Nonparametric estimation in a mixed-effect Ornstein-Uhlenbeck model

Charlotte $Dion^{(1),(2)}$

Ph. D. 2013-2016. Supervisors: Adeline $Samson^{(1)}$, Fabienne $Comte^{(2)}$

LJK, UMR CNRS 5224, Université Joseph Fourier, Grenoble 1
MAP5, UMR CNRS 8145, Université Paris Descartes, Paris Cité

11/09/2014

Content

1 Model and motivation

2 Nonparametric estimator built by deconvolution

- Construction of the collection of estimators
- Data driven selection method

3 Numerical study

- Study on simulated data
- Study on a neuronal database

4 Conclusions

Mixed-effect Ornstein-Uhlenbeck model

<u>Observations</u>: $(X_j(t), 0 \le t \le T)$ j = 1, ..., N, N processes described by

$$\begin{cases} dX_j(t) &= \left(\phi_j - \frac{X_j(t)}{\alpha}\right) dt + \sigma dW_j(t) \\ X_j(0) &= x_j \end{cases}$$

- \rightarrow it models the variability along time for each subject.
 - $(W_j)_{1 \le j \le N}$ are N independent standard Wiener processes.
 - $(\phi_j)_{1 \leq j \leq N}$ are N unobserved *i.i.d.* r.v. with density f: random effect of individual j.
 - $(\phi_j)_{1 \le j \le N}$ and $(W_j)_{1 \le j \le N}$ are independent.
 - (x_1, \ldots, x_N) are known values.
 - T in fixed, known.
 - The positive constants σ and α are supposed to be known.

 \rightarrow When t is fixed: due to the independence of the ϕ_j and the W_j , the $X_j(t)$ are N *i.i.d.* r. v.

$$X_{j}(t) = X_{j}(0)e^{-t/\alpha} + \phi_{j}\alpha(1 - e^{-t/\alpha}) + \sigma e^{-t/\alpha} \int_{0}^{t} e^{s/\alpha} dW_{j}(s).$$

 \rightarrow Differences between observations are due to the realization of both the W_j and $\phi_j.$

 \rightarrow However, the N trajectories $(X_j(t), 0 \le t \le T), j = 1, \dots, N$ are *i.i.d.*

 X_j represents the behaviour of one individual and ϕ_j describes the individual specificity.

Goal: to estimate in a nonparametric way the density f of the random effects.

- Parametric approach: Gaussian assumption (*c.f. e.g* Genon-Catalot and Larédo, (2013), Donnet and Samson, (2008), Delattre *et al.*, (2013)).
- Nonparametric: Comte *et al.*, (2013), for large T. Not efficient when T is small.

Proposal: a new nonparametric estimator, built by **deconvolution**, depending on **two parameters**, selected in a **data-driven way**.

Notations

Let us consider f and g in $L^1(\mathbb{R}) \cap L^2(\mathbb{R})$:

- $||f||^2 = \int_{\mathbb{R}} |f(x)|^2 dx.$
- The Fourier transform of $f: f^*(x) = \int_{\mathbb{R}} e^{iux} f(u) du$ for all $x \in \mathbb{R}$.
- The convolution product of f and $g : f \star g(x) = \int_{\mathbb{R}} f(x-y)g(y)dy.$ We assume

(A)
$$f \in L^2(\mathbb{R}), f^* \in L^1(\mathbb{R}) \cap L^2(\mathbb{R}).$$

Construction of the estimator: deconvolution steps

$$dX_j(t) = \left(\phi_j - \frac{X_j(t)}{\alpha}\right)dt + \sigma dW_j(t), \quad X_j(0) = x_j$$

For $j = 1, \ldots, N, \tau \in]0, T]$, estimators of the ϕ_j

$$Z_{j,\tau} := \frac{X_j(\tau) - X_j(0) - \int_0^\tau (-\frac{X_j(s)}{\alpha} ds)}{\tau}.$$

Construction of the estimator: deconvolution steps

$$dX_j(t) = \left(\phi_j - \frac{X_j(t)}{\alpha}\right)dt + \sigma dW_j(t), \quad X_j(0) = x_j$$

For $j = 1, \ldots, N, \tau \in]0, T]$, estimators of the ϕ_j

$$Z_{j,\tau} := \frac{X_j(\tau) - X_j(0) - \int_0^{\tau} (-\frac{X_j(s)}{\alpha} ds)}{\tau}.$$

Notice that

$$Z_{j,\tau} = \phi_j + \frac{\sigma}{\tau} W_j(\tau).$$

When τ is fixed: the two members of the sum are independent, thus $(Z_{j,\tau})_{j=1,\ldots,N}$ are *i.i.d.*, and

$$f_{Z_{\tau}}(u) = f \star f_{\frac{\sigma}{\tau}W_j(\tau)}(u).$$

Construction of the estimator: deconvolution steps

$$dX_j(t) = \left(\phi_j - \frac{X_j(t)}{\alpha}\right)dt + \sigma dW_j(t), \quad X_j(0) = x_j$$

For $j = 1, \ldots, N, \tau \in]0, T]$, estimators of the ϕ_j

$$Z_{j,\tau} := \frac{X_j(\tau) - X_j(0) - \int_0^\tau (-\frac{X_j(s)}{\alpha} ds)}{\tau}.$$

Notice that

$$Z_{j,\tau} = \phi_j + \frac{\sigma}{\tau} W_j(\tau).$$

When τ is fixed: the two members of the sum are independent, thus $(Z_{j,\tau})_{j=1,\ldots,N}$ are *i.i.d.*, and

$$f_{Z_{\tau}}(u) = f \star f_{\frac{\sigma}{\tau}W_j(\tau)}(u).$$

Fourier transform under (A)

$$f_{Z_{\tau}}^{*}(u) = f^{*}(u) f_{\frac{\sigma}{\tau}W_{j}(\tau)}^{*}(u) \iff f^{*}(u) = f_{Z_{\tau}}^{*}(u) e^{u^{2}\sigma^{2}/2\tau}$$

Cut-off choice

Fourier inversion

$$f(x) = \frac{1}{2\pi} \int_{\mathbb{R}} e^{-iux} f_{Z_{\tau}}^{*}(u) e^{\frac{u^{2}\sigma^{2}}{2\tau}} du.$$

Estimator of $f_{Z_{\tau}}^{*}(u)$: $\hat{f}_{Z_{\tau}}^{*}(u) = (1/N) \sum_{j=1}^{N} e^{iuZ_{j,\tau}}$.

But: integrability of $\widehat{f}_{Z_{\tau}}^{*}(u)e^{u^{2}\sigma^{2}/2\tau}$ no more ensured \rightarrow cut-off.

Cut-off choice

Fourier inversion

$$f(x) = \frac{1}{2\pi} \int_{\mathbb{R}} e^{-iux} f_{Z_{\tau}}^{*}(u) e^{\frac{u^{2}\sigma^{2}}{2\tau}} du.$$

Estimator of
$$f_{Z_{\tau}}^{*}(u)$$
: $\hat{f}_{Z_{\tau}}^{*}(u) = (1/N) \sum_{j=1}^{N} e^{iuZ_{j,\tau}}$.

But: integrability of $\hat{f}^*_{Z_{\tau}}(u)e^{u^2\sigma^2/2\tau}$ no more ensured \rightarrow cut-off.

Idea due to Comteet~al (2013): to link the time of the process τ and the cut-off

$$\widehat{f}_{\tau}(x) = \frac{1}{2\pi} \int_{-\sqrt{\tau}}^{\sqrt{\tau}} e^{-iux} \frac{1}{N} \sum_{j=1}^{N} e^{iuZ_{j,\tau}} e^{\frac{u^2 \sigma^2}{2\tau}} du.$$

 \rightarrow Problem when τ is small.

Cut-off choice

Fourier inversion

$$f(x) = \frac{1}{2\pi} \int_{\mathbb{R}} e^{-iux} f_{Z_{\tau}}^*(u) e^{\frac{u^2 \sigma^2}{2\tau}} du.$$

Estimator of
$$f_{Z_{\tau}}^{*}(u)$$
: $\hat{f}_{Z_{\tau}}^{*}(u) = (1/N) \sum_{j=1}^{N} e^{iuZ_{j,\tau}}$.

But: integrability of $\hat{f}^*_{Z_{\tau}}(u)e^{u^2\sigma^2/2\tau}$ no more ensured \rightarrow cut-off.

Idea due to Comteet~al (2013): to link the time of the process τ and the cut-off

$$\widehat{f}_{\tau}(x) = \frac{1}{2\pi} \int_{-\sqrt{\tau}}^{\sqrt{\tau}} e^{-iux} \frac{1}{N} \sum_{j=1}^{N} e^{iuZ_{j,\tau}} e^{\frac{u^2 \sigma^2}{2\tau}} du.$$

 \rightarrow Problem when τ is small. We introduce a new cut-off parameter s:

$$\widehat{f}_{s,\tau}(x) = \frac{1}{2\pi} \int_{-s\sqrt{\tau}}^{s\sqrt{\tau}} e^{-iux} \frac{1}{N} \sum_{j=1}^{N} e^{iuZ_{j,\tau}} e^{\frac{u^2\sigma^2}{2\tau}} du.$$

Charlotte Dion

To simplify the theoretical study, we replace $s\sqrt{\tau}$ by a new parameter m. Resulting estimator: $\tilde{f}_{m,s}$, when $m^2/s^2 \in]0, T]$,

$$\widetilde{f}_{m,s}(x) = \frac{1}{2\pi} \int_{-m}^{m} e^{-iux} \frac{1}{N} \sum_{j=1}^{N} e^{iuZ_{j,m^2/s^2}} e^{\frac{u^2 \sigma^2 s^2}{2m^2}} du$$

with m and s in two finite sets \mathcal{M} and \mathcal{S} .

Study of the mean integrated squared error (MISE):

Decomposition
$$\mathbb{E}\left[\|\widetilde{f}_{m,s} - f\|^2\right] = \|f - \mathbb{E}[\widetilde{f}_{m,s}]\|^2 + \mathbb{E}\left[\|\widetilde{f}_{m,s} - \mathbb{E}[\widetilde{f}_{m,s}]\|^2\right]$$

<u>Definition</u> f_m is defined by $f_m^* := f^* \mathbf{1}_{[-m,m]}$.

Proposition

Under (A), $\mathbb{E}[\tilde{f}_{m,s}] = f_m$ and we have

$$\mathbb{E}\left[\|\widetilde{f}_{m,s} - f\|^2\right] \le \|f_m - f\|^2 + \frac{m}{\pi N} \int_0^1 e^{\sigma^2 s^2 v^2} dv.$$

Study of the mean integrated squared error (MISE):

Decomposition
$$\mathbb{E}\left[\|\widetilde{f}_{m,s} - f\|^2\right] = \|f - \mathbb{E}[\widetilde{f}_{m,s}]\|^2 + \mathbb{E}\left[\|\widetilde{f}_{m,s} - \mathbb{E}[\widetilde{f}_{m,s}]\|^2\right]$$

<u>Definition</u> f_m is defined by $f_m^* := f^* \mathbf{1}_{[-m,m]}$.

Proposition

Under (A), $\mathbb{E}[\tilde{f}_{m,s}] = f_m$ and we have

$$\mathbb{E}\left[\|\widetilde{f}_{m,s} - f\|^2\right] \le \|f_m - f\|^2 + \frac{m}{\pi N} \int_0^1 e^{\sigma^2 s^2 v^2} dv.$$

Bias term: decreases when m increases, independent of s

Variance term: increases with m and s

$$\frac{m}{\pi N} \int_0^1 e^{\sigma^2 s^2 v^2} dv.$$

 \rightarrow Bounded as soon as s is bounded.

$$||f_m - f||^2 = \frac{1}{2\pi} \int_{|u| \ge m} |f^*(u)|^2 du.$$

Finite collections

 \rightarrow We want to choose the best couple (m,s): the one realizing the bias-variance compromise.

$$\mathcal{S} := \{ s_l = \frac{1}{2^l} \frac{2}{\sigma}, \ 1/2^{P-1} \le \sigma s_l \le 2, \ l = 0, \dots, P \}$$
$$\mathcal{M} := \{ m = \frac{\sqrt{k\Delta}}{\sigma}, \ k \in \mathbb{N}^*, \ 0 < m \le N \}$$

with $0 < \Delta < 1$ a small step to be fixed.

$$\mathcal{C} := \{ (m, s) \in \mathcal{M} \times \mathcal{S}, \ m^2/s^2 \le T \}.$$

New criterion extended from the Goldenshluger and Lepski's method Consider $(m, s) \in C$. Penalty function

$$pen(m,s) = \kappa \frac{m}{N} e^{\sigma^2 s^2},$$

where κ is a numerical constant to be calibrated. Criterion

$$\Gamma_{m,s} = \max_{(m',s') \in \mathcal{C}} \left(\| \widetilde{f}_{m',s'} - \widetilde{f}_{(m',s') \wedge (m,s)} \|^2 - \operatorname{pen}(m',s') \right)_+$$

where $(m', s') \land (m, s) := (m' \land m, s' \land s)$. Selection

$$(\widetilde{m}, \widetilde{s}) = \arg \min_{(m,s)\in\mathcal{C}} \{\Gamma_{m,s} + \operatorname{pen}(m,s)\}.$$

New criterion extended from the Goldenshluger and Lepski's method Consider $(m, s) \in C$. Penalty function

$$pen(m,s) = \kappa \frac{m}{N} e^{\sigma^2 s^2},$$

where κ is a numerical constant to be calibrated. Criterion

$$\Gamma_{m,s} = \max_{(m',s')\in\mathcal{C}} \left(\|\widetilde{f}_{m',s'} - \widetilde{f}_{(m',s')\wedge(m,s)}\|^2 - \operatorname{pen}(m',s') \right)_+$$

where $(m', s') \land (m, s) := (m' \land m, s' \land s)$. Selection

$$(\widetilde{m}, \widetilde{s}) = \arg \min_{(m,s) \in \mathcal{C}} \{ \Gamma_{m,s} + \operatorname{pen}(m, s) \}.$$

Lemma

There is a constant C' depending on ||f||, σ , Δ , and P+1 the cardinality of S, such that:

$$\mathbb{E}[\Gamma_{m,s}] \le 18 \|f - f_m\|^2 + \frac{C'(P+1)}{N}.$$

Main non-asymptotic result on the final estimator: oracle type inequality

Theorem (D. (2014))

Under (A), consider the estimator $\tilde{f}_{\tilde{m},\tilde{s}}$, there exists κ_0 a numerical constant such that, for all penalty constant $\kappa \geq \kappa_0$,

$$\mathbb{E}[\|\tilde{f}_{\tilde{m},\tilde{s}} - f\|^{2}] \le C \inf_{(m,s)\in\mathcal{C}} \left\{ \|f - f_{m}\|^{2} + \operatorname{pen}(m,s) \right\} + \frac{C'(P+1)}{N}$$

where C > 0 is a numerical constant as soon as κ is fixed and C' is the previous constant of Lemma.

Automatic realisation of the bias-penalty compromise.

We choose the two parameters in an adaptive way, thus this gives more flexibility in the choice of the estimator.

Numerical study

- Exact simulation of the processes.
- Discretization, time step δ , small (500 to 2000 observations).
- Choice of parameters and designs (ex: T = 0.3, 10, 100, 300)
- Calibration $\kappa = 0.3$.
- $\Delta = 0.08.$

Study on simulated data Study on a neuronal database

Study on simulated data with $N = 240, T = 0.3, \delta = 0.00015, \sigma = 0.0135, \alpha = 0.039$

Figure : - 25 estimators $\widetilde{f}_{\widetilde{m},\widetilde{s}}$, - the true density f: gamma and mixed gamma

Table : Empirical mean integrated squared error, computed from 100 simulateddata sets

$\tilde{f}_{\tilde{m},\tilde{s}}$ 0.068 0.038 Oracle 0.041 0.029		f gamma	f mixed-gamma
Oracle 0.041 0.029	$\widetilde{f}_{\widetilde{m},\widetilde{s}}$	0.068	0.038
	Oracle	0.041	0.029

Application on a neuronal database

Interspikes interval (ISI) measures: measurements along time of the membrane potential in volts [V] of one single neuron, between the spikes.

Figure : Left: Membrane potential, right: the 240 observed trajectories

 \rightarrow We consider the observations as independent realizations of our model.

 \rightarrow Picchini et al. (2010) proves that the Ornstein-Uhlenbeck model with one random effect fits better the data than without.

Charlotte Dion

Parameters values

- T = 0.3, time step $\delta = 0.00015$ [s].
- The initial voltage = the resting potential: $x_j = 0$.
- The diffusion coefficient is fixed $\sigma=0.0135~[\tt V/\sqrt{s}]$ (estimated in Picchini et~al~(2010))
- α [s]: time constant of the neuron $\alpha = 0.039$ [s] (estimated in Lansky *et al* (2006))
- $\rightarrow \phi_j$ is the local input that neuron receives during the j^{th} ISI.
- \rightarrow Estimation of f obtained in Picchini *et al* (2010) under Gaussian assumption: $\mathcal{N}(0.278, 0.041^2)$.

Parameters values

- T = 0.3, time step $\delta = 0.00015$ [s].
- The initial voltage = the resting potential: $x_j = 0$.
- The diffusion coefficient is fixed $\sigma=0.0135~[\tt V/\sqrt{s}]$ (estimated in Picchini et~al~(2010))
- α [s]: time constant of the neuron $\alpha = 0.039$ [s] (estimated in Lansky *et al* (2006))
- $\rightarrow \phi_j$ is the local input that neuron receives during the j^{th} ISI.

 \rightarrow Estimation of f obtained in Picchini *et al* (2010) under Gaussian assumption: $\mathcal{N}(0.278, 0.041^2)$.

We although represent the adaptive kernel estimator associate to the r.v. $Z_{j,T},\,$

$$\widehat{f}_h(x) = \frac{1}{N} \sum_{j=1}^N \frac{1}{h} K\left(\frac{x - Z_{j,T}}{h}\right)$$

where we choose the bandwidth \hat{h} among a collection, with a data-driven Lepski's procedure developed in the article.

Estimated density f on a neuronal database

Figure : $-\hat{f}_{\hat{h}_i}$, $-\hat{f}_{\tilde{m},\tilde{s}}$, - - the density from Picchini *et al* (2010) $\mathcal{N}(0.278, 0.041^2)$ and ... the density $\Gamma(46.3, 0.006)$

Conclusions

- More precise estimation instead of parametric assumption. Can be used to simulate the ϕ_j .
- This new parameter s generalizes the results of Comte *et al* (2013) even if T is large.
- Selection procedure of two parameters which can be adapted in other cases.

Further works

- Remark: the procedure can be written with a drift $b(x) + \phi_j$ with b satisfying assumption but not necessary linear.
- Add a new random effect: α .
- Solve the problem when $\sigma(x) \neq \sigma_1$ without assuming $\sigma(x) < \sigma_1$.

References

▶ Dion, C Nonparametric estimation in a mixed-effect Ornstein-Uhlenbeck model *Preprint hal-01023300*

▶ Comte, F., Genon-Catalot, V., Samson, A. (2013). Nonparametric estimation for stochastic differential equation with random effects. *Stochastic Processes and their Applications* 7, 2522–2551.

► Goldenshluger, A. and Lepski, O. (2011). Bandwidth selection in kernel density estimation: oracle inequalities and adaptive minimax optimality. Ann. Statist. 39, 1608–1632.

▶ Picchini, U., De Gaetano, A. and Ditlevsen, S. (2010). Stochastic differential mixed-effects models. *Scandinavian Journal of Statistics*

Thank you for your attention.