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lllustrative Example

Can you spot any unusual observations?
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lllustrative Example

Auto-PARMO=Auto-Piecewise AutoRegressive Modeling Outlier

10

Misclassified as
AO

(]

0 100 200 300 400 500

time

T,=051 1,=151 T4 = 252

Warwick Mar 2012

5 AOs
010s




lllustrative Example

The series w/o any outlier effects—structural breaks easier to identify
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A Second Example

Weekly data: January 2004--December 2011.

Any breaks? Outliers?
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time
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Game Plan

» Introduction
» Piecewise Models (AR, GARCH, SV, State-space)
» Model selection using Minimum Description Length (MDL)
e General principles
e Application to AR models with breaks
» Optimization using a Genetic Algorithm
* Basics
» Simulation Examples
» Applications
» Comments about theory for AutoPARM
e Consistency (FLIL)
» AutoPARM with Outliers
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Piecewise Models—examples

1. Piecewise AR model:

}/t:y] + jlYt—l+.”+ ]ijt—pj—'_ngt’ |ij_1St<Tj,

where tp=1<1,<...<1,<Thy =N, and {g} is lID(0,1).
Goal: Estimate

m = number of change-points

t; = location of j" break point

y; = level in jih segment

p, = order of AR process in j" segment
(9049, ) =AR coefficients in j" segment

c; = scale in j" segment
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Examples (cont)

2. Segmented GARCH model:

}It =Gt8t’

2 2 2 2 2
= <
o, =, +o,¥+ -+q%waH@§y{+ +BMCHW ift, <r<t,

where tp=1<1,<...<1,<Thy=Nn+1, and {g} is lID(0,1).
3. Segmented stochastic volatility model:

Y =cg,

logo? —y]+Jllogcst1+ -+ Iogcs +vm, Ift, <i<t.

1-p; j1—

4. Segmented state-space model (SVM a special case):

P 104s04, Y, 40031) = P, | 0,) 1S Specified

o =Y, +¢,0++0¢,0,, +om, It <<t
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Model Selection Using Minimum Description Length

Choose the model which maximizes the compression of the data or,
equivalently, select the model that minimizes the code length of the
data (i.e., amount of memory required to encode the data).

M = class of operating models fory = (y;, . . ., ¥,)

L-(y) = code length of y relative to F e M

Typically, this term can be decomposed into two pieces (two-part code),
Ly (y) = L(Fly) + L(2|P),
where
L(Fly) = code length of the fitted model for F

L(é|l:') = code length of the residuals based on the fitted model

Warwick Mar 2012 10



Model Selection Using Minimum Description Length (cont)

Using results from information theor
approximations, the npatsaseesaas the
1Tm1p

' A i

m+1

logm +mlogn+) logp,
j=1

+1 n.

logn [+> —log(2767),
J=1 2\

T\ Direeor D

m+1 p] _|_2

23

where n; IS the number of observations in th
2 is the Yule-Walker estimate of the proce Jj
segment
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Minimizing the MDL

e Select the best-fitting model for the data as the model that minimizes
the minimum description length with respect to the number of
change-points m, the change-point locations, 14, . . . ,t,,, and the AR

orders p,,..., P+;-

e The dependence of the minimum description length on the
autoregressive coefficient parameter estimates is only through the

white noise estimates 67 ,j=1,...,m + 1.

e Numerical minimization carried out using a genetic algorithm, which

mimics natural evolution (see Dauvis et al., 2006).

Warwick Mar 2012
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Optimization Using Genetic Algorithm

Genetic Algorithm: Chromosome consists of n genes, each taking
the value of -1 (no break) or p (order of AR process). Use natural
selection to find a near optimal solution.

Map the break points with a chromosome c via

(m, (v, p)...(7,,p,) <— c=(0,...,9,),
where

t

—1, if no break point at 7,
p;, if break pointat timez =1, , and AR order is p .
For example,

c=(2 -1,-1,-1,-1,0,-1, -1,-1,-1,0, -1, -1, -1, 3, -1, -1, -1, -1,-1)
t 1 6 11 15

would correspond to a process as follows:

AR(2), t=1:5; AR(0), t=6:10; AR(0), t=11:14; AR(3), t=15:20

Warwick Mar 2012
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Implementation of Genetic Algorithm—(cont)

Generation 0: Start with L (200) randomly generated chromosomes,
Cy - - . ,C_ With associated MDL values, MDL(c,), . .., MDL(c)).

Generation 1: A new child in the next generation is formed from the
chromosomes ¢, . . ., ¢, of the previous generation as follows:

» with probability ©t_, crossover occurs.

= two parent chromosomes c; and ¢; are selected at random with
probabilities proportional to the ranks of MDL(c;).

= k' gene of child is 8, = §; w.p. %2 and §;, w.p. %
» with probability 1- =, mutation occurs.
= a parent chromosome c; is selected

= k" gene of child is §, = &, w.p. m; ; =1 w.p. my;and p w.p. 1- my—m,.

Warwick Mar 2012 16



Implementation of Genetic Algorithm—(cont)

Execution of GA: Run GA until convergence or until a maximum

number of generations has been reached. .

Various Strategies:

» include the top ten chromosomes from last generation in next
generation.

» use multiple islands, in which populations run independently,
and then allow migration after a fixed number of generations.
This implementation is amenable to parallel computing.

Warwick Mar 2012
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Simulation Examples (cont)

2. Slowly varying AR(2) model:

Y =aY, -8l ,+¢ if 1<r<1024

t

where g =.8[1-0.5cos(rz/1024)], and {e} ~ IID N(0,1).
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2. Slowly varying AR(2) (cont)

GA results: 3 pieces, breaks at 1,=293, 1t,=615. Total run time 27.45 secs

Fitted model: b, b, o?
1-292: .365 -0.753 1.149
293-614: .821 -0.790 1.176
615-1024: 1.084 -0.760 0.960
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2. Slowly varying AR(2) (cont)

In the graph below right, we average the spectogram over the GA
fitted models generated from each of the 200 simulated realizations.
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Simulation Examples (cont)

3. Piecewise ARMA:

[ —9Y , +eg +.7¢,,, if 1<1<513
Y= 9, +¢, If 513<¢<769,
e -Ts, if 769<¢<1024

where {g} ~ 1ID N(O,1).

1 200 400 600 800 1000

Time
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3. Piecewise ARMA (cont)

GA results: 3 pieces, breaks at 1,=513, 1,=769. Total run time 1.53 secs

Fitted model: AR orders 4, 1, 2
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Example--Monthly Deaths & Serious Injuries, UK

Data: y, = number of monthly deaths and serious injuries in UK, Jan
‘75 —-Dec 84, (t=1,...,120)
Remark: Seat belt legislation introduced in Feb 83 (t = 99).
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Example -- Monthly Deaths & Serious Injuries, UK (cont)

Data: x, = number of monthly deaths and serious injuries in UK,
differenced at lag 12; Jan 75 — Dec 84, (t=13,..., 120)
Remark: Seat belt legislation introduced in Feb 83 (t = 99).
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Model: b=-373.4, {NJ}~AR(13).

Warwick Mar 2012

1984

Traditional regression
analysis:

Y, =a+bf () +W,

P 0, if1<¢<98,
|1, if 98< ¢ <120.

X, =Y-Y,
:bg(t)_'_Nt
1, if 99<¢<110,
gt)=

0, otherwise.

27



Example: Monthly Deaths & Serious Injuries, UK

Data: Y, = number of monthly deaths and serious injuries in UK, Jan
‘75 —-Dec 84, (t=1,...,120)
Remark: Seat belt legislation introduced in Feb 83 (t = 99).
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Results from GA: 3 pieces; time = 4.4secs
Piece 1: (t=1,...,98) IID; Piece 2: (t=99,...108) IID; Piece 3: t=109,...,120 AR(1)
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Application to GARCH

Garch(1,1) model:

)/t :Gtgt’

2 _
c; =, +

o .Y?

1 200 400
Time

CP estimate = 506

600

800

AG = Andreou and Ghysels (2002)

Warwick Mar 2012

{e,}~11D(0,1)
+Bj('5t2_1, ifr, <r<t,.
2 :<(.4+.1Yﬁl+.5csf_l, if 1<r<50]
" |4+ +607, if 501<r<1000
# of CPs GA AG
% %
0 80.4 72.0
| 1 19.2 24.0
1000
> 2 0.4 0.4

33



Application to GARCH (cont)

2
Gt

More simulation results for Garch(1,1) : Y =cg, {&}~11D(0,1)
| 05+.4Y7 +.30;,, if 1<t<t,
1.00+.3Yﬁl+.2csf_1, If 7, <r<1000Q
T Mean SE Med Freq
50 GA 52.62 11.70 50 .98
Berkes 71.40 12.40 71
250 GA 251.18 4.50 250 .99
Berkes 272.30 18.10 271
500 GA 501.22 4.76 502 .98
Berkes 516.40 54.70 538

Berkes = Berkes, Gombay, Horvath, and Kokoszka (2004).

Warwick Mar 2012
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Application to Parameter-Driven SS Models

State Space Model Setup:

Observation equation:

P(Y: | o) = expfo, Y, — b(oy) + c(y)}-

State equation: {a,} follows the piecewise AR(1) model given by

Ott:yk+(l)kOLt_1+ Gkgt’ |f Tk-lg t <Tk,
where l=1ty< 1, < ... <1,<n, and {g} ~ 1D N(O,1).

Parameters:
m = number of break points
1, = location of break points
v« = level in ki epoch
o, = AR coefficients k' epoch
o, = scale in k" epoch

Warwick Mar 2012
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Application to Structural Breaks—(cont)

Estimation: For (m, 14, . . ., ) fixed, calculate the approximate

likelihood evaluated at the “MLE”, I.e.,

| |1/ 2
n

L, (w;y,)= ( exply, o —1'{b(a’) —c(y,)}- (o —w)' G, (o —p)/2},

K+Gn)1’2
where g=(J,,..07 e d  62,...,6%) is the MLE.

Remark: The exact likelihood is given by the following formula
L(y;y,) =L, (v;y,)Er,(y),

Er,(v) = [exp{R(ct,;0*)}p, (0, |Y,; ) dar,.
It turns out that log(Er, (y)) IS nearly linear and can be approximated

where

by a linear function via importance sampling,
e(y) ~e(y ) +e(y,  )v—v,)

Warwick Mar 2012
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SV Process Example

Model: Y, | a, ~ N(O,exp{a}), a,=v +¢ a1t &, {e}~1ID N(O, c?)
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|

1 500 1000 1500 2000 2500 3000 1 500 1000 1500 2000 2500 3000

time Breaking Point

True model:

= Y| o, ~ N(O, exp{o}), a,=-.05+ 9750+ ¢, {e}~1ID N(O, .05), t<750
= Y| o ~ N(O, exp{c, }), a,=-.25+.900a,,+ &, {e}~11D N(O, .25), > 750.
= GA estimate 754, time 1053 secs

Warwick Mar 2012
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SV Process Example
Model: Y, | a, ~ N(O,exp{a}), a,=v +¢ a1t &, {e}~1ID N(O, c?)
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time Breaking Point

True model:

= Y| o~ N, exp{o}), o,=-.175+.9770a, ,+ ¢, {e}~11D N(O, .1810), <250
= Y, | o ~ N(O, exp{a, }), a,=-.010 +.9960, .+ ¢, {e}~1ID N(0, .0089), ¢> 250.
= GA estimate 251, time 269s
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SV Process Example-(cont)

True model:
= Y| o, ~ N, exp{a}), o,=-.175+.977a.,+ e, {e}~11D N(0, .1810), ¢ <250
= Y. | o, ~ N(O, exp{o, }), o,=-.010 +.9960, .+ &, {g}~IID N(O, .0089), ¢> 250.

Fitted model based on no structural break:

= Y, | o, ~ N(O, exp{o,}), o, =-.0645 + 98890, ,+ &, {e3~IID N(O, .0935)
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SV Process Example-(cont)

Fitted model based on no structural break:
= Y,| o, ~N(O, exp{o}), a,=-.0645 + .9889a, .+ &, {e}~1ID N(O, .0935)

1simulated series W\\
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0.0
MDL
478 476 474 472 470 468 466

T T T T T T T T T T T T
1 100 200 300 400 500 1 100 200 300 400 500

time Breaking Point

Warwick Mar 2012 44



Comments on the theory for AutoPARM

Consistency of m:

Suppose the true number of change points is m and let
A=tn, ..., A,=1 In

be the relative (true) change-points. Then AutoPARM estimates

of m and 4; satisfy:
N
m-m,

A D
Remarks: The proof is a “cool” application of Strassen’s function
law of the iterated logarithm.

Warwick Mar 2012
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Comments on the theory for AutoPARM (cont)

Extension: If the process in the jth segment is stationary with ACVF
vi(h) and with y(h) # v, ,(h) for some lag he{0,1,...,p*}. Then the
estimator which minimizes MDL by fitting AR(p*) models in each
segment produces weakly consistent estimators of m = true number of

change-points.

Remark: This result can be applied to detecting change-points in
piecewise GARCH models. Here one can take p*=0 so that we are

only talking about changes in variance.

Further extensions: This result has been extended to include a more
general framework by Davis and Yau (2012). Base models include
ARMA and GARCH—results address some identifiability issues
(Andrews and Cheng (2011)).

Warwick Mar 2012
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Comments on the theory for AutoPARM (cont)

Theorem: Suppose {X;} is the AR(1) process
Xe = pX¢1 + 0€y,

where |¢| < 1, and the {¢,} is 1ID(0,1) with finite 5" moment and pdf
fe satisfying

o fo(x)>0 forall x

© fe(x) = fe (=x)

»  liminf, e e [ f2(x)dx) > 0, for some ¢ > 0.
Then, MDL is NOT consistent using Yule-Walker estimation. That

IS, there is a positive probability that a change-point model will be

selected as n —» .

Warwick Mar 2012
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Modeling Framework for Outlier Detection

Data: Yy, ..., Yy
Model parameters
Segments:
m = number of change-points
T, = start of j'" segment (1o =1 <1, <... < T < Typyg = N)
Intra-segment parameters (j" segment [z;_4,7;))
Integer valued: {; = (p;,nj,n}, t; , ...,t;;;_‘j, t1 i) ...,tT’l},j)
* p; = order of AR process
* A; = location of additive outliers
= {t1, ...,t;‘l;_’j}

. Ij = location of innovational outliers

_ ! !
= {tly_]’ ) tn;,]}

Warwick Mar 2012
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Modeling Framework (cont)

Data: Yy, ..., Yy
Intra-segment parameters (j" segment [zj_4,7;) )

. — 2 2 .2
Real valued: l/)] = (yj’¢j,1' ""¢j,pj'0j ,O'j* ,Cj)

. (Vj,qu,l, ...,qu,pj,ajz) = AR model parameters
. aj*z > ajz is AO variance

. cj2 > 1is proportional increase in innovation variance.

Intra-segment AR process with |O:

Xej =Vt @jaXe1j+ o+ QjpXeyp,j + i€
where {¢; ;} Is an independent sequence with
2 ift €I
ci, 1 jr
) = ]’
var(e.,) { 1, ift e ;.
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Modeling Framework (cont)

Data: Yy, ..., Yy
Intra-segment AR process with IO:

Xej=Vi+ @jaXe—1j+ -t Qjp Xep,j+ 0j€

where {€;;} Is an independent sequence with
2 .
C: ift I]'
Var(e; ;)= 177 .
ONES oY,
Intra-segment AR process with |O and AO:

L [Keit Ve ifres,
tT) X, o iftg A,

where the {V; ;} are independent and N(0,s;"%) distributed.

Warwick Mar 2012
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Modeling Framework (cont)

Remarks:

Warwick Mar 2012

If the {e, ;} and the {V, ;} are Gaussian, then model (for fixed
Integer parameter {) can be expressed as a Gaussian linear

state-space model.
Take advantage of state-space model and Kalman recursions

for likelihood calculation.
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Model Selection Using Minimum Description Length

Choose the model which maximizes the compression of the data or,
equivalently, select the model that minimizes the code length of the
data (i.e., amount of memory required to encode the data).

M = class of operating models fory = (y;, . . ., ¥,)

L-(y) = code length of y relative to F e M

Typically, this term can be decomposed into two pieces (two-part code of
Rissanen),

L(y)=L(Fly) +L(|P)
where
L(I:'|y) = code length of the fitted model for F

L(é|l:') = code length of the residuals based on the fitted model

Warwick Mar 2012 59



Model Selection Using Minimum Description Length

Take

M = class of operating models fory = (y,, . . ., y,) that
Includes piecewise AR models with AO’s and |O’s.

Letn = (04, ..., M) aNd Y = (Y4, ..., P +1) be the integer- and real-
valued parameter vectors, where

!/

—(n. n*n' t*. et
{i= (pjnj,nj, tg ), ...,tnj,j, ty j» ...,tn}’j)

_ 2 %2 .2
V=) Pj1s - Pjpn0i,07°,¢f).
J

Then
L(F|ly) =logm+ (m + 1) logn

+Z}f”=+11 (logp; +logn; + log n]'- + (nj + n]'-) logn; + 1/2(pj + 3) logn;)
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Model Selection Using Minimum Description Length

Moreover, using results from information theory, Rissanen argues
L(é|F)~ — X7 og Li(j; v;)

where Lj(tﬁj; y;) is the likelihood evaluated at the MLE of the j®
segment; so that

MDL(m,t,p,n’,n*,1,A)

m+1

=logm + (m + 1) logn + Z (logp; +logn; +logn
j=1

+ (n]* + nJ’) logn; + 1/2(pj + 3) logn;) +Z(|ng(27'c6§.) "'”j)
j=1

Warwick Mar 2012 61



Model Selection Using Minimum Description Length

Computing the likelihood L;(y;; y;): Start by computing likelihood
In a segment given p and locations of additive and innovational

outliers.
L ylA D = fRn Ly, x41Ddx,

:f p(yA)yAchAll)dxA

Rn

:f D(Va, Xac, X4|1)dxy
Rn

= | POalxpCe Dz,

Warwick Mar 2012
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Model Selection Using Minimum Description Length

Computing the likelihood L;(¥;; ¥;):

L(p; ylA D) = JRnP()’AWA)P(x [1)dx,

o p(Yalxs) ~d(ya; x4, 0é1,) multivariate normal

o px|) =
-1 2 1 (xt—Y—P1Xt—1—PpXt—p)?}
B, s 1, Vi) | | @022 exp( -t doip)y
t>p
tel

8 n(znc2 02)_% exp{— Y =rxioa PpTep)

2c2g2
t>p
tel

Remark: Use Kalman recursions to compute likelihood.
Warwick Mar 2012
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Optimization Using Genetic Algorithm

Genetic Algorithm: Chromosome consists of n genes, each taking
the value of -3 (AO), -2 (Al), =1 (no break), p (order of AR process).
Use natural selection to find a near optimal solution.

Map the break points with a chromosome c via

(m,7,p,A1) & c=(64,..,6,) Where

(—3, if AO occurs att,

—2, if 10 occurs at ¢,

—1, ifno break occurs at t,

\ p, ifbreakoccurs attime t and AR model is p.

5t=<

For example,

c=(-1,-3-1-0,-1, -1,-1,-1,0,-1,-1,-1, 3,-1, -1, -2, -1,-1)
t: 1 6 11 15

would correspond to a process with AO at t=3, 10 at t=18.

AR(2), 1=1:5; AR(0), t=6:10; AR(0), t=11:14; AR(3), t=15:20
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Robust AutoPARM-IO contaminated AR model

Single AR model with  __
single 10 at ? ] \/\[\/ K\ﬂ

S . A
MDL’'s w/ top 5 g VY WW T M “

residuals indicated

MOL

=)
thme
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Robust AutoPARM-AO contaminated AR model

Single AR model with |
single AO at 101 o

| T T T I T T |
1 20 40 &0 a0 100 120 140

MDL's w/ top 5 v WWW\\ ("W‘W“‘v‘ V-

residuals indicated

20
tirme
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Accelerating Robust AutoPARM

Remark: Observe that large reductions in MDL due to outliers seem
to occur at locations of largest residuals. Use this info to facilitate the
search optimizer.

Search modification: for simplicity, assume one AR(p) signal
1. Select locations S; = {t;, ..., t;} of k largest absolute residuals.

2. Let M(t) (resp M'(t)) be an AR(p) model with AO(IO) at time t
and set

F, = {M*(),M'(t), t €S}
3. Define M; = argminges, MDL(F); r, = location of outlier

4. SetF, = {M“(rl, t), M'(ry,t), tE€ S — {rl}}
M,= argmingez, MDL(F); r, = location of outlier

5. Continue to obtain My, ..., M, and define

q = arg min MDL(M;)

0<j<k

Warwick Mar 2012
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Accelerating Robust AutoPARM

6. Only allow time locations 7y, ..., for outliers in the current
generation of the genetic algorithm.

7. After producing the next generation, select largest residuals again
and repeat.

Remark: The outlier selection step has elements that are similar in
spirit to one proposed by Bianco et al. (2001) and Sanchez and Pena
(2003). Our method is not as likely to stop prematurely.

Warwick Mar 2012
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Accelerating Robust AutoPARM

Example: AR(1) model
Xt - .8Xt_1 + €¢) {Et}"’IID N(O,l)

with AO’s at {16,32,48,80} and no I0s. Residuals selected by
minimizing MDL

Table 1: Auto-PARMO subset 3.

it ey, T 0 mDL{'u[}

0 ~ 1815 OnEWFEREY
1 48 5.8 a0 17800 claddRBHiIEH

2 32 491 KO 17635 locations

3 16 4.85 171.86 VDL

4 80 422 80 AO

17 3.15 90 AO 169.24
90 1.96 56 AO 173.72
81 1.83 86 10 178.22
56 L7717 AO 152.69
86 1.74 20 IO 157.37
20 1.70 81 10O 193.40

10 !argest s
residuals

= D 00 =T &y &

g

Warwick Mar 2012
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Robust AutoPARM-sample results

Table 2: Summary of break and outlier estimates.

Breaks Outliers
DGP /Procedure 0 1 > 2 0 1 2 3 4 B 6 =7  time
DGPI:
Auto-PARM  03% 7% 0% - - - - - - - - 038
Auto-PARMO 100% 0% 0% 99% 1% 13.28
arima.rob - - -
DGP2:
Auto-PARM 0% - - - - - - 0.40
Auto-PARMO 0% 1% 0% 0% 0% 3% 44.13
arima.rob - 0% 0% 1% 8% 18% 12%
DGP3:
AutoPARM 7% 22% 1% - - - - - - - 040
Auto-PARMO 100% 0% 0% 0% 0% 1% 4%( 95%\ 0% 0% 30.13
arima.rob - - - 0% 0% 0% 0%\ 64%/ 24% 7% 5%

p

DGP1: one-piece AR model; no outliers
DGP2: one-piece AR model; 5 innovation outliers
DGP3: one-piece AR model; 4 additive outliers
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Table 3: Summary of outliers.

Warwick Mar 2012

DGP2 DGP3
Loecation Type arima.rob A utfPﬁ@MD arima.rob  Auto-PARMO
16 10 0% ny 0% 1%
AO 58% 0 99% 7%
LS 27% - 0% -
Total: 85% 06% 99% 08%
32 10 0% 96% 0% 1%
AO 78% 3% 8% 98%
LS 17% - 0% -
Total: 95% 99% 08% 99%
48 10 D% 065% 0% 0%
AO T0% 1% 9% 08%
LS 20% - 0% -
Total: 0% 7% 09% 08%
64 10 0% 7%
AO T9% 2%
LS 20% i
Total: 86% 99%
80 10 0% 98% 0% 3%
AO T79% 0% 100% 04%
LS 12% - 0% -
Total: 01% 98% 100% 7%
False outlier locations
10 0 3 0 1
AO 27 2 46 1
LS 2 = 0 <
False outliers 01 5 62 2
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Robust AutoPARM-sample results

Three-piece AR model:

8Y;_1 + 3¢, if1 <t <128,
Y, =<1.69Y;_; — .81Y;_, + €4, if128 <t <192,
1'32Yt—1 - .81Yt_2 + 361:, lf 192 < t S 256
DGP4: three-piece AR model; no outliers

DGP5: three-piece AR model; 3 innovation outliers at 16, 32, 48.

DGP6: three-piece AR model; 3 additive outliers at 16, 32, 48.
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Robust AutoPARM-sample results

DGP5: three-piece AR model; 3 innovation outliers at 16, 32, 48.

| | | | | |
0 50 100 150 200 250

Results from AutoPARMO: fme
Breaks: 124 and 194; 3 IA outliers: 16, 32, 48
Results from AutoPARM(no outliers): Breaks at 52, 126, 294

arima.rob: AO at 16, 17,32, 48, 49
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Robust AutoPARM-sample results

Table 5: Summary of break and outlier estimates.

Breaks Outliers
DGP/Procedure 1 2 3 4 0 1 2 3 1 5 time

DGP4:
Auto-PARM 1% 97% 2% 0% S - - ..o qe
Auto-PARMO 0% 100% 0% 0%  97% 3% 0% 0% 0% 0% 121.2
DGP5:
Auto-PARM 2%  34% 4% e
Auto-PARMO 0% 100% 0% 0% 0% 0% 6% 3% 0% 432.4
DGP6:

1.5

Auto-PARM 0%  14% 6%

Auto-PARMO 0%  99% 0% 1% 0% 3% \904%) 1% 1% 466.9

DGP4: three-piece AR model; no outliers
DGPS5: three-piece AR model; 3 innovation outliers

DGP6: three-piece AR model; 3 additive outliers
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Robust AutoPARM-sample results

Table 7: Summary of outliers

location type DGP5 DGP6

16 [0 93% 6%

AO 4% 91%

Total:  97% a7%
32 10 92% 9%

AO 6% 89%

Total:  98% 98%
48 10 92% 7%

AO 5% 92%

Total: 97T% 99%

False outlier locations

(8] 3 1
AQ 2 2
False outliers 5 3

DGP5: two-piece AR model; 3 innovation outliers

DGP6: two-piece AR model; 3 additive outliers
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76



Application to Google Trends Example: Tea Party

Weekly data: January 2004--December 2011.

P —— Taxes due
3 weeks after —
Obama takes |~ ‘ 
office 9-12 taxpayer
march on
S Washington DC
>_
Midterm
Texas Tea o elections

Party straw
Ron Paul

poll
l
o raised

T T T T T $4.4M on

2004 2006 2008 2010 2012 internet in

Results from AutoPARMO: time 1 day
Break: Feb 15, 2009 (3 weeks after Obama took office)

AO outliers: 11-5-06(election week); 9-2-07; 12-16-07,

4-12-09 (taxes due); 4-11-10 (taxes); 9-12-10; 10-31-10 (election)
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Application to Google Trends Example: Tea Party

Refinement: January 2004--December 2011.

3 weeks after —
Obama takes | = ‘ 

office

Tea Party
g protests

Texas Tea
Party straw

AN

oc—

M N

Taxes due

9-12 taxpayer
march on
Washington DC

Midterm
elections

Ron Paul

Uy WY

| T T
2004 2006 2008

time

T I
2010 2012

Results from AutoPARMO on the two segments:
AO outliers (7): 149, 192, 207, 276, 287, 328, 357

O outliers (2): 325, 350
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Summary Remarks

1. MDL appears to be a good criterion for detecting structural breaks.

2. Optimization using a genetic algorithm is well suited to find a near
optimal value of MDL.

3. While estimating structural breaks for nonlinear time series models is
more challenging, this paradigm of using MDL together with GA holds
promise for break detection in parameter-driven models and other
nonlinear models.

4. Extensions to outlier (both innovation and additive) detection are
currently under study. Results look promising—new implementation is
almost ready.
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Running the Program AutoPARM

 Download the zip file AutoPARM (only runs on PC) from
www.stat.columbia.edu/~rdavis/AutoPARM/AutoPARM.zip

* Extract the zip file (folder called AutoPARM) will be created.

* Open a command prompt window
(In run, type the command cmd)

* Navigate to the AutoPARM folder

* AutoPARM needs an input file (first several lines of example file
eqnb5.in are:

* DATA:
egn5.dat [name of file containing input data]

e OUTPUT:
egn5.out  [name of file to export results]

e EXecute program by typing on command line
AutoPARM eqgn5.in

* Results are written to file named eqn5.out

* More details about running the program can be found in AutoPARM.pdf
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