Partial Reconstruction Algorithm of a **Branching Diffusion with Immigration**

Tobias Berg University of Mainz, Germany bergto@uni-mainz.de

presented at DYNSTOCH Conference in Warwick, Great Britain, September 10 – 12, 2014

Branching Diffusion with Immigration (BDI)

Systems of finitely many particles:

- One-dimensional particle motion, particles travel independently of each other according to a solution of a diffusion $dX_t = b(X_t) dt + \sigma(X_t) dW_t$.

Partial Reconstruction Algorithm

Let $0 < \lambda < 1/2$, let T be a fixed point of time and let $\beta_{i\Delta} = (\beta_{i\Delta}^1, ..., \beta_{i\Delta}^{l(\beta_{i\Delta})})$ be an arrangement of $\eta_{i\Delta} = (\eta_{i\Delta}^1, ..., \eta_{i\Delta}^{l(\eta_{i\Delta})})$ with $0 \le i \le \lfloor T/\Delta \rfloor - 1$ and $1 \le k \le l(\eta_{i\Delta})$. • Let $\beta_{(i+1)\Delta}^{[i\Delta,\beta_{i\Delta}^k]}$ be the set of components of $\beta_{(i+1)\Delta}$ whose distance to every $\beta_{i\Lambda}^k$ (with $1 \leq k \leq l(\beta_{i\Delta})$ is less than Δ^{λ} .

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

- Branching according to a position-dependent rate: newborn particles are distributed randomly in space.
- Immigration according to a constant rate.

The resulting process $\eta = (\eta_t)_{t \ge 0}$ (values in the configuration space $\mathcal{S} := \bigcup_{l \in \mathbb{N}_0} \mathbb{R}^l$) is called a branching diffusion with immigration (BDI).

How does a typical BDI path look like? Death and Reproduction Death and Reproduction Death

- Let D_{ε} be the set of configurations of \mathcal{S} whose components are at least ε away from each other. Its complement is denoted by $S_{\varepsilon} := \mathcal{S} \setminus D_{\varepsilon}$.

Definition

A pair of successive $(\eta_{i\Delta}, \eta_{(i+1)\Delta}), 0 \leq i \leq \lfloor T/\Delta \rfloor - 1$, is called interpretable if there exists an arrangement $(\beta_{i\Delta}, \beta_{(i+1)\Delta})$ with

 $\begin{vmatrix} \beta_{i\Delta} \in D_{4\Delta^{\lambda}} & and & \beta_{(i+1)\Delta} \in D_{2\Delta^{\lambda}}, \\ |\beta_{(i+1)\Delta}^{[i\Delta,\beta_{i\Delta}^k]}| = 1 & for \ every \quad 1 \le k \le l(\beta_{i\Delta}). \end{cases}$

The following plot illustrates this definition:

- Green: Interpretable pairs of successive observations.

- Red: Non-interpretable pairs of successive observations.

Assumptions on the BDI

- Harris recurrence (void configuration as a recurrent atom), the corresponding finite invariant measure is $m(\cdot)$.
- Both the finite invariant measure $m(\cdot)$ and the finite occupation measure

$$\overline{m}(B) := \int_{\mathcal{S}} \mathbf{x}(B) \, m(d\mathbf{x}), \ B \in \mathcal{B}(\mathbb{R}),$$

admit for continuous Lebesgue densities.

Statistics on a BDI

• What is our statistical aim?

Estimation of the diffusion coefficient $\sigma(\cdot)$ by observing the path of the BDI at discrete points of time. We wish to fill a "classical" regression scheme.

• What is needed?

Our interpretation yields an assignment which may be wrong.

Definition

Let G be the set of all interpretable pairs $(\eta_{i\Delta}, \eta_{(i+1)\Delta}), 0 \leq i \leq \lfloor T/\Delta \rfloor - 1$, such that the assignment is correct and no component of $\eta_{i\Delta}$ branches during time $(i\Delta, (i+1)\Delta]$. Call pairs in G "properly interpretable".

Reconstruction of the underlying BDI path from discrete observations, i.e., at discrete time points with step size Δ .

• Why is it needed?

- Observing the path of the BDI at discrete points of time
- one cannot see the pedigree of the particles.
- one does not know which particle belongs to which diffusion path.

• What is special?

When reconstructing the underlying BDI path, we are not interested in keeping all information: we only consider "good" observations and reject "bad" ones.

Using nice properties of densities of $m(\cdot)$ and $\overline{m}(\cdot)$ (c.f. Hammer 2012):

Theorem 2

$$m(S_{\varepsilon}) = \mathcal{O}(\varepsilon), \quad as \quad \varepsilon \to 0$$

References

BRANDT, C. (2005): Partial reconstruction of the trajectories of a discretely observed branching diffusion with immigration and an application to inference. http://ubm.opus.hbznrw.de/volltexte/2005/756/pdf/diss.pdf on 06-01-2012.

HAMMER, M. (2012): Ergodicity and Regularity of Invariant Measure for Branching Markov Processes with Immigration. http://ubm.opus.hbz-nrw.de/volltexte/2012/3306/pdf/doc.pdf on 01-04-2013.

HÖPFNER, R./LÖCHERBACH, E. (2005): Remarks on ergodicity and invariant occupation measure in branching diffusions with immigration. Ann. I. H. Poincar PR. 41: 1025-1047.