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FOURIER TRANSFORM AND PERIODOGRAM

Collect stationary time series { X¢; t = 1, ..., n} with interest in cycles.
Rather than work with the data { X}, we transform it into the frequency domain:

Discrete Fourier Transformation (DFT)

Xy d_] —n—1/2 Z?:l hxe) e—2mitj/n

Periodogram (j—0,1,...,n — 1)
1 n 2 1 o 2
P(v;) = |d;|? = |:n ZXt cos(2mtL) | + ;ZXt sin(ZWti)]
=1 t=1
That is, match (correlate) data with [co]sines oscillating at fregs v; = %%
- X = Py

o 20 a0 &0 80 100 0.0 0.1 0.2 03 0.4 o5

Time Frequency
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SPECTRAL DENSITY

2
The periodogram P (v;.,) = [n~*/? 37| X, exp(—2mitv;.,)| is a sample
concept. Its population counterpart is the (v;., = % — V)

Spectral Density

oo

fv) = nan;o E{P(vjm)} = Z ~(h) exp(2mivh)

provided the limit exits (i.e. > |v(h)| < oo where y(h) = cov{Xiin, X:}). It
follows that f(v) >0, f(1+v) = f(v), f(v) = f(—v), and because

1/2
~v(h) = [ f(v) exp(—2mivh) dv

1/2
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SPECTRAL DENSITY

2
The periodogram P (v;.,) = [n~*/? 37| X, exp(—2mitv;.,)| is a sample
concept. Its population counterpart is the (v;., = % — V)

Spectral Density

oo

fv) = nan;o E{P(vjm)} = Z ~(h) exp(2mivh)

provided the limit exits (i.e. > |v(h)| < oo where y(h) = cov{Xiin, X:}). It
follows that f(v) >0, f(1+v) = f(v), f(v) = f(—v), and

1/2
/ F) dv =var(X))  [=~(0)].

—1/2
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SPECTRAL DENSITY

2
The periodogram P (v;.,) = [n~*/? 37| X, exp(—2mitv;.,)| is a sample
concept. Its population counterpart is the (v;., = % — V)

Spectral Density

oo

fv) = nan;o E{P(vjm)} = Z ~(h) exp(2mivh)

provided the limit exits (i.e. > |v(h)| < oo where y(h) = cov{Xiin, X:}). It
follows that f(v) >0, f(1+v) = f(v), f(v) = f(-v),and

1/2
/ F) dv =var(X))  [=~(0)].

—1/2

The sample equivalent of the integral equation is:
n—1
Z P(j/n)n~ " = 5%
j=1
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@ WN: W, is white noise if EW; = 0 and v(h) = 2,6%. The spectral density

fw) = ~y(h)exp(=2mivh) =07, —1/2<v<1/2,

is uniform (think of white light).
@ MA: Xy = Wi+ .9Wi_4
@ AR: Xy = X1 — 9Xy—o + Wy

spectrum

12

White Noise
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SOME ASYMPTOTIC RESULTS

cos(27tvj.n ) —isin(27mtv; ., )

n
—_——
d(vjn) = n~l/? ZXt exp(—2mitv;.n)

t=1

- dc(Vj:n) —1 ds(l/j:n)
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SOME ASYMPTOTIC RESULTS

cos(27tvj.n ) —isin(27mtv; ., )

n
—_——
d(vjun) =n~? ZXt exp(—2mitv;.n)

t=1
= dc(Vj:n) —14 ds(l/j:n)
Under general conditions on {X;} (n — 00, Vjin — v):

@ dc(vjin) ~ AN (0, % f(l/))
@ ds(Vjin) ~ AN(O, % f(z/))
o dg(Vj:n) 1 dg(Vk:n) Vj, k (Wk:n — v/ # v and terms not the same)
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SOME ASYMPTOTIC RESULTS

cos(27tvj.n ) —isin(27mtv; ., )

n
—_——
d(vjun) =n~? ZXt exp(—2mitv;.n)

t=1
= dc(Vj:n) —14 ds(l/j:n)
Under general conditions on {X;} (n — 00, Vjin — v):

@ dc(vjin) ~ AN (0, % f(l/))
@ ds(Vjin) ~ AN(O, % f(z/))
o dg(Vj:n) 1 dg(Vk:n) Vj, k (Wk:n — v/ # v and terms not the same)

Pn(Vj:n) = dz(lj]n) + di(Vj:TL)y
SO

DAVID STOFFER AUTOSPEC for better segmentation
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SOME ASYMPTOTIC RESULTS

cos(27tvj.n ) —isin(27mtv; ., )

n
—_——
d(vjm) = n~1/2 ZXt exp(—2mitv;.n)

t=1

- dc(Vj:n) —1 ds(l/j:n)
Under general conditions on {X;} (n — 00, Vjin — v):
® de(vsm) ~ AN(0, § £(»))
@ ds(Vjin) ~ AN(O, % f(z/))
o dg(ujm) 1 dg(yk;n) Vj, k (Wk:n — v/ # v and terms not the same)

Pa(Vjim) = d2(Vjim) + d3(Vjm),  thus  2Pu(vjm)/f(v) = X3,
SO

E[P.(vjn)] — f(v), butvar|[P, (v;.n)] — f*(v) <> BAD

DAVID STOFFER AUTOSPEC for better segmentation
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SOME ASYMPTOTIC RESULTS

cos(27tvj.n ) —isin(27mtv; ., )

n
—_——
d(vjun) =n~? ZXt exp(—2mitv;.n)

t=1

- dc(Vj:n) —1 ds(l/j:n)
Under general conditions on {X;} (n — 00, Vjin — v):
® de(vsm) ~ AN(0, § £(»))
@ ds(Vjin) ~ AN(O, % f(z/))
o dg(Vj:n) 1 dg(Vk:n) Vj, k (Wk:n — v/ # v and terms not the same)

Pa(Vjim) = d2(Vjim) + d3(Vjm),  thus  2Pu(vjm)/f(v) = X3,
SO

E[P.(vjn)] — f(v), butvar|[P, (v;.n)] — f*(v) <> BAD

One remedy? Kernel smooth for consistency:

N 1/2
flv)= /71/2 Py (M) Kn(v — N)dA
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WHITTLE LIKELIHOOD

Given time series data « = (X3, ..., X,,), for large n,

n—1

L(f | z) ~ (27) "/QHexp{—Q[logf(vk) P”(Vk)}},

k=0

vp=k/n,andk =0,...,[n/2].
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STATIONARY CASE

ESTIMATION OF SPECTRA VIA SMOOTHING SPLINES

In the stationary case, let P, (v)) denote the periodogram. For large n,
approximately [recall 2P, (v )/ f () = x2]

Po(vi) = f(vk) Uk

where f(vy) is the spectrum and Uy, w Gamma(l,1).

DAVID STOFFER AUTOSPEC for better segmentation
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STATIONARY CASE

ESTIMATION OF SPECTRA VIA SMOOTHING SPLINES

In the stationary case, let P, (v)) denote the periodogram. For large n,
approximately [recall 2P, (v )/ f () = x2]

Py(vk) = f(vie)Uk
where f(vy) is the spectrum and Uy, w Gamma(l,1).
Taking logs, we have a GLM

y(vk) = g(vk) + ek

where y(vi) = log P, (vx), g(vi) = log f(vi) and e, are iid log(x3/2)s.

DAVID STOFFER AUTOSPEC for better segmentation
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STATIONARY CASE

ESTIMATION OF SPECTRA VIA SMOOTHING SPLINES

In the stationary case, let P, (v)) denote the periodogram. For large n,
approximately [recall 2P, (v )/ f () = x2]

Po(vie) = f(vi) Uk
where f(vy) is the spectrum and Uy, w Gamma(l,1).
Taking logs, we have a GLM
y(vi) = g(vi) + €k
where y(v;) = log P, (vk), g(vi) = log f(vx) and e, are iid log(x3/2)s.
Want to fit the model with the constraint that ¢() is smooth.

Wahba (1980) suggested smoothing splines. This can be done in a
Bayesian framework.

DAVID STOFFER AUTOSPEC for better segmentation
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AR(2)

e log P, — trueg=log f - - - 95% credible intervals

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
frequency
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AR(2)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
frequency
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How IT’s DONE: PRIOR DISTRIBUTIONS

Place a linear smoothing spline prior on log f(v). Let
Yn (Vi) = log Py (vy) and g(vy) = log f(vi).

Wood, Jiang, Tanner (2002). Bayesian mixture of splines for ... nonparametric regression. Biometrika

DAVID STOFFER AUTOSPEC for better segmentation
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How IT’s DONE: PRIOR DISTRIBUTIONS

Place a linear smoothing spline prior on log f(v). Let
Yn (Vi) = log Py (vy) and g(vy) = log f(vi).

@ g(vk) = g+ aqvg + h(vg)  linear [a] + nonlinear [A()]

Wood, Jiang, Tanner (2002). Bayesian mixture of splines for ... nonparametric regression. Biometrika
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How IT’s DONE: PRIOR DISTRIBUTIONS

Place a linear smoothing spline prior on log f(v). Let
Yn (Vi) = log Py (vy) and g(vy) = log f(vi).

@ g(vk) = g+ aqvg + h(vg)  linear [a] + nonlinear [A()]

@ ag ~ N(0,02), ay = 0, since (9g(v)/Ov)|,=o = 0.

Wood, Jiang, Tanner (2002). Bayesian mixture of splines for ... nonparametric regression. Biometrika
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How IT’s DONE: PRIOR DISTRIBUTIONS

Place a linear smoothing spline prior on log f(v). Let

Yn (Vi) = log Py (vy) and g(vy) = log f(vi).
@ g(vk) = g+ aqvg + h(vg)  linear [a] + nonlinear [A()]
@ oy~ N(0,02), a; =0, since (0g(v)/Ov)|,—o = 0.

@ h = Dp, is alinear combination of basis functions where
h = (h(n),...,h(vy/2))’, and the jth column of D is v/2 cos(jrv),
v=(vo,...,Vns2)-

Wood, Jiang, Tanner (2002). Bayesian mixture of splines for ... nonparametric regression. Biometrika
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How IT’s DONE: PRIOR DISTRIBUTIONS
Place a linear smoothing spline prior on log f(v). Let
Yn (Vi) = log Py (vy) and g(vy) = log f(vi).
@ g(vk) = g+ aqvg + h(vg)  linear [a] + nonlinear [A()]
@ ag ~ N(0,02), ay = 0, since (9g(v)/Ov)|,=o = 0.

@ h = Dp, is alinear combination of basis functions where
h = (h(n),...,h(vy/2))’, and the jth column of D is v/2 cos(jrv),
v=(vo,...,Vns2)-

@ B~ N(0,7%I)

Wood, Jiang, Tanner (2002). Bayesian mixture of splines for ... nonparametric regression. Biometrika
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How IT’s DONE: PRIOR DISTRIBUTIONS
Place a linear smoothing spline prior on log f(v). Let
Yn (Vi) = log Py (vy) and g(vy) = log f(vi).
@ g(vk) = g+ aqvg + h(vg)  linear [a] + nonlinear [A()]
@ ag ~ N(0,02), ay = 0, since (9g(v)/Ov)|,=o = 0.

@ h = Dp, is alinear combination of basis functions where
h = (h(n),...,h(vy/2))’, and the jth column of D is v/2 cos(jrv),
v=(vo,...,Vns2)-

@ B~ N(0,7%I)

o 72~ U(0,c,2)

Wood, Jiang, Tanner (2002). Bayesian mixture of splines for ... nonparametric regression. Biometrika

DAVID STOFFER AUTOSPEC for better segmentation
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SAMPLING SCHEME ~ METROPOLIS-HASTINGS (M-H)

The parameters ag, B and 72 are drawn from the posterior distribution
plao, B,7° | y), where y = (Yn(10), - -, Yn(Vns2))’, using MCMC:

@ o9 and 3 are sampled jointly via an M-H step from

n—1

plao, B ‘ 727 Y) CXP{*% ;} [ao + d;vﬁ + OXP(yn(Vk:) — Qo — d;cﬁ)]

where dj, is the kth row of D.

DAVID STOFFER AUTOSPEC for better segmentation
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SAMPLING SCHEME ~ METROPOLIS-HASTINGS (M-H)

The parameters ag, B and 72 are drawn from the posterior distribution
plao, B,7° | y), where y = (Yn(10), - -, Yn(Vns2))’, using MCMC:

@ o9 and 3 are sampled jointly via an M-H step from

n—1

plao, B ‘ 727 Y) CXP{*% ;} [ao + d;vﬁ + OXP(yn(Vk:) — Qo — d;cﬁ)]

where dj, is the kth row of D.

@ 72 is sampled from the truncated inverse gamma distribution,
_ 1
p(T2 | ﬂ) X (TQ) Iz eXp<7ﬁ/8/ﬂ)a T2 € (07672}7

where J = number of frequencies.

DAVID STOFFER AUTOSPEC for better segmentation
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PIECEWISE STATIONARY

1 j-1 J

nim Mj—1,m Njm
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m

Nm,m

fOl‘m gll.m e ) 51:1,m gj..m

gm. m

Suppose = {X},..., X, } is a time series with an unknown number of

stationary segments.

m: unknown number of segments (m = 1 means stationary)

nj.m: humber of observations in the jth segment, n; ,,, > tiin.
&j.m: location of the end of the jth segment, j =0,...,m, §,, =0and

fm,m =n.
fj,m: spectral densities
P

Mo

DAVID STOFFER AUTOSPEC for better segmentation
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WHITTLE LIKELIHOOD

E(fl,ma ceey fm,m | X [data], €m [parliticn]) ~

Tiomy e 1T expl ] Py ()
jl;[l(zw) e kl__[o exp{—i{logfj,m(l/kj)—km}}

DAVID STOFFER AUTOSPEC for better segmentation
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PRIOR DISTRIBUTIONS

@ Priors on g; (V) =log fjm(v), j = 1,...,m, as before.

® Pr(&m=t|m)=1/pjm,forj=1,....m—1,
where pj,, =n —&_1,m — (m — j + 1)tymin + 1 is the number of
available locations for split point & .

@ The prior on the number of segments

Pr(m=k)=1/M, for k=1,...,M.

DAVID STOFFER AUTOSPEC for better segmentation
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SAMPLING SCHEME

LIFE GOES ON WITHIN MOVES AND WITHOUT MOVES
Within-model moves: (location of end points)
@ Given m, &~ ., is proposed to be relocated.
@ The corresponding and 3s are updated (absorb aygs into 3s).

@ These two steps are jointly accepted or rejected in a M-H step.

@ The 72s are then updated in a Gibbs step.

DAVID STOFFER AUTOSPEC for better segmentation
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Between-model moves: (number of segments)
o mP =mc+1f
o Select a segment to split
o Select a new split point in this segment.
o Two new 72s are formed from the current 72
e Two new (s are drawn.

omP=mc—-1
o Select a split point to be removed.

o Asingle 72 is then formed from the current 72s

o A new 3 is proposed.

Accept or Reject in a M-H step.

fe=current, p=proposed

DAVID STOFFER AUTOSPEC for better segmentation
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Between-Model Moves: m¢ — m?

Let9,, = {¢,,,72,,3,,} and suppose the chain is currently at (m<, 65,.).
We propose to move to (m?, 6% ) by drawing (m?, 6% ,) from a proposal
density g(m?, 0%, | m®, 65,.) and accepting this draw with probability

m”,@f’np)}

o i d 1 P07 00 ) X gm0,
" p(me, 6,

me

$) X Q(mpv ei)np | nlca efnL)

where p(-) is the approximate likelihood. The M-H transition kernel is
composed of the ¢(mP|m®) x «. These are essentially a likelihood ratios.
Thus the decision of whether or not to change m via the posterior is
essentially based on the likelihood ratio.

Within-model moves, relocation of end points, is similar.

DAVID STOFFER AUTOSPEC for better segmentation
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Between-Model Moves: m¢ — m?

Let9,, = {¢,,,72,,3,,} and suppose the chain is currently at (m<, 65,.).
We propose to move to (m?, 6% ) by drawing (m?, 6% ,) from a proposal
density g(m?, 0%, | m®, 65,.) and accepting this draw with probability

me
'g
mP, 0" ) }
)

a=min<{ 1 p(mP, 0%, |x) x g(m®, 0.
" p(me, 6,

me

$) X Q(mpv ei)np | nlca efnc)

where p(-) is the approximate likelihood. The M-H transition kernel is
composed of the ¢(mP|m®) x «. These are essentially a likelihood ratios.
Thus the decision of whether or not to change m via the posterior is
essentially based on the likelihood ratio.

Within-model moves, relocation of end points, is similar.

... and model averaging!
... and all data used for estimation, not just segmented data!

DAVID STOFFER AUTOSPEC for better segmentation
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EXAMPLE

Consider two tvAR(1) models X; = a; X1 + Wi fort =1,...,500
(blue) a; =t/500 — .5 There is no optimal segmentation in this case.
(green) a; = .5sign(t — 250)

<
- =3
N — —
-~ -1 =~ O
[=X8 ©c]
o ] <
[ O| -
T T T T T T T T T T T T
0 100 200 300 400 500 0 100 200 300 400 500
Time Time
- <
- ST
. -
-~ — =~ O
X ST
T
B <
7 S
T T T T T T T T T T T T
0 100 200 300 400 500 0 100 200 300 400 500
Time Time
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In each case, m = 2 is the modal value [posteriors in paper] on the

number of partitions. Plotted below are Pr(¢;,2 = ¢ | data) and

Pr(&1, < t | data), where &, 5 is the change point when m = 2.

(a) (b)
1
0.75
P(&1.2= tIX) P(&1,2< tIX)
0.25
0
t 0 100 200 300 400 500
t
(c) (d)
1
[
0.75 {
P (1,2 tIX) P (1,2 tIX) U‘
0.25 /
\
0 |
0 100 200 300 400 500 0 100 200 300 400 500
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Log(Power)

<— time-varying

Frequency Time (rescaled)

Log(Power)

change-point —

- 05 o
requency Time (rescaled)
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El Nino — Southern Oscillation

40

30

x
[9]
o°
5
c
o
=
©

Southern Osci

WE’RE SO SORRY, UNCLE ENSO
0000

La Nina
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Annual Global Temperature Anomalies

1950 - 2011
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Plots of (a) SOI from 1876—2011; (b) Nifno3.4 index from 1950-2011;
(c) DSLPA from 1951-2010.
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Abstract

We present here quantitative evidence for an increased role of
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variability on the temporal dynamics of an infectious disease. The e
based on time-series analyses of the
Oscillation (ENSO) and cholera prevalence in Bangladesh (formerly Bengal) during
two different time periods. A strong and consistent signature of ENSO is apparent
in the last two decades (1980-2001), while it is weaker and eventually
uncorrelated during the first parts of the last century (1893-1920 and 1920-1940,
respectively). Concomitant with these changes, the Southern Oscillation Index (501)
undergoes shifts in its frequency spectrum. These changes include an
intensification of the approximately 4-yr cycle during the recent interval as a
response to the well documented Pacific basin regime shift of 1976. This change
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