# Quadratic Variation of High Dimensional Itô Processes 

Claudio Heinrich, joint work with Mark Podolskij

September 15, 2014

## Table of Contents

(1) Setting
(2) Statement of the Main Result
(3) Sketch of the Proof

## Section 1

## Setting

## p-dimensional Itô process without drift

Stochastic process of the form

$$
X_{t}=X_{0}+\int_{0}^{t} f_{s} d W_{s}
$$

where $W$ is a p-dimensional Brownian motion.

## p-dimensional Itô process without drift

Stochastic process of the form

$$
X_{t}=X_{0}+\int_{0}^{t} f_{s} d W_{s}
$$

where $W$ is a $p$-dimensional Brownian motion.

## Realized Covariance Matrix:

$$
[X]_{p}^{n}=\sum_{i=1}^{n} \Delta_{i}^{n} X \Delta_{i}^{n} X^{*},
$$

where $\Delta_{i}^{n} X=X_{\frac{i}{n}}-X_{i-1}^{n}$.

## p-dimensional Itô process without drift

Stochastic process of the form

$$
X_{t}=X_{0}+\int_{0}^{t} f_{s} d W_{s}
$$

where $W$ is a $p$-dimensional Brownian motion.

## Realized Covariance Matrix:

$$
[X]_{p}^{n}=\sum_{i=1}^{n} \Delta_{i}^{n} X \Delta_{i}^{n} X^{*},
$$

where $\Delta_{i}^{n} X=X_{\frac{i}{n}}-X_{i-1}^{n}$.

- The RCV is an estimator for the quadratic variation (in 1)

$$
[X]=\int_{0}^{1} f_{s} f_{s}^{*} d s
$$

## p-dimensional Itô process without drift

Stochastic process of the form

$$
X_{t}=X_{0}+\int_{0}^{t} f_{s} d W_{s}
$$

where $W$ is a $p$-dimensional Brownian motion.

## Realized Covariance Matrix:

$$
[X]_{p}^{n}=\sum_{i=1}^{n} \Delta_{i}^{n} X \Delta_{i}^{n} X^{*},
$$

where $\Delta_{i}^{n} X=X_{\frac{i}{n}}-X_{i-1}^{n}$.

- The RCV is an estimator for the quadratic variation (in 1 )

$$
[X]=\int_{0}^{1} f_{s} f_{s}^{*} d s
$$

- $[X]_{p}^{n} \xrightarrow{\mathbb{P}}[X]$ if $n \rightarrow \infty$.

$$
[X]_{p}^{n}=\sum_{i=1}^{n} \Delta_{i}^{n} X \Delta_{i}^{n} X^{*}
$$

What happens if the dimension of the process $p$ and the number of observations $n$ both are large but of the same order of magnitude? We investigate the behavior of $[X]_{p}^{n}$ when $p \rightarrow \infty, n \rightarrow \infty$, and $n / p \rightarrow c \in(0, \infty)$.

$$
[X]_{p}^{n}=\sum_{i=1}^{n} \Delta_{i}^{n} X \Delta_{i}^{n} X^{*}
$$

What happens if the dimension of the process $p$ and the number of observations $n$ both are large but of the same order of magnitude? We investigate the behavior of $[X]_{p}^{n}$ when $p \rightarrow \infty, n \rightarrow \infty$, and $n / p \rightarrow c \in(0, \infty)$.

- High dimensional random matrix theory provides the framework for this investigation.

$$
[X]_{p}^{n}=\sum_{i=1}^{n} \Delta_{i}^{n} X \Delta_{i}^{n} X^{*}
$$

What happens if the dimension of the process $p$ and the number of observations $n$ both are large but of the same order of magnitude? We investigate the behavior of $[X]_{p}^{n}$ when $p \rightarrow \infty, n \rightarrow \infty$, and $n / p \rightarrow c \in(0, \infty)$.

- High dimensional random matrix theory provides the framework for this investigation.
- We restrict ourselve to processes with volatility process of the form

$$
\begin{equation*}
f_{t}=\sum_{l=1}^{m} T_{l} 1_{\left[t_{l-1}, t_{l}\right)}(t) \tag{1}
\end{equation*}
$$

where $0=t_{0}<\cdots<t_{m}=1$, and $T_{1}, \ldots, T_{m}$ are $p \times p$ nonrandom matrices.

It is straightforward to show that

$$
[X]_{p}^{n} \stackrel{d}{=} \frac{1}{n} \sum_{l=1}^{m} T_{l} Y_{l} Y_{l}^{*} T_{l}^{*}
$$

where $Y_{l}$ are $p \times\left[n\left(t_{l}-t_{l-1}\right)\right]$ matrices containing i.i.d. $\mathcal{N}(0,1)$ variables.

It is straightforward to show that

$$
[X]_{p}^{n} \stackrel{d}{=} \frac{1}{n} \sum_{l=1}^{m} T_{l} Y_{l} Y_{l}^{*} T_{l}^{*}
$$

where $Y_{l}$ are $p \times\left[n\left(t_{l}-t_{l-1}\right)\right]$ matrices containing i.i.d. $\mathcal{N}(0,1)$ variables. How to analyze $[X]_{p}^{n}$ for $p, n \rightarrow \infty$ with $n / p \rightarrow c$ ?

It is straightforward to show that

$$
[X]_{p}^{n} \stackrel{d}{=} \frac{1}{n} \sum_{l=1}^{m} T_{l} Y_{l} Y_{l}^{*} T_{l}^{*}
$$

where $Y_{l}$ are $p \times\left[n\left(t_{l}-t_{l-1}\right)\right]$ matrices containing i.i.d. $\mathcal{N}(0,1)$ variables. How to analyze $[X]_{p}^{n}$ for $p, n \rightarrow \infty$ with $n / p \rightarrow c$ ?
High Dimensional Random Matrix Theory: Analyze the limiting spectral behavior of $[X]_{p}^{n}$ :

It is straightforward to show that

$$
[X]_{p}^{n} \stackrel{d}{=} \frac{1}{n} \sum_{l=1}^{m} T_{l} Y_{l} Y_{l}^{*} T_{l}^{*}
$$

where $Y_{l}$ are $p \times\left[n\left(t_{l}-t_{l-1}\right)\right]$ matrices containing i.i.d. $\mathcal{N}(0,1)$ variables. How to analyze $[X]_{p}^{n}$ for $p, n \rightarrow \infty$ with $n / p \rightarrow c$ ?
High Dimensional Random Matrix Theory: Analyze the limiting spectral behavior of $[X]_{p}^{n}$ :

For a diagonalisable $p \times p$ matrix $A$ with real eigenvalues $\lambda_{1}, \ldots, \lambda_{p}$ the spectral distribution $F^{A}$ is defined by the p.d.f.

$$
F^{A}(x)=\frac{1}{p} \#\left\{i: \lambda_{i} \leq x\right\}
$$

In other words, $F^{A}(x)$ is the proportion of eigenvalues of $A$ which are smaller or equal to $x$.

## Section 2

## Statement of the Main Result

## theorem 2.1

Let $[X]_{p}^{n}=1 / n \sum_{l} T_{l} Y_{l} Y_{1}^{*} T_{1}^{*}$. Assume
(a) that there is $\tau_{0}>0$ such that the largest eigenvalues of $T_{1} T_{1}^{*}$ are bounded by $\tau_{0}$ for all I, uniformly in $p$.
(b) for all $k>0$ and for all $\mathbf{I}=\left(I_{1}, \ldots, I_{k}\right) \in\{1, \ldots, m\}^{k}$ the existence of the mixed limiting spectral moments

$$
M_{\mathbf{l}}^{k}=\lim _{p \rightarrow \infty} \frac{1}{p} \operatorname{tr}\left(\prod_{i=1}^{k} T_{l_{i}} T_{l_{i}}^{*}\right)
$$

Then, the spectral distributions $F^{[X]_{p}^{n}}$ converges weakly to a nonrandom p.d.f. $F$, a.s., which will be specified by its moment sequence. The moments $\beta_{k}$ of $F$ are of the form

$$
\beta_{k}=\sum_{r=1}^{k} c^{r-1} \sum_{\nu_{1}+\ldots+\nu_{r}=k} \sum_{\mathbf{l}^{\prime} \in\{1, \ldots, m\}^{k}} c_{r, \nu, l^{\prime}} \prod_{a=1}^{r} M_{\mathbf{l}_{(a)}}^{\nu_{a}} \prod_{l=1}^{m}\left(t_{l}-t_{l-1}\right)^{s_{l, \nu, l^{\prime}}}
$$

## Section 3

## Sketch of the Proof

The theorem extends the results of a seminal paper (Y.Q. Yin and P.R. Krishnaiah, 1983), where the case $1 / n T Y Y^{*} T^{*}$, i.e. $T_{1}=\cdots=T_{m}$ was considered.

The theorem extends the results of a seminal paper (Y.Q. Yin and P.R. Krishnaiah, 1983), where the case $1 / n T Y Y^{*} T^{*}$, i.e. $T_{1}=\cdots=T_{m}$ was considered.

- The authors worked with the assumption that $T T^{*}$ has a limiting spectral distribution.

The theorem extends the results of a seminal paper (Y.Q. Yin and P.R. Krishnaiah, 1983), where the case $1 / n T Y Y^{*} T^{*}$, i.e. $T_{1}=\cdots=T_{m}$ was considered.

- The authors worked with the assumption that $T T^{*}$ has a limiting spectral distribution.
- In our framework, assuming the existence of LSDs for $T_{1} T_{1}^{*}, \ldots, T_{m} T_{m}^{*}$ is not sufficient.

The theorem extends the results of a seminal paper (Y.Q. Yin and P.R. Krishnaiah, 1983), where the case $1 / n T Y Y^{*} T^{*}$, i.e. $T_{1}=\cdots=T_{m}$ was considered.

- The authors worked with the assumption that $T T^{*}$ has a limiting spectral distribution.
- In our framework, assuming the existence of LSDs for $T_{1} T_{1}^{*}, \ldots, T_{m} T_{m}^{*}$ is not sufficient.
- The existence of all mixed limiting spectral moments implies the existence of LSDs for $T_{1} T_{1}^{*}, \ldots, T_{m} T_{m}^{*}$.

The theorem extends the results of a seminal paper (Y.Q. Yin and P.R. Krishnaiah, 1983), where the case $1 / n T Y Y^{*} T^{*}$, i.e. $T_{1}=\cdots=T_{m}$ was considered.

- The authors worked with the assumption that $T T^{*}$ has a limiting spectral distribution.
- In our framework, assuming the existence of LSDs for $T_{1} T_{1}^{*}, \ldots, T_{m} T_{m}^{*}$ is not sufficient.
- The existence of all mixed limiting spectral moments implies the existence of LSDs for $T_{1} T_{1}^{*}, \ldots, T_{m} T_{m}^{*}$.
- Additionally, it ensures a nice 'joint spectral behavior' of $T_{1} T_{1}^{*}, \ldots, T_{m} T_{m}^{*}$.

One way to determine limiting spectral distributions:

## One way to determine limiting spectral distributions:

Moment convergence theorem,

## theorem 3.1

Let $\left(F_{n}\right)$ be a sequence of p.d.f.s with finite moments of all orders $\beta_{k, n}=\int x^{k} d F_{n}(x)$. Assume $\beta_{k, n} \rightarrow \beta_{k}$ for $n \rightarrow \infty$ for $k=0,1, \ldots$ where
(a) $\beta_{k}<\infty$ for all $k$ and
(b) $\sum_{k=0}^{\infty}\left[\beta_{2 k}(F)\right]^{-\frac{1}{2 k}}=\infty$.

Then, $F_{n}$ converges weakly to the unique probability distribution function $F$ with moment sequence $\left(\beta_{k}\right)_{k=0, \ldots .}$.

## One way to determine limiting spectral distributions:

Moment convergence theorem,

## theorem 3.1

Let $\left(F_{n}\right)$ be a sequence of p.d.f.s with finite moments of all orders $\beta_{k, n}=\int x^{k} d F_{n}(x)$. Assume $\beta_{k, n} \rightarrow \beta_{k}$ for $n \rightarrow \infty$ for $k=0,1, \ldots$ where
(a) $\beta_{k}<\infty$ for all $k$ and
(b) $\sum_{k=0}^{\infty}\left[\beta_{2 k}(F)\right]^{-\frac{1}{2 k}}=\infty$.

Then, $F_{n}$ converges weakly to the unique probability distribution function $F$ with moment sequence $\left(\beta_{k}\right)_{k=0, \ldots .}$.

Let $\lambda_{1} \leq \ldots \leq \lambda_{p}$ be the eigenvalues of $A$, then

$$
\beta_{k}\left(F^{A}\right)=\frac{1}{p} \sum_{i=1}^{p} \lambda_{i}^{k}=\frac{1}{p} \operatorname{tr}\left(A^{k}\right) .
$$

In order to determine $F=\lim F^{[X]_{\rho}^{n}}$ it is sufficient to find

$$
\lim _{p, n \rightarrow \infty} \beta_{k}\left(F^{[X]_{p}^{n}}\right)=\lim _{p, n \rightarrow \infty} \frac{1}{p} \operatorname{tr}\left([X]_{p}^{n}\right)^{k}
$$

for $k=1,2, \ldots$.

In order to determine $F=\lim F^{[X]_{p}^{n}}$ it is sufficient to find

$$
\lim _{p, n \rightarrow \infty} \beta_{k}\left(F^{[X]_{p}^{n}}\right)=\lim _{p, n \rightarrow \infty} \frac{1}{p} \operatorname{tr}\left([X]_{p}^{n}\right)^{k},
$$

for $k=1,2, \ldots$.
It holds that

$$
\mathbb{E}\left[1 / p \operatorname{tr}\left([X]_{p}^{n}\right)^{k}-\mathbb{E}\left[1 / p \operatorname{tr}\left([X]_{p}^{n}\right)^{k}\right]\right]^{4}
$$

is summable.

In order to determine $F=\lim F^{[X]_{p}^{n}}$ it is sufficient to find

$$
\lim _{p, n \rightarrow \infty} \beta_{k}\left(F^{[X]_{p}^{n}}\right)=\lim _{p, n \rightarrow \infty} \frac{1}{p} \operatorname{tr}\left([X]_{p}^{n}\right)^{k},
$$

for $k=1,2, \ldots$.
It holds that

$$
\mathbb{E}\left[1 / p \operatorname{tr}\left([X]_{p}^{n}\right)^{k}-\mathbb{E}\left[1 / p \operatorname{tr}\left([X]_{p}^{n}\right)^{k}\right]\right]^{4}
$$

is summable. Therefore, by virtue of Borel-Cantelli Lemma, we have

$$
\lim _{p, n \rightarrow \infty} \frac{1}{p} \operatorname{tr}\left([X]_{p}^{n}\right)^{k}=\lim _{p, n \rightarrow \infty} \mathbb{E}\left[\frac{1}{p} \operatorname{tr}\left([X]_{p}^{n}\right)^{k}\right],
$$

almost surely.

In order to determine $F=\lim F^{[X]_{p}^{n}}$ it is sufficient to find

$$
\lim _{\rho, n \rightarrow \infty} \beta_{k}\left(F^{[X]_{\rho}^{n}}\right)=\lim _{p, n \rightarrow \infty} \frac{1}{p} \operatorname{tr}\left([X]_{p}^{n}\right)^{k},
$$

for $k=1,2, \ldots$.
It holds that

$$
\mathbb{E}\left[1 / p \operatorname{tr}\left([X]_{p}^{n}\right)^{k}-\mathbb{E}\left[1 / p \operatorname{tr}\left([X]_{p}^{n}\right)^{k}\right]\right]^{4}
$$

is summable. Therefore, by virtue of Borel-Cantelli Lemma, we have

$$
\lim _{p, n \rightarrow \infty} \frac{1}{p} \operatorname{tr}\left([X]_{p}^{n}\right)^{k}=\lim _{p, n \rightarrow \infty} \mathbb{E}\left[\frac{1}{p} \operatorname{tr}\left([X]_{p}^{n}\right)^{k}\right],
$$

almost surely. Hence

$$
\lim _{p, n \rightarrow \infty} \frac{1}{p} \operatorname{tr}\left([X]_{p}^{n}\right)^{k}=\lim _{p, n \rightarrow \infty} \frac{1}{p} \sum_{l \in\{1, \ldots, m\}^{k}} \mathbb{E}\left[\operatorname{tr}\left(\prod_{i=1}^{k} T_{l_{i}} Y_{l_{i}} Y_{l_{i}}^{*} T_{l_{i}}^{*}\right)\right],
$$

where $\mathbf{I}=\left(I_{1}, \ldots, I_{k}\right)$.

## Expansion leads to

$\mathbb{E}\left[\beta_{k}\left(F^{[X]_{\rho}^{n}}\right)\right]$
$=p^{-1} n^{-k} \sum_{i, j, 1} \mathbb{E}[T_{l_{1}, i_{1} i_{2}} \underbrace{Y_{l_{1}, i_{2} j_{1}}}_{\sim \mathcal{N}(0,1)} Y_{l_{1}, j_{1} i_{3}}^{*} T_{l_{1}, i, i_{i}}^{*} \cdots T_{l_{k}, i_{k k-2} i_{k k-1}} Y_{l_{k}, i_{3 k-1} j_{k}} Y_{l_{k}, j_{k} i_{3 k}}^{*} T_{l_{k}, i_{3} k i_{1}}^{*}]$
where the summation runs for all $\mathbf{i} \in\{1, \ldots, p\}^{3 k}$, $\mathbf{I}=\left(l_{1}, \ldots, I_{k}\right) \in\{1, \ldots, m\}^{k}$, and $j_{a} \in\left[n\left(t_{l_{a}}-t_{l_{a}-1}\right)\right]$

## Expansion leads to

$\mathbb{E}\left[\beta_{k}\left(F^{[X]_{p}^{n}}\right)\right]$
$=p^{-1} n^{-k} \sum_{i, j, 1} \mathbb{E}[T_{l_{1}, i_{1} i_{2}} \underbrace{Y_{l_{1}, i_{2} j_{1}}}_{\sim \mathcal{N}(0,1)} Y_{l_{1}, j_{1} i_{3}}^{*} T_{l_{1}, i_{3} i_{4}}^{*} \cdots T_{l_{k}, i_{k k-2} i_{k k-1}} Y_{l_{k}, i_{3 k-1} j_{k}} Y_{l_{k}, j_{k} i_{3 k}}^{*} T_{l_{k}, i_{3} k i_{1}}^{*}]$
where the summation runs for all $\mathbf{i} \in\{1, \ldots, p\}^{3 k}$,
$\mathbf{I}=\left(l_{1}, \ldots, I_{k}\right) \in\{1, \ldots, m\}^{k}$, and $j_{a} \in\left[n\left(t_{l_{a}}-t_{l_{a-1}}\right)\right]$
$\Rightarrow$ Combinatorical problem, solution uses graph theory.

We assign a colored graph to every summand

$$
\mathbb{E}\left[T_{l_{1}, i_{1} i_{2}} Y_{l_{1}, i_{2} j_{1}} Y_{l_{1}, j_{1} i_{3}}^{*} T_{l_{1}, i_{3 i} i_{1}}^{*} T_{l_{k}, i_{3 k-2} i_{3 k-1}} Y_{l_{k} i_{k-1} j_{k}} Y_{l_{k}, j_{k} i_{3 k}}^{*} T_{l_{k}, i_{k} i_{1}}^{*}\right] .
$$

We choose $m$ colors which correspond to $I_{a} \in\{1, \ldots, m\}$.

We assign a colored graph to every summand

$$
\mathbb{E}\left[T_{l_{1}, i_{1} i_{2}} Y_{l_{1}, i_{2} j_{1}} Y_{l_{1}, j_{1} i_{3}}^{*} T_{1, i, i_{3}^{4}}^{*} \cdots T_{l_{k}, i_{3 k-2} i_{3 k-1}} Y_{l_{k} i_{k-1} j_{k}} Y_{l_{k}, j_{k} i_{3}}^{*} T_{l_{k}, i_{3 k} i_{1}}^{*}\right] .
$$

We choose $m$ colors which correspond to $I_{a} \in\{1, \ldots, m\}$. Here an example for $m=2$ and $t_{1}=1 / 2$ :

We assign a colored graph to every summand

$$
\mathbb{E}\left[T_{l_{1}, i_{1} i_{2}} Y_{l_{1}, i_{2} j_{1}} Y_{l_{1}, j_{1} i_{3}}^{*} T_{l_{1}, i_{3} i_{4}}^{*} \cdots T_{l_{k}, i_{k} k-2 i_{3 k-1}} Y_{l_{k} i_{k k-1} j_{k}} Y_{l_{k}, j_{k} i_{3 k}}^{*} T_{l_{k}, i_{k} i_{1}}^{*}\right] .
$$

We choose $m$ colors which correspond to $I_{a} \in\{1, \ldots, m\}$. Here an example for $m=2$ and $t_{1}=1 / 2$ :

$$
\mathbf{i}=\{1, \ldots, p\}
$$

$$
\mathbf{j} \hat{=}\{1, \ldots,[n / 2]\}
$$

We assign a colored graph to every summand

$$
\mathbb{E}\left[T_{l_{1}, i_{1} i_{2}} Y_{l_{1}, i_{2} j_{1}} Y_{l_{1}, j_{1} i_{3}}^{*} T_{l_{1}, i_{3} i_{4}}^{*} \cdots T_{l_{k}, i_{k} k-2 i_{3 k-1}} Y_{l_{k} i_{k k-1} j_{k}} Y_{l_{k}, j_{k} i_{3 k}}^{*} T_{l_{k}, i_{k} i_{1}}^{*}\right] .
$$

We choose $m$ colors which correspond to $I_{a} \in\{1, \ldots, m\}$. Here an example for $m=2$ and $t_{1}=1 / 2$ :


We assign a colored graph to every summand

$$
\mathbb{E}\left[T_{l_{1}, i_{1} i_{2}} Y_{l_{1}, i_{2} j_{1}} Y_{l_{1}, j_{1} i_{3}}^{*} T_{l_{1}, i_{3} i_{4}}^{*} \cdots T_{l_{k}, i_{k} k-2 i_{3 k-1}} Y_{l_{k} i_{k k-1} j_{k}} Y_{l_{k}, j_{k} i_{3 k}}^{*} T_{l_{k}, i_{k} i_{1}}^{*}\right] .
$$

We choose $m$ colors which correspond to $I_{a} \in\{1, \ldots, m\}$. Here an example for $m=2$ and $t_{1}=1 / 2$ :


We assign a colored graph to every summand

$$
\mathbb{E}\left[T_{l_{1}, i_{1} i_{2}} Y_{l_{1}, i_{2} j_{1}} Y_{l_{1}, j_{1} i_{3}}^{*} T_{l_{1}, i_{3} i_{4}}^{*} \cdots T_{l_{k}, i_{k} k-2 i_{3 k-1}} Y_{l_{k} i_{k k-1} j_{k}} Y_{l_{k}, j_{k} i_{3 k}}^{*} T_{l_{k}, i_{k} i_{1}}^{*}\right] .
$$

We choose $m$ colors which correspond to $I_{a} \in\{1, \ldots, m\}$. Here an example for $m=2$ and $t_{1}=1 / 2$ :


We assign a colored graph to every summand

$$
\mathbb{E}\left[T_{l_{1}, i_{1} i_{2}} Y_{l_{1}, i_{2} j_{1}} Y_{l_{1}, j_{1} i_{3}}^{*} T_{l_{1}, i_{3} i_{4}}^{*} \cdots T_{l_{k}, i_{k} k-2 i_{3 k-1}} Y_{l_{k} i_{k k-1} j_{k}} Y_{l_{k}, j_{k} i_{3 k}}^{*} T_{l_{k}, i_{k} i_{1}}^{*}\right] .
$$

We choose $m$ colors which correspond to $I_{a} \in\{1, \ldots, m\}$. Here an example for $m=2$ and $t_{1}=1 / 2$ :


We assign a colored graph to every summand

$$
\mathbb{E}\left[T_{l_{1}, i_{1} i_{2}} Y_{l_{1}, i_{2} j_{1}} Y_{l_{1}, j_{1} i_{3}}^{*} T_{1, i, i_{3}^{4}}^{*} \cdots T_{l_{k}, i_{3 k-2} i_{3 k-1}} Y_{l_{k} i_{k-1} j_{k}} Y_{l_{k}, j_{k} i_{3}}^{*} T_{l_{k}, i_{3 k} i_{1}}^{*}\right] .
$$

We choose $m$ colors which correspond to $I_{a} \in\{1, \ldots, m\}$. Here an example for $m=2$ and $t_{1}=1 / 2$ :


We assign a colored graph to every summand

$$
\mathbb{E}\left[T_{l_{1}, i_{1} i_{2}} Y_{l_{1}, i_{2} j_{1}} Y_{l_{1}, j_{1} i_{3}}^{*} T_{l_{1}, i_{3} i_{4}}^{*} \cdots T_{l_{k}, i_{k}-2 i_{3 k-1}} Y_{l_{k} i_{k k-1} j_{k}} Y_{l_{k}, j_{k} i_{3 k}}^{*} T_{l_{k}, i_{k} i_{1}}^{*}\right] .
$$

We choose $m$ colors which correspond to $I_{a} \in\{1, \ldots, m\}$. Example for $m=2$ and $t_{1}=1 / 2$ :


We assign a colored graph to every summand

$$
\mathbb{E}\left[T_{l_{1}, i_{1} i_{2}} Y_{l_{1}, i_{2} j_{1}} Y_{l_{1}, j_{1} i_{3}}^{*} T_{1, i_{3} i_{1}}^{*} \cdots T_{l_{k}, i_{3 k-2} i_{3 k-1}} Y_{l_{k} i_{k-1} j_{k}} Y_{l_{k}, j_{k} i_{k}}^{*} T_{l_{k}, i_{k} i_{1}}^{*}\right] .
$$

We choose $m$ colors which correspond to $I_{a} \in\{1, \ldots, m\}$. Example for $m=2$ and $t_{1}=1 / 2$ :


Advantage: One can divide the graphs into several categories according to their shape.

Example: Summing all summands

$$
\mathbb{E}\left[T_{l_{1}, i_{1} i_{2}} Y_{1_{1}, i_{2 j 1}} Y_{l_{1}, j_{1} i_{3}}^{*} T_{1_{1}, i_{3} i_{4}}^{*} \cdots T_{l_{k}, i_{3 k-2}-2 i_{3 k-1}} Y_{l_{k} i_{3 k-1} j_{k}} Y_{l_{k}, j_{k} i_{3 k}}^{*} T_{l_{k}, i_{3 k} i_{1}}^{*}\right]
$$

corresponding to a graph with the shape

gives $\approx \operatorname{tr}\left(T_{1} T_{1}^{*}\right) \operatorname{tr}\left(T_{1} T_{1}^{*} T_{2} T_{2}^{*}\right)$ if green $\hat{=} 1$ and red $\hat{=} 2$.

Example: Summing all summands

$$
\mathbb{E}\left[T_{l_{1}, i_{1} i_{2}} Y_{l_{1}, i_{2 j} j_{1}} Y_{l_{1}, j_{1} i_{3}}^{*} T_{1_{1}, i_{3}^{4}}^{*} \cdots T_{l_{k}, i_{3 k-2} i_{3 k-1}} Y_{l_{k} i_{3 k-1} j_{k}} Y_{l_{k}, j_{k} i_{3 k}}^{*} T_{l_{k}, i_{3 k} i_{1}}^{*}\right]
$$

corresponding to a graph with the shape

gives $\approx \operatorname{tr}\left(T_{1} T_{1}^{*}\right) \operatorname{tr}\left(T_{1} T_{1}^{*} T_{2} T_{2}^{*}\right)$ if green $\hat{=} 1$ and red $\hat{=} 2$.

- Expectation factor $\mathbb{E}\left[Y_{l_{1}, i_{2} j_{1}} \cdots Y_{l_{k}, j j_{k} i_{k}}^{*}\right]$ is 1 .

Example: Summing all summands

$$
\mathbb{E}\left[T_{l_{1}, i_{1} i_{2}} Y_{1_{1}, i_{2 j} j_{1}} Y_{l_{1}, j_{1} i_{3}}^{*} T_{1_{1}, i_{3} i_{4}}^{*} T_{l_{k}, i_{3 k-2}-i_{3 k-1}} Y_{l_{k} i_{3 k-1} j_{k}} Y_{l_{k}, j_{k} i_{3 k}}^{*} T_{l_{k}, i_{3 k} i_{1}}^{*}\right]
$$

corresponding to a graph with the shape

gives $\approx \operatorname{tr}\left(T_{1} T_{1}^{*}\right) \operatorname{tr}\left(T_{1} T_{1}^{*} T_{2} T_{2}^{*}\right)$ if green $\hat{=} 1$ and red $\hat{=} 2$.

- Expectation factor $\mathbb{E}\left[Y_{l_{1}, i_{2} j_{1}} \cdots Y_{l_{k}, j j_{k} i_{k}}^{*}\right]$ is 1 .
- $1 / p^{2} \operatorname{tr}\left(T_{1} T_{1}^{*}\right) \operatorname{tr}\left(T_{1} T_{1}^{*} T_{2} T_{2}^{*}\right)$ converges to $M_{(1)}^{1} M_{(1,2)}^{2}$.


## Possible directions for future research:

Possible directions for future research:

- Does the theorem hold without the restriction $\left\|T_{l}\right\| \leq \tau_{0}$ for all I, $p$ ?


## Possible directions for future research:

- Does the theorem hold without the restriction $\left\|T_{l}\right\| \leq \tau_{0}$ for all $I, p$ ?
- Is there a relation between the limiting spectral distribution of $[X]_{p}^{n}$ and the limiting spectral distribution of the true covariance matrix

$$
\left(t_{1}-t_{0}\right) T_{1} T_{1}^{*}+\cdots+\left(t_{m}-t_{m-1}\right) T_{m} T_{m}^{*} ?
$$

## Possible directions for future research:

- Does the theorem hold without the restriction $\left\|T_{l}\right\| \leq \tau_{0}$ for all I, $p$ ?
- Is there a relation between the limiting spectral distribution of $[X]_{p}^{n}$ and the limiting spectral distribution of the true covariance matrix

$$
\left(t_{1}-t_{0}\right) T_{1} T_{1}^{*}+\cdots+\left(t_{m}-t_{m-1}\right) T_{m} T_{m}^{*} ?
$$

- For $T_{1}=\ldots=T_{m}$ such a relation exists (Marčenko-Pastur equation), allowing the construction of consistent spectrum estimators (N. El Karoui, 2007)


## Bibliography

Thank you for your attention!
國 N. El Karoui (2008): Spectrum estimation for large dimensional covariance matrices using random matrix theory. Annals of Statistics, 36, 2757-2790.
(R. Heinrich and M. Podolskij (2014, Work in progress): On spectral distribution of high dimensional covariation matrices.
围 Y.Q. Yin and P.R. Krishnaiah (1983): A limit theorem for the eigenvalues of product of two random matrices. Journal of Multivariate Analysis 13, 489—507.

