### **Ioris Bierkens**

### DynStoch, Warwick University, 10 September 2014

http://jbierkens.nl



SNN Adaptive Intelligence



Radboud University

# Outline

- Motivation
- Theory of non-reversible Metropolis-Hastings
- Example
- Application to spin systems (work in progress)
- General state spaces (work in progress)

# Monte Carlo methods

Let  $\mu = \frac{\pi}{Z}$  a probability distribution, with  $\pi : S \to \mathbb{R}$  known and normalization constant *Z* possibly unknown.

### Examples

- Gibbs density  $\mu(x) \propto \exp(-\beta H(x))$  for a Hamiltonian *H* and inverse temperature  $\beta$ ;
- Bayesian posterior  $\mu(\theta) \propto \prod_{i=1}^{N} f(x_i|\theta) \pi_0(\theta)$  for observations  $(x_i)_{i=1}^{N}$  and prior distribution  $\pi_0$ .

### Goal

Compute 
$$\mathbb{E}_{\mu} \left[ \varphi(X) \right] = \int_{S} \varphi(x) \ d\mu(x)$$

### Monte Carlo method

- Obtain samples  $(X_1, \ldots, X_K)$  from the distribution  $\mu$
- Estimate  $\int \varphi(x) \ d\mu \approx \frac{1}{K} \sum_{k=1}^{K} \varphi(x_k)$

# Markov Chain Monte Carlo

### Markov Chain Monte Carlo method

- Construct a Markov chain with transition matrix *P* that has μ as its invariant distribution.
- Obtain a sample path  $(X_1, \ldots, X_K)$  of *P*
- Estimate

$$\mathbb{E}_{\mu}\left[\varphi(X)\right] \approx \frac{1}{K} \sum_{k=1}^{K} \varphi(X_k).$$

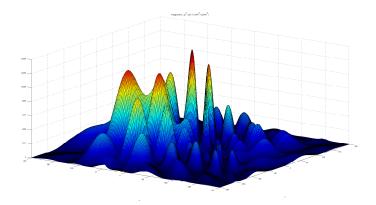
#### Examples

Metropolis-Hastings, Gibbs sampling, Glauber dynamics

Application to spin systems

Estimating mixing time

## The challenge



# Reversibility

A Markov chain with transition density p(x, y) is reversible with respect to  $\pi(x)$  if

 $\pi(x)p(x,y)=p(y,x)\pi(y)\quad \forall x,y.$ 

Other terminology: "satisfies detailed balance", "symmetrizable".

### Symmetrizable

Let  $Pf(x) = \int p(x, y)f(y) dy$  and  $(f, g)_{\pi} := \int f(x)g(x)\pi(x)$ . Then

reversibility  $\Leftrightarrow P = P^*$ .

• Key in correctness proof of Metropolis-Hastings.

## Reversibility

A Markov chain with transition density p(x, y) is reversible with respect to  $\pi(x)$  if

 $\pi(x)p(x,y)=p(y,x)\pi(y)\quad \forall x,y.$ 

Other terminology: "satisfies detailed balance", "symmetrizable".

### Symmetrizable

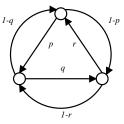
Let  $Pf(x) = \int p(x, y)f(y) dy$  and  $(f, g)_{\pi} := \int f(x)g(x)\pi(x)$ . Then

reversibility  $\Leftrightarrow P = P^{\star}$ .

• Key in correctness proof of Metropolis-Hastings.

### Non-reversible processes are better!

# Example



• Transition matrix 
$$P = \begin{pmatrix} 0 & p & 1-p \\ 1-q & 0 & q \\ r & 1-r & 0 \end{pmatrix}$$
.

- Choose *p*, *q* and *r* such that  $(\frac{2}{5}, \frac{2}{5}, \frac{1}{5})$  is invariant distribution.
- The resulting transition matrix is

$$P = \begin{pmatrix} 0 & \frac{3}{4} + \frac{1}{2}\gamma & \frac{1}{4} - \frac{1}{2}\gamma \\ \frac{3}{4} - \frac{1}{2}\gamma & 0 & \frac{1}{4} + \frac{1}{2}\gamma \\ \frac{1}{2} + \gamma & \frac{1}{2} - \gamma & 0 \end{pmatrix}.$$

## Example, continued

$$P = \begin{pmatrix} 0 & \frac{3}{4} + \frac{1}{2}\gamma & \frac{1}{4} - \frac{1}{2}\gamma \\ \frac{3}{4} - \frac{1}{2}\gamma & 0 & \frac{1}{4} + \frac{1}{2}\gamma \\ \frac{1}{2} + \gamma & \frac{1}{2} - \gamma & 0 \end{pmatrix}.$$

Spectral gap:  $1 - \max(|\lambda_-|, |\lambda_+|)$ 

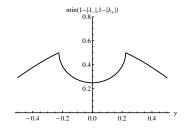


Figure : Spectral gap as a function of  $\gamma$ 

Difficult to relate to notion of mixing time in non-reversible case

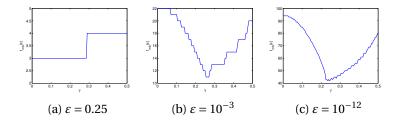
# Example, continued

### Mixing time

• Total variation distance:

$$||\mu - \nu||_{\text{TV}} := \max_{A \subset S} |\mu(A) - \nu(A)| = \frac{1}{2} \sum_{x \in S} |\mu(x) - \nu(x)|.$$

- Define  $d(t) := \max_{x} ||P^{t}(x, \cdot) \mu||$ , where  $\mu$  is invariant for P
- Mixing time:  $t_{mix}(\varepsilon) := \inf\{t \ge 0 : d(t) < \varepsilon\}.$



## Asymptotic variance

$$Y_T = \frac{1}{T} \sum_{t=1}^T \varphi(X_t) - \mathbb{E}_{\pi} \varphi,$$

Asymptotic variance

$$\sigma_{\varphi}^2 = \lim_{T \to \infty} T \mathbb{E}_x \left[ Y_T^2 \right]$$

### Theorem

Let *P* be a Markov transition matrix.

Let *K* be its self-adjoint part with respect to  $(\cdot, \cdot)_{\pi}$ . Then  $\sigma_{\varphi,K}^2 \ge \sigma_{\varphi,P}^2$  and there exists a  $\varphi$  for which strict inequality holds if  $P \neq K$ .

[JB, Non-reversible Metropolis-Hastings, 2014]

### Target distribution $\pi$ .

### Lemma

Let  $P \in \mathbb{R}^{n \times n}$  Markov transition matrix. Define

$$\Gamma(x, y) = \pi(x) P(x, y) - \pi(y) P(y, x).$$
(1)

- (i)  $\Gamma$  is skew-symmetric.
- (ii)  $\pi$  is invariant for P iff  $\sum_{y} \Gamma(x, y) = 0$  for all x
- (iii) *P* is reversible w.r.t.  $\pi$  iff  $\Gamma \equiv 0$ .

### Idea

- Let  $\Gamma$  be a matrix satisfying (i) and (ii)
- Construct a Markov chain *P* such that (1) holds.

[JB, Non-reversible Metropolis-Hastings, 2014]

### Ingredients

- Target distribution  $\pi$ .
- Γ satisfying
  - (i)  $\Gamma$  is skew-symmetric.
  - (ii)  $\sum_{y} \Gamma(x, y) = 0$  for all x
- Proposal chain Q

### Non-reversible Metropolis-Hastings

- Propose state *y* according to  $Q(x, \cdot)$
- Accept with probability  $A(x, y) = \min\left(1, \frac{\Gamma(x, y) + \pi(y)Q(y, x)}{\pi(x)Q(x, y)}\right)$

Resulting chain *P* satisfies  $\Gamma(x, y) = \pi(x)P(x, y) - \pi(y)P(y, x)$ . Therefore  $\pi$  is invariant for *P*!

### Ingredients

π, Γ skew-symmetric with zero row sums, Q

### Non-reversible Metropolis-Hastings

Propose *y* according to  $Q(x, \cdot)$ , accept with probability  $A(x, y) = \min\left(1, \frac{\Gamma(x, y) + \pi(y)Q(y, x)}{\pi(x)Q(x, y)}\right)$ 

Claim:  $\Gamma(x, y) = \pi(x) P(x, y) - \pi(y) P(y, x)$ Proof: Suppose  $\frac{\Gamma(x, y) + \pi(y) Q(y, x)}{\pi(x) Q(x, y)} > 1$ . Rearranging gives  $\Gamma(x, y) + \pi(y) Q(y, x) > \pi(x) Q(x, y) \Leftrightarrow \pi(y) Q(y, x) > -\Gamma(x, y) + \pi(x) Q(x, y)$  $\Leftrightarrow \pi(y) Q(y, x) > \Gamma(y, x) + \pi(x) Q(x, y)$ 

### Remarks on NRMH

### NRMH can construct 'all' Markov chains

Markov chain Q, with invariant distribution  $\pi$  and vorticity matrix

$$\Gamma(x, y) = \pi(x) Q(x, y) - \pi(y) Q(y, x).$$

With *Q* as proposal chain,

$$A(x, y) = \min\left(1, \frac{\Gamma(x, y) + \pi(y) Q(y, x)}{\pi(x) Q(x, y)}\right) = 1.$$

Compatibility requirement

$$A(x, y) = \min\left(1, \frac{\Gamma(x, y) + \pi(y)Q(y, x)}{\pi(x)Q(x, y)}\right)$$

Require  $A \ge 0$ . In particular

 $\Gamma(x, y) = 0$  whenever Q(x, y) = 0.

### Vorticity matrices

Essential in non-reversible Metropolis-Hastings: matrices  $\Gamma \in \mathbb{R}^{n \times n}$  such that (i)  $\Gamma = -\Gamma^T$ , (ii)  $\Gamma \mathbb{1} = 0$ .

#### Lemma

- (a) Let  $u, v \in \mathbb{R}^n$  satisfy  $u \perp v$  and  $u, v \perp \mathbb{1}$ . Then  $\Gamma_{u,v} := uv^T vu^T$  satisfies (i), (ii).
- (b) Let  $u_1, u_2, ..., u_{n-1}$  be an orthonormal base of  $\mathbb{1}^{\perp}$  in  $\mathbb{R}^n$  and write  $\Gamma_{i,j} := \Gamma_{u_i,u_j} = u_i u_j^T u_j u_i^T$ . Then  $\Gamma_{i,j} \perp \Gamma_{k,l}$  whenever  $\{i, j\} \neq \{k, l\}$ .

#### Corollary

 $\{\Gamma_{i,j}: i=1,\ldots,n-1, j=1,\ldots,i-1\}$  is an orthonormal base of  $\mathcal{V}$ , so  $|\mathcal{V}| = \frac{1}{2}(n-1)(n-2).$ 

# Compatibility

Graph G = (S, E); edges represent positive transition probabilities in Q.

(i) 
$$\Gamma = -\Gamma^T$$
.

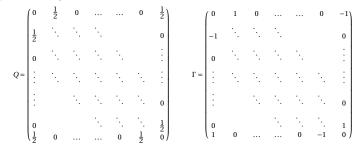
- (ii)  $\Gamma \mathbb{1} = 0$ , i.e.  $\sum_{i=1}^{n} \Gamma(i, j) = 0$  for all  $i = 1, \dots, n$ .
- (iii) Compatibility:  $\Gamma(i, j) = 0$  whenever (i, j) is not an edge.

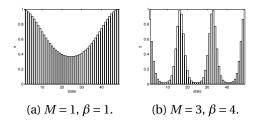
### **Proposition** Let $x, y \in S$

Γ satisfying (i) - (iii) exists and Γ(x, y) > 0⇔ *G* contains a cycle with (*x*, *y*) as an edge.

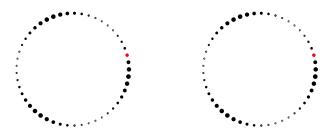
Cycle calculus Image: [Sun, Gomez, Schmidhuber]

### Example: *n*-cycle







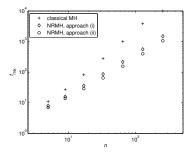


(a) Classical Metropolis-Hastings

(b) Non-reversible Metropolis-Hastings

### Numerical results

| M | $\beta$ | spectral gap | NRMH    | MH       | mixing time | NRMH | MH   |
|---|---------|--------------|---------|----------|-------------|------|------|
| 0 | 0       |              | 0.00814 | 0.00205  |             | 116  | 456  |
| 1 | 2       |              | 0.0132  | 0.00907  |             | 92   | 164  |
| 1 | 4       |              | 0.0205  | 0.0122   |             | 100  | 159  |
| 2 | 2       |              | 0.0141  | 0.00248  |             | 83   | 310  |
| 2 | 4       |              | 0.00703 | 0.000598 |             | 176  | 1189 |
| 3 | 2       |              | 0.0125  | 0.00375  |             | 91   | 275  |
| 3 | 4       |              | 0.00592 | 0.000943 |             | 188  | 1055 |



# Example: Spin systems

Fundamental model in statistical physics, theoretical neuroscience and machine learning

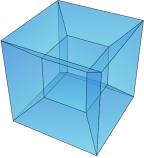
- G = (V, E) a finite graph
- $w: E \to \mathbb{R}$  interaction between vertices
- $h: V \to \mathbb{R}$  external field
- $S = \{+, -\}^V$  set of possible spin configurations (state space)
- $H: S \to \mathbb{R}$  energy function

$$H(x) = -\sum_{\nu_1\nu_2 \in E} w(\nu_1\nu_2) x(\nu_1) x(\nu_2) - \sum_{\nu \in V} h(\nu)\sigma(\nu), \quad x \in S,$$

- $\beta$  'inverse temperature'
- $\mu_{\beta}(x) = \exp(-\beta H(x))/Z$  Boltzmann distribution

# MCMC for spin systems

- State space  $S = \{+, -\}^n$ .
- Markov chain on *S*: flipping one bit at a time.
- Corresponds to Markov chain on the *n*-dim. hypercube



• Proposal chain *Q*: random walk on hypercube.

# Compatible vorticity matrices for hypercube

#### Lemma

The dimension  $a_n$  of space of compatible vorticity matrices for n-dimensional hypercube satisfies

$$a_{n+1} = 2a_n + (2^n - 1), \quad a_1 = 0,$$

with solution  $a_n = 1 + (\frac{1}{2}n - 1)2^n$ .

### Examples

- Every face of the hypercube
- Hamiltonian circuit (Gray code)
- For  $A \in \mathbb{R}^{n \times n}$  skew-adjoint,

$$\Gamma_A(x, y) = \begin{cases} x_i \sum_{j=1}^n a_{ij} x_j & \text{if } y \text{ equals } x \text{ with bit } i \text{ flipped,} \\ 0 & \text{otherwise.} \end{cases}$$

# A long story short

Recall

$$A(x,y) = \min\left(1, \frac{\Gamma(x,y) + \pi(y)Q(y,x)}{\pi(x)Q(x,y)}\right)$$

For given proposal chain *Q*, target distribution  $\pi$ , and compatible vorticity matrix  $\Gamma_0$ , for what range of  $\gamma$  is  $\Gamma = \gamma \Gamma_0$  suitable?

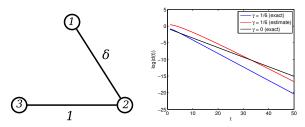
- Some (technical) results in estimating this range.
- Only modest improvements in mixing time so far.
- what is the effect of 'vorticity' on mixing time?

- Very limited results on mixing time for (classical) Metropolis-Hastings [Diaconis, Saloff-Coste, 1998]
- Poincaré inequality: Does not capture improvement over reversible chain
- [James Fill (1991)]: Does not capture improvement over reversible chain

- Very limited results on mixing time for (classical) Metropolis-Hastings [Diaconis, Saloff-Coste, 1998]
- Poincaré inequality: Does not capture improvement over reversible chain
- [James Fill (1991)]: Does not capture improvement over reversible chain

- Very limited results on mixing time for (classical) Metropolis-Hastings [Diaconis, Saloff-Coste, 1998]
- Poincaré inequality: Does not capture improvement over reversible chain
- [James Fill (1991)]: Does not capture improvement over reversible chain

- Very limited results on mixing time for (classical) Metropolis-Hastings [Diaconis, Saloff-Coste, 1998]
- Poincaré inequality: Does not capture improvement over reversible chain
- [James Fill (1991)]: Does not capture improvement over reversible chain
- Path coupling / optimal transport / discrete Ricci curvature:



- Non-reversible chains are better (in some sense)...
- ... but so far Metropolis-Hastings created reversible chains.
- Non-reversible Metropolis-Hastings removes this limitation

- Non-reversible chains are better (in some sense)...
- ... but so far Metropolis-Hastings created reversible chains.
- Non-reversible Metropolis-Hastings removes this limitation

### Use:

• If you have a good (fast mixing) non-reversible chain, use it as proposal chain in NRMH

- Non-reversible chains are better (in some sense)...
- ... but so far Metropolis-Hastings created reversible chains.
- Non-reversible Metropolis-Hastings removes this limitation
- Use:
  - If you have a good (fast mixing) non-reversible chain, use it as proposal chain in NRMH

Main challenge:

• understanding mixing time for non-reversible chains

- Non-reversible chains are better (in some sense)...
- ... but so far Metropolis-Hastings created reversible chains.
- Non-reversible Metropolis-Hastings removes this limitation

### Use:

• If you have a good (fast mixing) non-reversible chain, use it as proposal chain in NRMH

Main challenge:

• understanding mixing time for non-reversible chains

END

# Vorticity measures on general state spaces

- $(S, \mathcal{S})$  measurable space.
- P(x, dy) Markov transition kernel with invariant distribution  $\pi$
- Forward  $F_P(dx, dy) := \pi(dx)P(x, dy)$  and backward  $B_P(dx, dy) = \pi(dy)P(y, dx)$  ergodic flow

### Vorticity measure

$$\Gamma(dx, dy) = F_P(dx, dy) - B_P(dx, dy).$$

Then  $\Gamma$  is a signed measure on  $S \times S$ , satisfying

- $\Gamma(A \times B) = -\Gamma(B \times A)$  for all  $A, B \in \mathcal{S}$ ,
- $\Gamma(A, S) = 0$  for all  $A \in \mathcal{S}$ .

# Non-reversible Metropolis-Hastings in general spaces

Let  $\Gamma$  be a signed measure on  $S \times S$ , satisfying

- $\Gamma(A \times B) = -\Gamma(B \times A)$  for all  $A, B \in \mathcal{S}$ ,
- $\Gamma(A, S) = 0$  for all  $A \in \mathcal{S}$ .

Let

- *Q*(*x*, *dy*) be a proposal chain,
- $F_Q(dx, dy) = \pi(dx) Q(x, dy),$
- $B_Q(dx, dy) = \pi(dy)Q(y, dx).$
- Symmetric structure:  $F_Q$  and  $B_Q$  equivalent (i.e. mutually absolutely continuous)

Hastings Ratio

$$R(x, y) := \frac{d\Gamma}{dF_Q}(x, y) + \frac{dB_Q}{dF_Q}(x, y).$$

Acceptance probability

 $A(x, y) := \min(1, R(x, y)).$ 

### General state spaces; absolutely continuous case

- Proposal chain  $Q(x, dy) = q(x, y)\lambda(dy)$ , where  $\lambda$  is some reference measure.
- Target distribution  $\pi(dx) = \rho(x) \ d\lambda(x)$
- Symmetric structure:  $\rho(x)q(x, y) = 0 \Leftrightarrow \rho(y)q(y, x) = 0$
- $\gamma: S \times S \rightarrow \mathbb{R}$ , satisfying

$$\gamma(x, y) = -\gamma(y, x)$$

- $\int_{A \times S} \gamma(x, y) \lambda(dx) \lambda(dy) = 0$  for all  $A \in \mathcal{S}$ .
- $\gamma(x, y) = 0$  whenever  $\rho(x)q(x, y) = 0$ .
- Hastings ratio:

$$R(x, y) = \begin{cases} \frac{\gamma(x, y) + \rho(y)q(y, x)}{\rho(x)q(x, y)}, & \rho(x)q(x, y) \neq 0, \\ 1, & \rho(x)q(x, y) = 0. \end{cases}$$

## Example: Ornstein Uhlenbeck process

$$dX(t) = AX(t) \ dt + B \ dW(t).$$

- Reversible if and only if  $BB^T A^T = ABB^T$
- Invariant distribution covariance satisfies  $AQ_{\infty} + Q_{\infty}A^T = -BB^T$
- Wieldy expression available for vorticity density
- To do: Relate to Lelièvre, Nier, Pavliotis

# Convergence to equilibrium

### Different quantifications:

Let

$$d(t) := \max_{x} ||P^t(x, \cdot) - \mu(\cdot)||_{\mathrm{TV}}.$$

The  $\varepsilon$ -mixing time is  $\inf\{t \ge 0 : d(t) \le \varepsilon\}$ .

- spectral gap:  $1 \max\{|\lambda| : \lambda \in \sigma(P), \lambda \neq 1\}$
- asymptotic variance:

$$\sigma^{2}(\varphi) := \lim_{T \to \infty} T \operatorname{var}\left(\frac{1}{T} \sum_{t=1}^{T} \varphi(X_{t})\right).$$