Partial Reconstruction Algorithm of a Branching Diffusion with Immigration

Tobias Berg
University of Mainz, Germany
bergto@uni-mainz.de

presented at DYNSTOCH Conference in
Warwick, Great Britain, September 10 -12, 2014

Branching Diffusion with Immigration (BDI)

Systems of finitely many particles:

- One-dimensional particle motion, particles travel independently of each other ac cording to a solution of a diffusion $d X_{t}=b\left(X_{t}\right) d t+\sigma\left(X_{t}\right) d W_{t}$.
- Branching according to a position-dependent rate: newborn particles are distributed randomly in space
- Immigration according to a constant rate.

The resulting process $\eta=\left(\eta_{t}\right)_{t \geq 0}$ (values in the configuration space $\mathcal{S}:=\bigcup_{l \in \mathbb{N}_{0}} \mathbb{R}^{l}$) is called a branching diffusion with immigration (BDI)

How does a typical BDI path look like?

Assumptions on the BDI

- Harris recurrence (void configuration as a recurrent atom), the corresponding finite invariant measure is $m(\cdot)$.
- Both the finite invariant measure $m(\cdot)$ and the finite occupation measure

$$
\bar{m}(B):=\int_{\mathcal{S}} \mathbf{x}(B) m(d \mathbf{x}), B \in \mathcal{B}(\mathbb{R}),
$$

admit for continuous Lebesgue densities

Statistics on a BDI

- What is our statistical aim?

Estimation of the diffusion coefficient $\sigma(\cdot)$ by observing the path of the BDI at discrete points of time. We wish to fill a "classical" regression scheme

- What is needed?

Reconstruction of the underlying BDI path from discrete observations, i.e., at dis crete time points with step size Δ.

- Why is it needed?

Observing the path of the BDI at discrete points of time

- one cannot see the pedigree of the particles
one does not know which particle belongs to which diffusion path.
- What is special?

When reconstructing the underlying BDI path, we are not interested in keeping all information: we only consider "good" observations and reject "bad" ones

Partial Reconstruction Algorithm

Let $0<\lambda<1 / 2$, let T be a fixed point of time and let $\beta_{i \Delta}=\left(\beta_{i \Delta}^{1}, \ldots, \beta_{i \Delta}^{l\left(\beta_{i \Delta}\right)}\right)$ be an arrangement of $\eta_{i \Delta}=\left(\eta_{i \Delta}^{1}, \ldots, \eta_{i \Delta}^{l\left(\eta_{i \Delta}\right)}\right)$ with $0 \leq i \leq\lfloor T / \Delta\rfloor-1$ and $1 \leq k \leq l\left(\eta_{i \Delta}\right)$.

- Let $\beta_{(i+1) \Delta}^{\left[i, \beta_{i}^{k}\right]}$ be the set of components of $\beta_{(i+1) \Delta}$ whose distance to every $\beta_{i \Delta}^{k}$ (with $\left.1 \leq k \leq l\left(\beta_{i \Delta}\right)\right)$ is less than Δ^{λ}
- Let D_{ε} be the set of configurations of \mathcal{S} whose components are at least ε away from each other. Its complement is denoted by $S_{\varepsilon}:=\mathcal{S} \backslash D_{\varepsilon}$.

Definition

A pair of successive $\left(\eta_{i \Delta}, \eta_{(i+1) \Delta}\right), 0 \leq i \leq\lfloor T / \Delta\rfloor-1$, is called interpretable if there exists an arrangement $\left(\beta_{i \Delta}, \beta_{(i+1) \Delta}\right)$ with

$$
\left\{\begin{array}{l}
\beta_{i \Delta} \in D_{4 \Delta^{\lambda}} \quad \text { and } \quad \beta_{(i+1) \Delta} \in D_{2 \Delta^{\lambda}}, \\
\left|\beta_{(i+1) \Delta}^{\left[\Delta \Delta \beta_{i}^{\top}\right]}\right|=1 \quad \text { for every } \quad 1 \leq k \leq l\left(\beta_{i \Delta}\right) .
\end{array}\right.
$$

The following plot illustrates this definition:
Green: Interpretable pairs of successive observations.

- Red: Non-interpretable pairs of successive observations

Our interpretation yields an assignment which may be wrong

Definition

Let G be the set of all interpretable pairs $\left(\eta_{i \Delta}, \eta_{(i+1) \Delta}\right), 0 \leq i \leq\lfloor T / \Delta\rfloor-1$, such that the assignment is correct and no component of $\eta_{i \Delta}$ branches during time $(i \Delta,(i+1) \Delta]$. Call pairs in G "properly interpretable"

Results of the algorithm

Theorem 1

$$
1 \geq \mathbf{E}_{m}\left(\frac{1}{\lfloor T / \Delta\rfloor} \sum_{i=0}^{\lfloor T / \Delta\rfloor-1} \mathbf{1}_{G}\left(\left(\eta_{i \Delta}, \eta_{(i+1) \Delta}\right)\right)\right) \geq 1-\mathcal{O}\left(\Delta^{\lambda}\right), \quad \text { as } \quad \Delta \rightarrow 0
$$

Using nice properties of densities of $m(\cdot)$ and $\bar{m}(\cdot)$ (c.f. Hammer 2012)
Theorem 2

$$
m\left(S_{\varepsilon}\right)=\mathcal{O}(\varepsilon), \quad \text { as } \quad \varepsilon \rightarrow 0
$$

References

BRANDT, C. (2005): Partial reconstruction of the trajectories of a discretely observed branching diffusion with immigration and an application to inference. http://ubm.opus.hbznrw.de/volltexte/2005/756/pdf/diss.pdf on 06-01-2012.
HAMMER, M. (2012): Ergodicity and Regularity of Invariant Measure for Branching Markov Processes with Immigration. http://ubm.opus.hbz-nrw.de/volltexte/2012/3306/pdf/doc.pdf on 01-04-2013. HOPFNER, R./LOCHERBACH, E. (2005): Remarks on ergodicity and invariant occupation measure in branching diffusions with immigration. Ann. I. H. Poincar PR. 41: 1025-1047

