions of people (clapping hands,
discussing,. . .).
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Empirical assessment
(o] lo}

Video sequence

Description:
e n=10000, D* = 4.

@ Each image summarized by a histogram with 1024 bins.
o \? kernel: ka(x,y) =20, %

Results:
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Empirical assessment
ooe

Concluding remarks

Open questions:
© Relax the assumption on the variance.
@ Use resampling strategies (hetoroscedasticity).

@ Influence of the choice of kernel.

Preprint:

o ArXiv
@ http://www.math.univ-1lillel.fr/~celisse/

Kernel change-point detection ArLAIN CEI


http://www.math.univ-lille1.fr/~celisse/

Empirical assessment
ooe

Concluding remarks

Open questions:
© Relax the assumption on the variance.
@ Use resampling strategies (hetoroscedasticity).

@ Influence of the choice of kernel.

Preprint:

o ArXiv
@ http://www.math.univ-1lillel.fr/~celisse/

Thank you!
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Sketch of proof

2 1 2
o |||_|m6” = ZAGm N HZI'E/\ eiHH = Z)xem TA'
2 .
(2] {HZieA 6,-”7_[})\@) are independent r.v. .
@ Bernstein’s inequality to |[Mmel® ().
@Q For every g > 2, upper bound of E [ T;\’].

@ Pinelis-Sakhanenko's inequality on HZIGA Ej

D

i€

%

2
> gzexp[_X]

v 0, P
x> 2(0§+b,\x)

H
with by =2M/3 and 0% = >, vi.
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Bernstein rather than Talagrand

Talagrand’s inequality
IMmell = suprep, < f,Mme >= suprep, 2.1y < fi, (Mme);

]

>H
b
B Inell < ECIel 1+ V2 + 2]
with v =37, sup;E (< i, (Mme); >32,) + 16bE [ ||[Mmel|].

Bernstein's inequality

n
o2 = sn;pZE (< £, (Mme); >2) =E [||nms|y2} .
i=1
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