Adaptive Spectral Estimation for Nonstationary Time Series

DAVID S. STOFFER Department of Statistics University of Pittsburgh

Ori Rosen UTEP

Sally Wood U.Melbourne

FOURIER TRANSFORM AND PERIODOGRAM

Collect stationary time series $\{X_t; t=1,...,n\}$ with interest in cycles. Rather than work with the data $\{X_t\}$, we transform it into the frequency domain:

Discrete Fourier Transformation (DFT)

$$X_t \mapsto d_j = n^{-1/2} \sum_{t=1}^n X_t e^{-2\pi i t j/n}$$

Periodogram $(j=0,1,\ldots,n-1)$

$$P(\nu_j) = |d_j|^2 = \left[\frac{1}{n} \sum_{t=1}^n X_t \cos(2\pi t \frac{j}{n})\right]^2 + \left[\frac{1}{n} \sum_{t=1}^n X_t \sin(2\pi t \frac{j}{n})\right]^2$$

That is, match (correlate) data with [co]sines oscillating at freqs $\nu_j = \frac{j}{n} \frac{cycles}{points}$.

SPECTRAL DENSITY

The periodogram $P(\nu_{j:n}) = \left| n^{-1/2} \sum_{t=1}^n X_t \exp(-2\pi i t \nu_{j:n}) \right|^2$ is a sample concept. Its population counterpart is the $(\nu_{j:n} = \frac{j_n}{n} \to \nu)$

Spectral Density

$$f(\nu) = \lim_{n \to \infty} \mathbb{E}\{P(\nu_{j:n})\} = \sum_{h = -\infty}^{\infty} \gamma(h) \exp(2\pi i \nu h)$$

provided the limit exits (i.e. $\sum |\gamma(h)| < \infty$ where $\gamma(h) = \text{cov}\{X_{t+h}, X_t\}$). It follows that $f(\nu) \geq 0$, $f(1+\nu) = f(\nu)$, $f(\nu) = f(-\nu)$, and because

$$\gamma(h) = \int_{-1/2}^{1/2} f(\nu) \exp(-2\pi i \nu h) \, d\nu$$

The sample equivalent of the integral equation is

$$\sum_{j=1}^{n-1} P(j/n) n^{-1} = S^2$$

SPECTRAL DENSITY

The periodogram $P(\nu_{j:n}) = \left| n^{-1/2} \sum_{t=1}^n X_t \exp(-2\pi i t \nu_{j:n}) \right|^2$ is a sample concept. Its population counterpart is the $(\nu_{j:n} = \frac{j_n}{n} \to \nu)$

Spectral Density

$$f(\nu) = \lim_{n \to \infty} \mathbb{E}\{P(\nu_{j:n})\} = \sum_{h = -\infty}^{\infty} \gamma(h) \exp(2\pi i \nu h)$$

provided the limit exits (i.e. $\sum |\gamma(h)| < \infty$ where $\gamma(h) = \text{cov}\{X_{t+h}, X_t\}$). It follows that $f(\nu) \geq 0$, $f(1+\nu) = f(\nu)$, $f(\nu) = f(-\nu)$, and

$$\int_{-1/2}^{1/2} f(\nu) \ d\nu = \text{var}(X_t) \qquad [=\gamma(0)].$$

The sample equivalent of the integral equation is

$$\sum_{j=1}^{n-1} P(j/n) n^{-1} = S^2.$$

SPECTRAL DENSITY

The periodogram $P(\nu_{j:n}) = \left| n^{-1/2} \sum_{t=1}^n X_t \exp(-2\pi i t \nu_{j:n}) \right|^2$ is a sample concept. Its population counterpart is the $(\nu_{j:n} = \frac{j_n}{n} \to \nu)$

Spectral Density

$$f(\nu) = \lim_{n \to \infty} \mathbb{E}\{P(\nu_{j:n})\} = \sum_{h = -\infty}^{\infty} \gamma(h) \exp(2\pi i \nu h)$$

provided the limit exits (i.e. $\sum |\gamma(h)| < \infty$ where $\gamma(h) = \text{cov}\{X_{t+h}, X_t\}$). It follows that $f(\nu) \geq 0$, $f(1+\nu) = f(\nu)$, $f(\nu) = f(-\nu)$, and

$$\int_{-1/2}^{1/2} f(\nu) \ d\nu = \text{var}(X_t) \qquad [=\gamma(0)].$$

The sample equivalent of the integral equation is:

$$\sum_{j=1}^{n-1} P(j/n) n^{-1} = S^2.$$

SOME EXAMPLES

• WN: W_t is white noise if $EW_t=0$ and $\gamma(h)=\sigma_w^2\delta_0^h$. The spectral density

$$f(\nu)=\sum \gamma(h)\exp(-2\pi i\nu h)=\sigma_w^2 \qquad -1/2\leq \nu\leq 1/2,$$
 is uniform (think of white light).

• MA: $X_t = W_t + .9W_{t-1}$

• AR: $X_t = X_{t-1} - .9X_{t-2} + W_t$

$$d(\nu_{j:n}) = n^{-1/2} \sum_{t=1}^{n} X_t \underbrace{\exp(-2\pi i t \nu_{j:n}) - i \sin(2\pi t \nu_{j:n})}_{\text{cos}(2\pi i \nu_{j:n})}$$
$$= d_c(\nu_{j:n}) - i d_s(\nu_{j:n})$$

•
$$d_c(\nu_{j:n}) \sim \mathsf{AN}(0, \frac{1}{2} f(\nu))$$

•
$$d_s(\nu_{j:n}) \sim \mathsf{AN}(0, \frac{1}{2} f(\nu))$$

•
$$d_{s}(\nu_{j:n}) \perp d_{s}(\nu_{k:n}) \quad \forall j, k \ (\nu_{k:n} \rightarrow \nu' \neq \nu \ \text{and terms not the same)}$$

$$P_n(\nu_{j:n}) = d_c^2(\nu_{j:n}) + d_s^2(\nu_{j:n}), \text{ thus } 2P_n(\nu_{j:n})/f(\nu) \Rightarrow \chi_2^2,$$

$$\mathbb{E}[P_n(\nu_{j:n})] \to f(\nu)$$
, but $\text{var}[P_n(\nu_{j:n})] \to f^2(\nu) \longleftrightarrow \mathsf{BAD}$

$$\widehat{f}(\nu) = \int_{-1/2}^{1/2} P_n(\lambda) K_n(\nu - \lambda) d\lambda$$

$$d(\nu_{j:n}) = n^{-1/2} \sum_{t=1}^{n} X_{t} \underbrace{\exp(-2\pi i t \nu_{j:n}) - i \sin(2\pi t \nu_{j:n})}_{\text{cos}}$$
$$= d_{c}(\nu_{j:n}) - i d_{s}(\nu_{j:n})$$

Under general conditions on $\{X_t\}$ $(n \to \infty, \nu_{i:n} \to \nu)$:

- $d_c(\nu_{i:n}) \sim \mathsf{AN}(0, \frac{1}{2} f(\nu))$
- $d_s(\nu_{i:n}) \sim AN(0, \frac{1}{2} f(\nu))$
- $d_{c}(\nu_{j:n}) \perp d_{c}(\nu_{k:n}) \quad \forall j, k \ (\nu_{k:n} \rightarrow \nu' \neq \nu \ \text{and terms not the same})$

$$P_n(\nu_{j:n}) = d_c^2(\nu_{j:n}) + d_s^2(\nu_{j:n}), \text{ thus } 2P_n(\nu_{j:n})/f(\nu) \Rightarrow \chi_2^2,$$

OVERTURE

$$\mathbb{E}[P_n(\nu_{j:n})] \to f(\nu)$$
, but $\text{var}[P_n(\nu_{j:n})] \to f^2(\nu) \longleftrightarrow \mathsf{BAD}$

$$\widehat{f}(\nu) = \int_{-1/2}^{1/2} P_n(\lambda) K_n(\nu - \lambda) d\lambda$$

$$d(\nu_{j:n}) = n^{-1/2} \sum_{t=1}^{n} X_t \underbrace{\exp(-2\pi i t \nu_{j:n}) - i \sin(2\pi t \nu_{j:n})}_{\text{cos}(2\pi i \nu_{j:n}) - i d_s(\nu_{j:n})}$$

$$= d_c(\nu_{j:n}) - i d_s(\nu_{j:n})$$

Under general conditions on $\{X_t\}$ $(n \to \infty, \nu_{i:n} \to \nu)$:

- $d_c(\nu_{i:n}) \sim \mathsf{AN}(0, \frac{1}{2} f(\nu))$
- $d_s(\nu_{i:n}) \sim AN(0, \frac{1}{2} f(\nu))$
- $d_{c}(\nu_{j:n}) \perp d_{c}(\nu_{k:n}) \quad \forall j, k \ (\nu_{k:n} \rightarrow \nu' \neq \nu \ \text{and terms not the same)}$

$$P_n(\nu_{j:n}) = d_c^2(\nu_{j:n}) + d_s^2(\nu_{j:n}),$$
 thus $2P_n(\nu_{j:n})/f(\nu) \Rightarrow \chi_2^2$,

SO

$$\mathbb{E}[P_n(\nu_{j:n})] \to f(\nu), \text{ but } \text{var}[P_n(\nu_{j:n})] \to f^2(\nu) \longleftrightarrow \text{BAD}$$

$$\widehat{f}(\nu) = \int_{-1/2}^{1/2} P_n(\lambda) K_n(\nu - \lambda) d\lambda$$

$$d(\nu_{j:n}) = n^{-1/2} \sum_{t=1}^{n} X_t \underbrace{\exp(-2\pi i t \nu_{j:n}) - i \sin(2\pi t \nu_{j:n})}_{\text{cos}(2\pi t \nu_{j:n}) - i d_s(\nu_{j:n})}$$

$$= d_c(\nu_{j:n}) - i d_s(\nu_{j:n})$$

Under general conditions on $\{X_t\}$ $(n \to \infty, \nu_{i:n} \to \nu)$:

- $d_c(\nu_{i:n}) \sim \mathsf{AN}(0, \frac{1}{2} f(\nu))$
- $d_s(\nu_{i:n}) \sim AN(0, \frac{1}{2} f(\nu))$
- $d_c(\nu_{j:n}) \perp d_c(\nu_{k:n}) \quad \forall j, k \ (\nu_{k:n} \to \nu' \neq \nu \ \text{and terms not the same})$

$$P_n(\nu_{j:n}) = d_c^2(\nu_{j:n}) + d_s^2(\nu_{j:n}), \text{ thus } 2P_n(\nu_{j:n})/f(\nu) \Rightarrow \chi_2^2,$$

SO

$$\mathbb{E}[P_n(\nu_{j:n})] \to f(\nu), \text{ but } \text{var}[P_n(\nu_{j:n})] \to f^2(\nu) \longleftrightarrow \text{BAD}$$

$$\widehat{f}(\nu) = \int_{-1/2}^{1/2} P_n(\lambda) K_n(\nu - \lambda) d\lambda$$

$$d(\nu_{j:n}) = n^{-1/2} \sum_{t=1}^{n} X_t \underbrace{\exp(-2\pi i t \nu_{j:n}) - i \sin(2\pi t \nu_{j:n})}_{\text{cos}(2\pi t \nu_{j:n}) - i d_s(\nu_{j:n})}$$
$$= d_c(\nu_{j:n}) - i d_s(\nu_{j:n})$$

Under general conditions on $\{X_t\}$ $(n \to \infty, \nu_{i:n} \to \nu)$:

- $d_c(\nu_{i:n}) \sim \mathsf{AN}(0, \frac{1}{2} f(\nu))$
- $d_s(\nu_{i:n}) \sim AN(0, \frac{1}{2} f(\nu))$
- $d_{c}(\nu_{j:n}) \perp d_{c}(\nu_{k:n}) \quad \forall j, k \ (\nu_{k:n} \rightarrow \nu' \neq \nu \ \text{and terms not the same)}$

$$P_n(\nu_{j:n}) = d_c^2(\nu_{j:n}) + d_s^2(\nu_{j:n}), \text{ thus } 2P_n(\nu_{j:n})/f(\nu) \Rightarrow \chi_2^2,$$

SO

$$\mathbb{E}[P_n(\nu_{j:n})] \to f(\nu), \text{ but } \text{var}[P_n(\nu_{j:n})] \to f^2(\nu) \longleftrightarrow \text{BAD}$$

One remedy? Kernel smooth for consistency:

$$\widehat{f}(\nu) = \int_{-1/2}^{1/2} P_n(\lambda) K_n(\nu - \lambda) d\lambda$$

WHITTLE LIKELIHOOD

Given time series data $x = (X_1, \dots, X_n)$, for large n,

$$\mathcal{L}(f \mid \boldsymbol{x}) \approx (2\pi)^{-n/2} \prod_{k=0}^{n-1} \exp \left\{ -\frac{1}{2} \left[\log f(\nu_k) + \frac{P_n(\nu_k)}{f(\nu_k)} \right] \right\} ,$$

$$\nu_k = k/n$$
, and $k = 0, \dots, [n/2]$.

STATIONARY CASE

ESTIMATION OF SPECTRA VIA SMOOTHING SPLINES

In the stationary case, let $P_n(\nu_k)$ denote the periodogram. For large n, approximately [recall $2P_n(\nu_{k:n})/f(\nu) \Rightarrow \chi_2^2$]

$$P_n(\nu_k) = f(\nu_k)U_k$$

where $f(\nu_k)$ is the spectrum and $U_k \stackrel{iid}{\sim} \text{Gamma}(1,1)$.

$$y(\nu_k) = g(\nu_k) + \epsilon_k$$

STATIONARY CASE

ESTIMATION OF SPECTRA VIA SMOOTHING SPLINES

In the stationary case, let $P_n(\nu_k)$ denote the periodogram. For large n, approximately [recall $2P_n(\nu_{k:n})/f(\nu) \Rightarrow \chi_2^2$]

$$P_n(\nu_k) = f(\nu_k)U_k$$

where $f(\nu_k)$ is the spectrum and $U_k \stackrel{iid}{\sim} \text{Gamma}(1,1)$.

Taking logs, we have a GLM

$$y(\nu_k) = g(\nu_k) + \epsilon_k$$

where $y(\nu_k) = \log P_n(\nu_k)$, $q(\nu_k) = \log f(\nu_k)$ and ϵ_k are iid $\log(\chi_2^2/2)$ s.

STATIONARY CASE

ESTIMATION OF SPECTRA VIA SMOOTHING SPLINES

In the stationary case, let $P_n(\nu_k)$ denote the periodogram. For large n, approximately [recall $2P_n(\nu_{k\cdot n})/f(\nu) \Rightarrow \chi_2^2$]

$$P_n(\nu_k) = f(\nu_k)U_k$$

where $f(\nu_k)$ is the spectrum and $U_k \stackrel{iid}{\sim} \text{Gamma}(1,1)$.

Taking logs, we have a GLM

$$y(\nu_k) = g(\nu_k) + \epsilon_k$$

where $y(\nu_k) = \log P_n(\nu_k)$, $q(\nu_k) = \log f(\nu_k)$ and ϵ_k are iid $\log(\chi_2^2/2)$ s.

Want to fit the model with the constraint that q() is smooth. Wahba (1980) suggested smoothing splines. This can be done in a Bayesian framework.

OVERTURE

I FALL TO PIECES

OVERTURE

I FALL TO PIECES

Place a linear smoothing spline prior on $\log f(\nu)$. Let

- $y_n(\nu_k) = \log P_n(\nu_k)$ and $q(\nu_k) = \log f(\nu_k)$.

Place a linear smoothing spline prior on $\log f(\nu)$. Let $u_n(\nu_k) = \log P_n(\nu_k)$ and $g(\nu_k) = \log f(\nu_k)$.

- $q(\nu_k) = \alpha_0 + \alpha_1 \nu_k + h(\nu_k)$ linear $[\alpha]$ + nonlinear [h()]

I FALL TO PIECES

Place a linear smoothing spline prior on $\log f(\nu)$. Let $u_n(\nu_k) = \log P_n(\nu_k)$ and $g(\nu_k) = \log f(\nu_k)$.

- $q(\nu_k) = \alpha_0 + \alpha_1 \nu_k + h(\nu_k)$ linear $[\alpha]$ + nonlinear [h()]
- $\alpha_0 \sim N(0, \sigma_\alpha^2), \alpha_1 \equiv 0$, since $(\partial q(\nu)/\partial \nu)|_{\nu=0} = 0$.

I FALL TO PIECES

Place a linear smoothing spline prior on $\log f(\nu)$. Let $u_n(\nu_k) = \log P_n(\nu_k)$ and $q(\nu_k) = \log f(\nu_k)$.

- $q(\nu_k) = \alpha_0 + \alpha_1 \nu_k + h(\nu_k)$ linear $[\alpha]$ + nonlinear [h()]
- $\alpha_0 \sim N(0, \sigma_\alpha^2), \alpha_1 \equiv 0$, since $(\partial q(\nu)/\partial \nu)|_{\nu=0} = 0$.
- $h = D\beta$, is a linear combination of basis functions where $h = (h(\nu_0), \dots, h(\nu_{n/2}))'$, and the jth column of D is $\sqrt{2}\cos(j\pi\nu)$, $\nu = (\nu_0, \dots, \nu_{n/2})'.$

Place a linear smoothing spline prior on $\log f(\nu)$. Let $u_n(\nu_k) = \log P_n(\nu_k)$ and $q(\nu_k) = \log f(\nu_k)$.

- $q(\nu_k) = \alpha_0 + \alpha_1 \nu_k + h(\nu_k)$ linear $[\alpha]$ + nonlinear [h()]
- $\alpha_0 \sim N(0, \sigma_\alpha^2), \alpha_1 \equiv 0$, since $(\partial q(\nu)/\partial \nu)|_{\nu=0} = 0$.
- $h = D\beta$, is a linear combination of basis functions where $h = (h(\nu_0), \dots, h(\nu_{n/2}))'$, and the jth column of D is $\sqrt{2}\cos(j\pi\nu)$, $\nu = (\nu_0, \dots, \nu_{n/2})'.$
- $\beta \sim N(0, \tau^2 I)$

Place a linear smoothing spline prior on $\log f(\nu)$. Let $y_n(\nu_k) = \log P_n(\nu_k)$ and $q(\nu_k) = \log f(\nu_k)$.

- $g(\nu_k) = \alpha_0 + \alpha_1 \nu_k + h(\nu_k)$ linear $[\alpha]$ + nonlinear [h()]
- $\alpha_0 \sim N(0, \sigma_\alpha^2)$, $\alpha_1 \equiv 0$, since $(\partial g(\nu)/\partial \nu)|_{\nu=0} = 0$.
- $h=Doldsymbol{eta}$, is a linear combination of basis functions where $h=(h(
 u_0),\dots,h(
 u_{n/2}))'$, and the jth column of D is $\sqrt{2}\cos(j\pi
 u)$, $u=(
 u_0,\dots,
 u_{n/2})'$.
- $\beta \sim N(0, \tau^2 I)$
- $\tau^2 \sim U(0, c_{\tau^2})$

I FALL TO PIECES

The parameters α_0 , $\boldsymbol{\beta}$ and τ^2 are drawn from the posterior distribution $p(\boldsymbol{\alpha}_0, \boldsymbol{\beta}, \tau^2 \mid \boldsymbol{y})$, where $\boldsymbol{y} = (y_n(\nu_0), \dots, y_n(\nu_{n/2}))'$, using MCMC:

• α_0 and β are sampled jointly via an M-H step from

$$p(\alpha_0, \boldsymbol{\beta} \mid \tau^2, \boldsymbol{y}) \propto \exp\left\{-\frac{1}{2} \sum_{k=0}^{n-1} \left[\alpha_0 + \boldsymbol{d}_k' \boldsymbol{\beta} + \exp\left(y_n(\nu_k) - \alpha_0 - \boldsymbol{d}_k' \boldsymbol{\beta}\right)\right] - \frac{\alpha_0^2}{2\sigma_\alpha^2} - \frac{1}{2\tau^2} \boldsymbol{\beta}' \boldsymbol{\beta}\right\},$$

where d'_k is the kth row of D.

ullet au^2 is sampled from the truncated inverse gamma distribution,

$$p(\tau^2 \mid \boldsymbol{\beta}) \propto (\tau^2)^{-J/2} \exp \left(-\frac{1}{2\tau^2} \boldsymbol{\beta}' \boldsymbol{\beta} \right), \ \tau^2 \in (0, c_{\tau^2}].$$

where J = number of frequencies

Sampling Scheme ~ Metropolis-Hastings (M-H)

The parameters α_0 , β and τ^2 are drawn from the posterior distribution $p(\alpha_0, \boldsymbol{\beta}, \tau^2 \mid \boldsymbol{y})$, where $\boldsymbol{y} = (y_n(\nu_0), \dots, y_n(\nu_{n/2}))'$, using MCMC:

• α_0 and β are sampled jointly via an M-H step from

$$p(\alpha_0, \boldsymbol{\beta} \mid \tau^2, \boldsymbol{y}) \propto \exp\left\{-\frac{1}{2} \sum_{k=0}^{n-1} \left[\alpha_0 + \boldsymbol{d}_k' \boldsymbol{\beta} + \exp\left(y_n(\nu_k) - \alpha_0 - \boldsymbol{d}_k' \boldsymbol{\beta}\right)\right] - \frac{\alpha_0^2}{2\sigma_\alpha^2} - \frac{1}{2\tau^2} \boldsymbol{\beta}' \boldsymbol{\beta}\right\},$$

where d'_k is the kth row of D.

 \bullet τ^2 is sampled from the truncated inverse gamma distribution.

$$p(\tau^2 \mid \beta) \propto (\tau^2)^{-J/2} \exp\left(-\frac{1}{2\tau^2}\beta'\beta\right), \ \tau^2 \in (0, c_{\tau^2}],$$

where J = number of frequencies.

PIECEWISE STATIONARY

Suppose $x = \{X_1, \dots, X_n\}$ is a time series with an unknown number of stationary segments.

- m: unknown number of segments (m = 1 means stationary)
- $n_{j,m}$: number of observations in the jth segment, $n_{j,m} \ge t_{\min}$.
- $\xi_{j,m}$: location of the end of the jth segment, $j=0,\ldots,m,$ $\xi_{0,m}\equiv 0$ and $\xi_{m,m}\equiv n.$
- $f_{j,m}$: spectral densities
- $P_{n_{j,m}}$: periodograms at $\nu_{k_j}=k_j/n_{j,m},\, 0\leq k_j\leq n_{j,m}-1.$

WHITTLE LIKELIHOOD

$$\begin{split} \mathcal{L}(f_{1,m},\dots,f_{m,m} \mid \boldsymbol{x} \text{ [data]}, \, \boldsymbol{\xi}_m \text{ [partition]}) \approx \\ & \prod_{j=1}^m (2\pi)^{-n_{j,m}/2} \prod_{k_j=0}^{n_{j,m}-1} \exp \Bigl\{ -\frac{1}{2} \Bigl[\log f_{j,m}(\nu_{k_j}) + \frac{P_{n_{j,m}}(\nu_{k_j})}{f_{j,m}(\nu_{k_j})} \Bigr] \Bigr\} \end{split}$$

I FALL TO PIECES 00000000

PRIOR DISTRIBUTIONS

- Priors on $g_{i,m}(\nu) = \log f_{i,m}(\nu), j = 1, \dots, m$, as before.
- $\Pr(\xi_{i,m} = t \mid m) = 1/p_{im}$, for j = 1, ..., m-1, where $p_{im} = n - \xi_{i-1,m} - (m-j+1)t_{\min} + 1$ is the number of available locations for split point $\xi_{i,m}$.
- The prior on the number of segments

$$Pr(m = k) = 1/M$$
, for $k = 1, ..., M$.

I FALL TO PIECES

SAMPLING SCHEME

LIFE GOES ON WITHIN MOVES AND WITHOUT MOVES

Within-model moves: (location of end points)

- Given m, $\xi_{k^*,m}$ is proposed to be relocated.
- The corresponding and β s are updated (absorb α_0 s into β s).
- These two steps are jointly accepted or rejected in a M-H step.
- The τ^2 s are then updated in a Gibbs step.

Between-model moves: (number of segments)

- $m^p = m^c + 1^{\dagger}$
 - Select a segment to split
 - Select a new split point in this segment.
 - Two new τ^2 s are formed from the current τ^2
 - Two new β s are drawn.
- $m^p = m^c 1$
 - Select a split point to be removed.
 - A single τ^2 is then formed from the current τ^2 s
 - A new β is proposed.

Accept or Reject in a M-H step.

I FALL TO PIECES

[†]c=current, p=proposed

Let $\theta_m = \{\xi_m, \tau_m^2, \beta_m\}$ and suppose the chain is currently at $(m^c, \theta_{m^c}^c)$. We propose to move to $(m^p, \theta_{m^p}^p)$ by drawing $(m^p, \theta_{m^p}^p)$ from a proposal density $q(m^p, \theta_{m^p}^p \mid m^c, \theta_{m^c}^c)$ and accepting this draw with probability

I FALL TO PIECES

$$\alpha = \min \left\{ 1, \frac{p(m^p, \boldsymbol{\theta}_{m^p}^p | \boldsymbol{x}) \times q(m^c, \boldsymbol{\theta}_{m^c}^c \mid m^p, \boldsymbol{\theta}_{m^p}^p)}{p(m^c, \boldsymbol{\theta}_{m^c}^c | \boldsymbol{x}) \times q(m^p, \boldsymbol{\theta}_{m^p}^p \mid m^c, \boldsymbol{\theta}_{m^c}^c)} \right\},$$

where $p(\cdot)$ is the approximate likelihood. The M-H transition kernel is composed of the $q(m^p|m^c) \times \alpha$. These are essentially a likelihood ratios. Thus the decision of whether or not to change m via the posterior is essentially based on the likelihood ratio.

Within-model moves, relocation of end points, is similar.

Let $\boldsymbol{\theta}_m = \{\boldsymbol{\xi}_m, \boldsymbol{ au}_m^2, \boldsymbol{\beta}_m\}$ and suppose the chain is currently at $(m^c, \boldsymbol{\theta}_{m^c}^c)$. We propose to move to $(m^p, \boldsymbol{\theta}_{m^p}^p)$ by drawing $(m^p, \boldsymbol{\theta}_{m^p}^p)$ from a proposal density $q(m^p, \boldsymbol{\theta}_{m^p}^p \mid m^c, \boldsymbol{\theta}_{m^c}^c)$ and accepting this draw with probability

I FALL TO PIECES

$$\alpha = \min \left\{ 1, \frac{p(m^p, \boldsymbol{\theta}_{m^p}^p | \boldsymbol{x}) \times q(m^c, \boldsymbol{\theta}_{m^c}^c \mid m^p, \boldsymbol{\theta}_{m^p}^p)}{p(m^c, \boldsymbol{\theta}_{m^c}^c | \boldsymbol{x}) \times q(m^p, \boldsymbol{\theta}_{m^p}^p \mid m^c, \boldsymbol{\theta}_{m^c}^c)} \right\},$$

where $p(\cdot)$ is the approximate likelihood. The M-H transition kernel is composed of the $q(m^p|m^c)\times \alpha$. These are essentially a likelihood ratios. Thus the decision of whether or not to change m via the posterior is essentially based on the likelihood ratio.

Within-model moves, relocation of end points, is similar.

- ... and model averaging!
- ... and all data used for estimation, not just segmented data!

EXAMPLE

Consider two tvAR(1) models $X_t = a_t X_{t-1} + W_t$ for $t = 1, \dots, 500$ (blue) $a_t = t/500 - .5$ There is no optimal segmentation in this case. (green) $a_t = .5 \, \text{sign}(t - 250)$

I FALL TO PIECES

000000000

In each case, m=2 is the modal value [posteriors in paper] on the number of partitions. Plotted below are $\Pr(\xi_{1,2} = t \mid data)$ and $\Pr(\xi_{1,2} < t \mid data)$, where $\xi_{1,2}$ is the change point when m = 2.

El Niño - Southern Oscillation

Annual Global Temperature Anomalies 1950 - 2011

Plots of (a) SOI from 1876–2011; (b) Niño3.4 index from 1950-2011; (c) DSLPA from 1951-2010.

The Posteriors –
$$\Pr(m = k \mid \boldsymbol{x})$$

\overline{k}	SOI	Niño3.4	DSLPA
1	0.95	0.93	0.99
2	0.05	0.07	0.01
3	0.00	0.00	0.00

The Posteriors – $\Pr(m = k \mid \boldsymbol{x})$

k	SOI	Niño3.4	DSLPA
1	0.95	0.93	0.99
2	0.05	0.07	0.01
3	0.00	0.00	0.00

Info for Authors | Editorial Board | About | Subscribe | Advertise | Contact | Feedback | Site Map

PNAS

ENSO and cholera: A nonstationary link related to climate change?

Xavier Rodó*, Mercedes Pascual†‡, George Fuchs§¶, and A. S. G. Faruque§

+ Author Affiliations

Edited by Simon A. Levin, Princeton University, Princeton, NJ, and approved July 8, 2002 (received for review April 5, 2002)

Abstract

We present here quantitative evidence for an increased role of interannual climate variability on the temporal dynamics of an infectious disease. The evidence is based on time-series analyses of the relationship between El Niño/Southern Oscillation (ENSO) and cholera prevalence in Bangladesh (formerly Bengal) during two different time periods. A strong and consistent signature of ENSO is apparent in the last two decades (1980-2001), while it is weaker and eventually uncorrelated during the first parts of the last century (1893-1920 and 1920-1940, respectively). Concomitant with these changes, the Southern Oscillation Index (SDI) undergoes shifts in its frequency spectrum. These changes include an intensification of the approximately 4-yr cycle during the recent interval as a response to the well documented Pacific basin regime shift of 1976. This change

Proceedings of the National Academy of Sciences of the United States of America « Previous | Next Article » GO Table of Contents advanced search >> This Article This Week's Issue Published online before print March 20, 2012, 109 (12) September 12, 2002, doi: 10.1073/pnas.182203999 PNAS October 1, 2002 vol. 99 no. 20 12901-12906 » Abstract Figures Only Full Text Full Text (PDF) Full Text + SI (Combined PDF) Supporting Figure From the Cover - Classifications **Biological Sciences** · Evolution of complex Ecology sperm morphology · Self-healing synthetic Services Email this article to a colleague · Origins of hematopoietic Alert me when this article is Toxin resistance in snakes · Circadian control of plant Alert me if a correction is defenses Similar articles in this journal Similar articles in PubMed

Alert me to new issues of PNAS

Add to My File Cabinet