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Motivation

Paul Fearnhead (Lancaster University) PELT Search Algorithm April 2012 3 / 41



Example: Change in mean

Assume we have time-series data
where

Yt |θt ∼ N(θt , 1),

but where the means, θt , are
piecewise constant through time.
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Example: Inferring Changepoints

We want to infer the number and position of the points at which the mean
changes. There are a number of approaches:

Likelihood Ratio Test
To detect a single changepoint we can use the likelihood ratio test statistic:

LR = 2 max
τ
{`(y1:τ ) + `(yτ+1:n)− `(y1:n)}.

We infer a changepoint if LR > 2β for some (suitably chosen) β. If we
infer a changepoint its position is estimated as

τ = arg max{`(y1:τ ) + `(yτ+1:n)− `(y1:n)}.

This can test can be repeatedly applied to new segments to find multiple
changepoints.
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Inferring Changepoints: Likelihood Ratio Tests

Define m to be the number of changepoints, with positions
τ = (τ0, τ1, . . . , τm+1) where τ0 = 0 and τm+1 = n.

Then one application of the Likelihood ratio test can be viewed as aiming

min
m∈{0,1},τ

{
m+1∑
i=1

[
−`(yτi−1:τi )

]
+ βm

}

Repeated application is thus aiming to minimise

min
τ

{
m+1∑
i=1

[
−`(yτi−1:τi )

]
+ βm

}
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Inferring Changepoints: Penalised Likelihood

The above can be viewed as a special case of penalised likelihood. Here
the aim is to maximise the likelihood over the number and position of the
changepoints, but subject to a penalty, that depends on the number of
changepoints. The penalty is to avoid over-fitting.

This is equivalent to minimising

min
τ

{
m+1∑
i=1

[
−`(yτi−1:τi )

]
+ βf (m)

}

for a suitable penalty function f (m) and penalty constant β.
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Inferring Changepoints: Bayesian MAP

A Bayesian approach would involve introducing a prior for θ within each
segment, and a prior for the number and position of the changepoints.

If the priors for θ are independent across segments, and the prior for the
changepoints is based on an independent geometric distribution for
segment lengths. Then the Bayesian MAP estimate would satisfy

min
τ

{
m+1∑
i=1

[
−ML(yτi−1:τi )

]
+ βm

}
,

where ML(·) is the segment marginal likelihood; and β depends on the
parameter of the geometric distribution.
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Inferring Changepoints: Minimum Description Length

An approach (from computer science) is to estimate the changepoints via
minimising the description length of the model for the data.

Davis et al. (2006) derive the MDL criteria for changepoint models. For a
change in mean this is

min
τ

{
m+1∑
i=1

[
−`(yτi−1:τi ) +

1

2
(τi − τi−1 + 1)

]
+ m log n + log(m + 1)

}
,
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How do we identify changepoints?

All these methods can be cast in terms of minimising a function of τ of
the form:

m+1∑
i=1

[
C(y(τi−1+1):τi )

]
+ βf (m).

This function depends on the data just through a sum of a cost for each
segment.

There is then a penalty term that depends on the number of segments.
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The Challenge

What are the values of τ1, . . . , τm?

What is m?

For n data points there are 2n−1 possible solutions

If m is known there are still
(n−1
m−1

)
solutions

If n = 1000 and m = 10, 2.634096× 1021 solutions

How do we search the solution space efficiently?

Paul Fearnhead (Lancaster University) PELT Search Algorithm April 2012 11 / 41



The Challenge

What are the values of τ1, . . . , τm?

What is m?

For n data points there are 2n−1 possible solutions

If m is known there are still
(n−1
m−1

)
solutions

If n = 1000 and m = 10, 2.634096× 1021 solutions

How do we search the solution space efficiently?

Paul Fearnhead (Lancaster University) PELT Search Algorithm April 2012 11 / 41



The Challenge

What are the values of τ1, . . . , τm?

What is m?

For n data points there are 2n−1 possible solutions

If m is known there are still
(n−1
m−1

)
solutions

If n = 1000 and m = 10, 2.634096× 1021 solutions

How do we search the solution space efficiently?

Paul Fearnhead (Lancaster University) PELT Search Algorithm April 2012 11 / 41



Existing Search Methods
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Existing Methods

Existing methods are either fast but approximate.

Such as Binary Segmenation (Scott and Knott (1974)). Binary
segmentation is O(n log n) in CPU time.

Or they are slower but exact.

These method used dynamic programming. For example, Segment
Neighbourhood (Auger and Lawrence (1989)) is O(n3).

For linear penalties f (m) = m, Optimal Partitioning (Jackson et al.
(2005)) is O(n2)
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Binary Segmentation

Start by finding the optimal location for one changepoint
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Binary Segmentation

Then before and after the changepoint are treated as separate
datasets
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Binary Segmentation

This continues until no more changepoints are found

0 10 20 30 40 50

−
2

−
1

0
1

60 80 100 120 140

1
2

3
4

5
6

7

150 160 170 180 190 200

−
1

0
1

2

Paul Fearnhead (Lancaster University) PELT Search Algorithm April 2012 16 / 41



Binary Segmentation

This continues until no more changepoints are found
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Optimal Partitioning

Applies to f (m) = m.

Consider y1:2, either

1 There is no changepoint, or

2 There is a changepoint at y1

Both scenarios are calculated and the optimal kept
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Optimal Partitioning

Now consider y1:3,

1 No changepoint

2 A changepoint at y1
3 A changepoint at y2
4 A changepoint at y1 and y2

But the decision between the latter two has already been decided (at the
previous iteration)!
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Optimal Partitioning

The decision for y1:3 becomes

1 No changepoint

2 Most recent changepoint at y1,
i.e. a single change at y1

3 Most recent changepoint at y2, and the optimal partition of y1:2.
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Optimal Partitioning

In a similar fashion, the decision for y1:4 becomes

1 No changepoint

2 Most recent changepoint at y1,
i.e. a single change at y1

3 Most recent changepoint at y2, and the optimal partition of y1:2.

4 Most recent changepoint at y3, and the optimal partition of y1:3.
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Optimal Partitioning

If we define
Pt = {τ : 0 < τ1 < · · · < τm < t}

F (t) = min
τ∈Pt

{
m+1∑
i=1

[
C(y(τi−1+1):τi ) + β

]}

i.e. f (m) = m in original minimisation.

So

F (t) = min
τ∗

{
min
τ∈Pτ∗

[
m∑
i=1

C(y(τi−1+1):τi ) + β

]
+ C(y(τ∗+1):t) + β

}
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Optimal Partitioning

Thus we minimise,

F (t) = min
τ∗

{
F (τ∗) + C(y(τ∗+1):t) + β

}
Recursively solving the minimisation for t = 1, . . . , n gives an algorithm
that is O(n2).
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The PELT Method

(Pruned Exact Linear Time)
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PELT: The idea

By eye there is often an obvious changepoint at (or by) a time-point s.

This means that for any T > s the most recent changepoint cannot be at
time t < s.

Thus we could prune the search step: and avoid searching over t < s.
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PELT: Assumption

ASSUMPTION: adding a changepoint reduces the overall cost

This means that for t < s < T :

C (yt+1:T ) ≥ C (yt+1:s) + C (ys+1:T )

This holds in for costs based on the negative log-likelihood; and often can
be made to hold for costs based on minus the log-marginal-likelihood.
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PELT: Pruning

Let 0 < t < s < T

Theorem

If

F (t) + C(y(t+1):s) > F (s)

then at any future time T > s, t can never be the optimal last
changepoint prior to T .
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PELT: Intuition

The condition in the theorem just
means that for any T > s the best
partition which involves a
changepoint at s is will be better
than one which has [t,T ] as a single
segment.
Thus t can never be the (optimal)
most recent changepoint prior to T
for ant T > s.
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PELT: Computational Complexity

If many t are pruned and excluded from the minimisation then
computational time will be drastically reduced.

We can prove that, under certain regularity conditions, the expected
computational complexity will be O(n).

The most important condition is that the number of changepoints
increases linearly with n.

This is natural in many applications: e.g. as you collect time-series data
over larger time-periods; or genomic data or larger regions of the genome.
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PELT Algorithm Recap

At some time t in the algorithm

Calculate F (t) = minτ∈(pts,t−1)
[
F (τ) + C(y(τ+1):t) + β

]
.

Let τ∗ be the optimum last changepoint prior to t.

Calculate the potential changepoints to be included in the next
iteration:

Set pts = argτ {F (τ) + C(yτ+1:t) > F (τ∗)}.
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PELT: Non-linear penalties

Can we do anything if the penalty function f (m) is non-linear?

You can show that for a concave penalty (such as that in MDL
f (m) = m log n + log(m + 1) ) there exists a β such that the optimal
segmentation under penalty f (m) is the same as under penalty βm.

Thus we can apply iteratively (for different β) to find the optimal
segmentation in these cases.
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Simulation Study
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Change in Variance: Simulation Structure

9 scenarios with lengths
100, 200, 500, 1000, 2000, 5000, 10000, 20000, 50000
Uniform distributed changepoints, subject to > 30 observations per
segment
Each scenario has 1,000 repetitions

Cost function: Negative log-likelihood

Mean set to 0

Variances simulated from a Log-Normal
distribution
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Change in Mean and Variance

θ is a parameter that changes, i.e. the variance

ACD =

∑n
i=1 |θ̂i − θi |

n

0 10000 20000 30000 40000 50000

0
50

10
0

15
0

20
0

Size of data

A
ve

ra
ge

 C
om

pu
ta

tio
na

l T
im

e

Optimal Partitioning
PELT

0 10000 20000 30000 40000 50000

0
10

00
0

20
00

0
30

00
0

Length of data

A
C

D

Binary Segmentation
PELT

Paul Fearnhead (Lancaster University) PELT Search Algorithm April 2012 34 / 41



MDL fit for AR(p) models

We compared the accuracy of PELT with a genetic algorithm approach
(Davis et al.) for optimising under an MDL criteria.

The underlying model within each segment was AR(p), with p unknown.
Average Improvement in MDL for varying lengths of data.

n 1,000 2,000 5,000 10,000 20,000

Improvement 9 14 60 250 900
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MDL fit for AR(p) models

Realisation of a piecewise stationary autoregressive process.
Smoothed number of segments identified by PELT (thick line) and
Auto-PARM (thin line) algorithms for (b) n = 5, 000 and (c) n = 10, 000.
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Ocean Engineering Application
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Ocean Engineering

The wave heights at a particular
location change over time

Understanding wave heights is key to

security of sea structures
development of new techniques for
harnessing sea energy

Data is 3-hourly wave heights from a
location in the North North Sea from
1973–2009.

Assume first difference of wave heights
is Normal (µ, σ2i ).
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Wave Heights
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Summary

Being able to find changepoints quickly is important

Existing methods are either inefficient or approximate

PELT is O(n) under certain conditions and is exact

Code is available within the R package changepoint on CRAN
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Assumptions of PELT

Independence between segments

IID within a segment

Additivity of the cost function over segments

Penalty that is linear in the number of changepoints
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Theorem

Theorem

Define θ∗ to be the value that maximises the expected log-likelihood

θ∗ = arg max

∫ ∫
f (y |θ)f (y |θ0)dyπ(θ0)dθ0.

Let θi be the true parameter associated with the segment containing yi
and θ̂n be the maximum likelihood estimate for θ given data y1:n and an
assumption of a single segment:

θ̂n = arg max
θ

n∑
i=1

log f (yi |θ).
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Theorem cont.

Theorem

Then if

(A1) denoting Bn =
∑n

i=1 log
[
f (yi |θ̂n)− log f (yi |θ∗)

]
, we have

E (Bn) = o(n) and E
(
[Bn − E (Bn)]4

)
= O(n2);

(A2) E
(

[log f (Yi |θi )− log f (Yi |θ∗)]4
)
<∞;

(A3) E
(
S3
)
<∞; and

(A4) E (log f (Yi |θi )− log f (Yi |θ∗)) > β
E(S) ;

the expected CPU cost of PELT for analysing n data points is bounded
above by Ln for some constant L <∞.
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