Exact simulation of the sample paths of a diffusion with a finite entrance boundary

Paul A. Jenkins

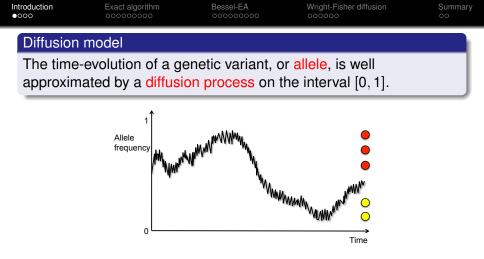
Departments of Statistics University of Warwick

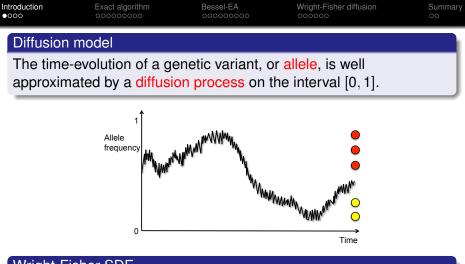
Dynstoch, University of Warwick 11 Sep 2014

Joint work with Dario Spanò

Introduction	Exact algorithm	Bessel-EA 000000000	Wright-Fisher diffusion	Summary 00
Outline				

- 2) Overview of the exact algorithm
- 3 Bessel-EA
- Wright-Fisher diffusion





Wright-Fisher SDE

$$dX_t = \mu_{\theta}(X_t)dt + \sqrt{X_t(1-X_t)}dW_t, \qquad X_0 = x, \quad t \ge 0.$$

The infinitesimal drift, $\mu_{\theta}(x)$, encapsulates directional forces such as natural selection, migration, mutation, ...

Introduction 0000 Exact algorithm

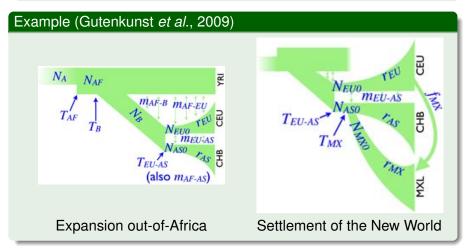
Bessel-EA

Wright-Fisher diffusion

Summary

Population genetic Motivation I: Demographic inference

Given a sample of DNA sequences obtained in the present-day, what can we infer about the demographic history of the population?



Introduction

Exact algorithm

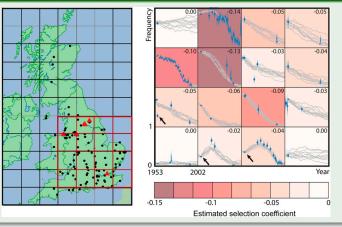
Bessel-EA

Wright-Fisher diffusion

Population genetic Motivation II: Time-series analysis of selection

Given a sample of genetic data obtained over several generations, what can we infer about the strength of natural selection?

Example (Biston betulaeria; Mathieson & McVean, 2013)



Introduction	Exact algorithm	Bessel-EA	Wright-Fisher diffusion	Summary
0000				

• Like many interesting diffusions, the transition function of the Wright-Fisher diffusion is unknown.

0000 00000000 0000000 000000 00	Introduction	Exact algorithm	Bessel-EA	Wright-Fisher diffusion	Summary
	0000				

- Like many interesting diffusions, the transition function of the Wright-Fisher diffusion is unknown.
- Inference typically proceeds by
 - Model-discretization such as an Euler approximation:

$$X_{t+dt} \mid (X_t = z) \sim \mathcal{N}(\mu_{\theta}(z)dt, \sigma^2(z)dt),$$

Image: Interpretation (or numerical solution of Kolmogorov PDEs, or spectral expansions, ...)

Introduction	Exact algorithm	Bessel-EA	Wright-Fisher diffusion	Summary
0000				

- Like many interesting diffusions, the transition function of the Wright-Fisher diffusion is unknown.
- Inference typically proceeds by
 - Model-discretization such as an Euler approximation:

$$X_{t+dt} \mid (X_t = z) \sim \mathcal{N}(\mu_{\theta}(z)dt, \sigma^2(z)dt),$$

Image: Image: Solution of Kolmogorov PDEs, or spectral expansions, Image: Solution of Kolmogorov PDEs, Image: Solution of K

• But—discretization introduces a bias we would like to remove.

Introduction	Exact algorithm	Bessel-EA	Wright-Fisher diffusion	Summary
0000				

- Like many interesting diffusions, the transition function of the Wright-Fisher diffusion is unknown.
- Inference typically proceeds by
 - Model-discretization such as an Euler approximation:

$$X_{t+dt} \mid (X_t = z) \sim \mathcal{N}(\mu_{\theta}(z)dt, \sigma^2(z)dt),$$

Image: Image: Solution of Kolmogorov PDEs, or spectral expansions, Image: Solution of Kolmogorov PDEs, Image: Solution of K

• But—discretization introduces a bias we would like to remove.

Introduction	Exact algorithm	Bessel-EA	Wright-Fisher diffusion	Summary
0000				

- Like many interesting diffusions, the transition function of the Wright-Fisher diffusion is unknown.
- Inference typically proceeds by
 - Model-discretization such as an Euler approximation:

 $X_{t+dt} \mid (X_t = z) \sim \mathcal{N}(\mu_{\theta}(z)dt, \sigma^2(z)dt),$

- Image: Interpretation (or numerical solution of Kolmogorov PDEs, or spectral expansions, ...)
- But—discretization introduces a bias we would like to remove.

Three sentence summary

- There exist so-called exact algorithms for simulating diffusions without discretization error, even if the transition density is unknown.
- They can perform poorly when there are entrance boundaries.
- I will outline how to fix these problems.

Introduction	Exact algorithm	Bessel-EA 000000000	Wright-Fisher diffusion	Summary 00
Outline				

Overview of the exact algorithm

- 3 Bessel-EA
- Wright-Fisher diffusion

5 Summary

Introduction	Exact algorithm	Bessel-EA	Wright-Fisher diffusion	Summary
	00000000			

Exact algorithm (EA)—one-dimensional bridge version

Goal: return exact bridge samples from the one-dimensional diffusion $X = (X_t : t \ge 0)$ on \mathbb{R} satisfying

$$dX_t = \mu_{\theta}(X_t)dt + \sigma(X_t)dW_t, \qquad X_0 = x, \quad 0 \le t \le T.$$

Introduction	Exact algorithm	Bessel-EA	Wright-Fisher diffusion	Summary
	●00000000			

Exact algorithm (EA)—one-dimensional bridge version

Goal: return exact bridge samples from the one-dimensional diffusion $X = (X_t : t \ge 0)$ on \mathbb{R} satisfying

$$dX_t = \mu_{\theta}(X_t)dt + \sigma(X_t)dW_t, \qquad X_0 = x, \quad 0 \le t \le T.$$

• Reduce the problem to unit diffusion coefficient via the Lamperti transform $X_t \mapsto Y_t$:

$$Y_t := \int^{X_t} \frac{1}{\sigma(u)} du_t$$

so now we work with

$$dY_t = \alpha_{\theta}(Y_t)dt + dW_t, \qquad Y_0 = y, \quad 0 \le t \le T.$$

Introduction	Exact algorithm	Bessel-EA 000000000	Wright-Fisher diffusion	Summary 00

$$dY_t = \alpha_{\theta}(Y_t)dt + dB_t, \qquad Y_0 = y, \quad 0 \le t \le T.$$

Now we can consider a rejection algorithm using Brownian bridge paths as candidates.

If \mathbb{Q}_y is the target law (of *Y*) and \mathbb{W}_y is the law of a Brownian motion then we need

$$\frac{d\mathbb{Q}_y}{d\mathbb{W}_y}(Y)$$

to provide the rejection probability

ntroduction	Exact algorithm o●ooooooo	Bessel-EA 000000000	Wright-Fisher diffusion	Summary 00
	,			

$$dY_t = \alpha_{\theta}(Y_t)dt + dB_t, \qquad Y_0 = y, \quad 0 \le t \le T.$$

Now we can consider a rejection algorithm using Brownian bridge paths as candidates.

If \mathbb{Q}_y is the target law (of *Y*) and \mathbb{W}_y is the law of a Brownian motion then we need

$$\frac{d\mathbb{Q}_{y}}{d\mathbb{W}_{y}}(Y) = \exp\left\{\int_{0}^{T} \alpha_{\theta}(Y_{t})dY_{t} - \frac{1}{2}\int_{0}^{T} \alpha_{\theta}^{2}(Y_{t})dt\right\}$$

to provide the rejection probability, by the Girsanov theorem.

ntroduction	Exact algorithm	Bessel-EA 000000000	Wright-Fisher diffusion	Summary 00
			,	

$$dY_t = \alpha_{\theta}(Y_t)dt + dB_t, \qquad Y_0 = y, \quad 0 \le t \le T.$$

Now we can consider a rejection algorithm using Brownian bridge paths as candidates.

If \mathbb{Q}_y is the target law (of *Y*) and \mathbb{W}_y is the law of a Brownian motion then we need

$$\frac{d\mathbb{Q}_{y}}{d\mathbb{W}_{y}}(Y) = \exp\left\{\int_{0}^{T} \alpha_{\theta}(Y_{t})dY_{t} - \frac{1}{2}\int_{0}^{T} \alpha_{\theta}^{2}(Y_{t})dt\right\}$$

to provide the rejection probability, by the Girsanov theorem.

• Such a rejection algorithm is impossible: it requires simulation of complete (infinite-dimensional) Brownian sample paths!

Introduction Exa	act algorithm	Bessel-EA	Wright-Fisher diffusion	Summary
0000 00	000000			

$$dY_t = \alpha_{\theta}(Y_t)dt + dB_t, \qquad Y_0 = y, \quad 0 \le t \le T.$$

Skey observation: The Radon-Nikodým derivative can be put in the form

$$\frac{d\mathbb{Q}_{y}}{d\mathbb{W}_{y}}(Y) \propto \exp\left\{-\int_{0}^{T} \phi(Y_{s}) ds\right\} \leq 1,$$

where $\phi(\cdot) := \frac{1}{2} [\alpha_{\theta}^2(\cdot) + \alpha_{\theta}'(\cdot)] + C.$

Introduction Exa	act algorithm	Bessel-EA	Wright-Fisher diffusion	Summary
0000 00	000000			

$$dY_t = \alpha_{\theta}(Y_t)dt + dB_t, \qquad Y_0 = y, \quad 0 \le t \le T.$$

Key observation: The Radon-Nikodým derivative can be put in the form

$$\frac{d\mathbb{Q}_{\mathcal{Y}}}{d\mathbb{W}_{\mathcal{Y}}}(\mathcal{Y})\propto\exp\left\{-\int_{0}^{T}\phi(\mathcal{Y}_{s})ds\right\}\leq1,$$

where $\phi(\cdot) := \frac{1}{2} [\alpha_{\theta}^2(\cdot) + \alpha_{\theta}'(\cdot)] + C.$

Assume we can arrange for $\phi \ge 0$. Then the right-hand side is the probability that a Poisson point process of unit rate on $[0, T] \times [0, \infty)$ has no points under the graph of $t \mapsto \phi(Y_s)$.

Introduction

Exact algorithm

Bessel-EA

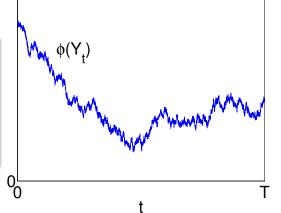
Wright-Fisher diffusion

Summary

 $rac{d\mathbb{Q}_{Y}}{d\mathbb{W}_{Y}}(Y)\propto\exp\left\{-\int_{0}^{\mathcal{T}}\phi(Y_{s})ds
ight\}\leq1.$

Exact algorithm (EA)

A proposed Brownian path should be rejected if a simulated Poisson point process has any points under its graph.



Introduction

Exact algorithm

Bessel-EA

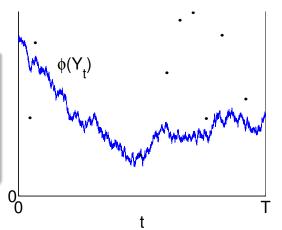
Wright-Fisher diffusion

Summary

 $\frac{d\mathbb{Q}_{Y}}{d\mathbb{W}_{Y}}(Y)\propto\exp\left\{-\int_{0}^{T}\phi(Y_{s})ds
ight\}\leq1.$

Exact algorithm (EA)

A proposed Brownian path should be rejected if a simulated Poisson point process has any points under its graph.



Introduction 0000	Exact algorithm	Bessel-EA 000000000	Wright-Fisher diffusion	Summary 00	
Retrospective sampling					

Exact algorithm (EA) for simulating a bridge from Y_0 to Y_T

Simulate a Brownian bridge $(Y_t)_{0 \le t \le T}$ from Y_0 to Y_T .

Introduction	Exact algorithm	Bessel-EA	Wright-Fisher diffusion	Summary 00

Exact algorithm (EA) for simulating a bridge from Y_0 to Y_T

- Simulate a Brownian bridge $(Y_t)_{0 \le t \le T}$ from Y_0 to Y_T .
- ② Simulate a Poisson point process of unit rate on $[0, T] \times [0, \infty)$.

Introduction	Exact algorithm	Bessel-EA 000000000	Wright-Fisher diffusion	Summary 00
_				

Exact algorithm (EA) for simulating a bridge from Y_0 to Y_T

- Simulate a Brownian bridge $(Y_t)_{0 \le t \le T}$ from Y_0 to Y_T .
- ② Simulate a Poisson point process of unit rate on $[0, T] \times [0, \infty)$.
- Accept if all points are in the epigraph of $t \mapsto \phi(Y_t)$, otherwise return to 1.

Introduction	Exact algorithm	Bessel-EA 000000000	Wright-Fisher diffusion	Summary

Exact algorithm (EA) for simulating a bridge from Y_0 to Y_T

- Simulate a Brownian bridge $(Y_t)_{0 \le t \le T}$ from Y_0 to Y_T .
- ② Simulate a Poisson point process of unit rate on $[0, T] \times [0, \infty)$.
- Accept if all points are in the epigraph of $t \mapsto \phi(Y_t)$, otherwise return to 1.

Problems

- We still need an infinite-dimensional Brownian path.
- Process has unbounded intensity.

Introduction	Exact algorithm	Bessel-EA 000000000	Wright-Fisher diffusion	Summary 00

Exact algorithm (EA) for simulating a bridge from Y_0 to Y_T

- Simulate a Brownian bridge $(Y_t)_{0 \le t \le T}$ from Y_0 to Y_T .
- ② Simulate a Poisson point process of unit rate on $[0, T] \times [0, \infty)$.
- Solution Accept if all points are in the epigraph of $t \mapsto \phi(Y_t)$, otherwise return to 1.

Problems

- We still need an infinite-dimensional Brownian path.
- Provide the second s

Solutions

Exploit retrospective sampling; switch the order of simulation!

Introduction	Exact algorithm	Bessel-EA 000000000	Wright-Fisher diffusion	Summary 00

Exact algorithm (EA) for simulating a bridge from Y_0 to Y_T

- Simulate a Brownian bridge $(Y_t)_{0 \le t \le T}$ from Y_0 to Y_T .
- ② Simulate a Poisson point process of unit rate on $[0, T] \times [0, \infty)$.
- Solution Accept if all points are in the epigraph of $t \mapsto \phi(Y_t)$, otherwise return to 1.

Problems

- We still need an infinite-dimensional Brownian path.
- Provide the second s

Solutions

Exploit retrospective sampling; switch the order of simulation!

Introduction	Exact algorithm	Bessel-EA	Wright-Fisher diffusion	Summary
	00000000			

Exact algorithm (EA) for simulating a bridge from Y_0 to Y_T

- Simulate a Poisson point process of unit rate on $[0, T] \times [0, \infty)$.
- Simulate the Brownian bridge at the times of the Poisson points.
- 3 Accept if all points are in the epigraph of $t \mapsto \phi(Y_t)$, otherwise return to 1.

Problems

- We still need an infinite-dimensional Brownian path.
- Process has unbounded intensity.

Solutions

Exploit retrospective sampling; switch the order of simulation!

Introduction	Exact algorithm	Bessel-EA	Wright-Fisher diffusion	Summary
	00000000			

Exact algorithm (EA) for simulating a bridge from Y_0 to Y_T

- Simulate a Poisson point process of unit rate on $[0, T] \times [0, \infty)$.
- Simulate the Brownian bridge at the times of the Poisson points.
- 3 Accept if all points are in the epigraph of $t \mapsto \phi(Y_t)$, otherwise return to 1.

Problems

- We still need an infinite-dimensional Brownian path.
- Provide a straight of the s

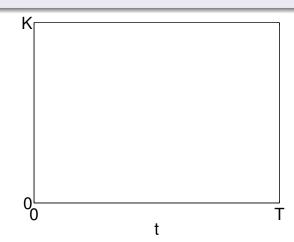
Solutions

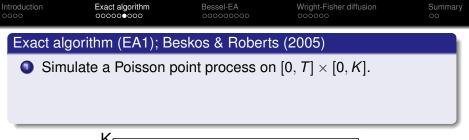
Exploit retrospective sampling; switch the order of simulation!

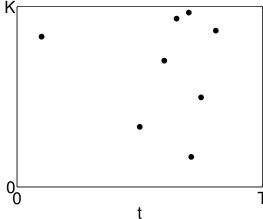
2 Assume φ is bounded, φ ≤ K (for now), and use Poisson thinning ("EA1").

0000 0000000 0000000 000000 00	Introduction	Exact algorithm	Bessel-EA	Wright-Fisher diffusion	Summar
		000000000			

Exact algorithm (EA1); Beskos & Roberts (2005)



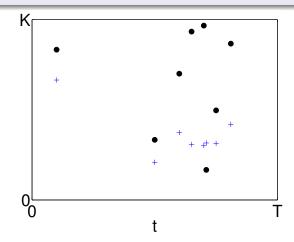




Exact algorithm (EA1); Beskos & Roberts (2005)

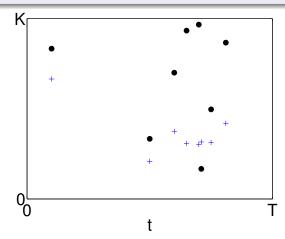
Simulate a Poisson point process on $[0, T] \times [0, K]$.

Simulate the Brownian bridge at the times of the Poisson points.



Exact algorithm (EA1); Beskos & Roberts (2005)

- Simulate a Poisson point process on $[0, T] \times [0, K]$.
- Simulate the Brownian bridge at the times of the Poisson points.
- If any of the former are beneath any of the latter, return to 1.



Introduction	Exact algorithm	Bessel-EA 000000000	Wright-Fisher diffusion	Summary 00		
Event electrithm $(\Box \Lambda)$						

• Output of the algorithm is a set of skeleton points of the bridge.

 Any further points can be filled in by further draws from the Brownian bridge—no further reference to the target law, Q_y, is necessary!

Introduction	Exact algorithm	Bessel-EA	Wright-Fisher diffusion	Summary
	000000000			

- Output of the algorithm is a set of skeleton points of the bridge.
- Any further points can be filled in by further draws from the Brownian bridge—no further reference to the target law, Q_y, is necessary!

$$\phi(\cdot) = \frac{1}{2} [\alpha_{\theta}^2(\cdot) + \alpha_{\theta}'(\cdot)] + C.$$

- This function ϕ is important.
- The assumption φ ≤ K is restrictive, but it can in fact be relaxed ("EA2", Beskos *et al.*, 2006).

Introduction	Exact algorithm	Bessel-EA	Wright-Fisher diffusion	Summary
	000000000			

- Output of the algorithm is a set of skeleton points of the bridge.
- Any further points can be filled in by further draws from the Brownian bridge—no further reference to the target law, Q_y, is necessary!

$$\phi(\cdot) = \frac{1}{2} [\alpha_{\theta}^2(\cdot) + \alpha_{\theta}'(\cdot)] + C.$$

- This function ϕ is important.
- The assumption φ ≤ K is restrictive, but it can in fact be relaxed ("EA2", Beskos *et al.*, 2006).

Introduction	Exact algorithm	Bessel-EA	Wright-Fisher diffusion	Summary
	000000000			

Exact algorithm (EA)

- Output of the algorithm is a set of skeleton points of the bridge.
- Any further points can be filled in by further draws from the Brownian bridge—no further reference to the target law, Q_y, is necessary!

$$\phi(\cdot) = \frac{1}{2} [\alpha_{\theta}^2(\cdot) + \alpha_{\theta}'(\cdot)] + C.$$

- This function ϕ is important.
- The assumption φ ≤ K is restrictive, but it can in fact be relaxed ("EA2", Beskos *et al.*, 2006).
- There have been many further refinements to this algorithm (multidimensions, jumps, killing, reflection, ...): Beskos *et al.* (2006, 2008, 2012), Casella & Roberts (2008, 2011), Chen & Huang (2013), Étoré & Martinez (2013), Giesecke & Smelov (2013), Gonçalves & Roberts (2013), Mousavi & Glynn (2013), Blanchet & Murthy (2014), Pollock *et al.* (2014).

Introduction	Exact algorithm ooooooo●o	Bessel-EA 000000000	Wright-Fisher diffusion	Summary 00	
Efficienc	y				
• The exact algorithm will be less efficient wherever $\phi(X_t)$ is very					

large—unavoidable when the diffusion travels through a region where the drift (or its derivative) is very large.

Introduction	Exact algorithm ooooooooooo	Bessel-EA 00000000	Wright-Fisher diffusion	Summary 00

Efficiency

 The exact algorithm will be less efficient wherever φ(X_t) is very large—unavoidable when the diffusion travels through a region where the drift (or its derivative) is very large.

Example: Entrance boundary at 0

- "A diffusion at x will almost surely not hit 0 before hitting any b > x. A diffusion started at 0 will enter (0,∞) in finite time."
- If σ²(x) = 1, then φ explodes at the boundary.

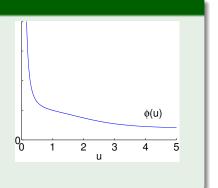
Introduction	Exact algorithm	Bessel-EA 00000000	Wright-Fisher diffusion	Summary 00

Efficiency

 The exact algorithm will be less efficient wherever φ(X_t) is very large—unavoidable when the diffusion travels through a region where the drift (or its derivative) is very large.

Example: Entrance boundary at 0

- "A diffusion at x will almost surely not hit 0 before hitting any b > x. A diffusion started at 0 will enter (0,∞) in finite time."
- If σ²(x) = 1, then φ explodes at the boundary.



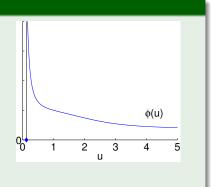
Introduction	Exact algorithm oooooooo●o	Bessel-EA 00000000	Wright-Fisher diffusion	Summary 00

Efficiency

 The exact algorithm will be less efficient wherever φ(X_t) is very large—unavoidable when the diffusion travels through a region where the drift (or its derivative) is very large.

Example: Entrance boundary at 0

- "A diffusion at x will almost surely not hit 0 before hitting any b > x. A diffusion started at 0 will enter (0,∞) in finite time."
- If σ²(x) = 1, then φ explodes at the boundary.



Bessel-EA

Wright-Fisher diffusion

Summary

Large φ is a symptom of a poor likelihood ratio, i.e. Brownian motion is a poor mimic of the target diffusion.

Introduction	Exact algorithm	Bessel-EA	Wright-Fisher diffusion	Summary
	00000000			

- Large ϕ is a symptom of a poor likelihood ratio, i.e. Brownian motion is a poor mimic of the target diffusion.
- Idea: Replace Brownian motion with a different candidate process—one with an entrance boundary.

- Large ϕ is a symptom of a poor likelihood ratio, i.e. Brownian motion is a poor mimic of the target diffusion.
- Idea: Replace Brownian motion with a different candidate process—one with an entrance boundary.
- But: the exact algorithms rely heavily on our knowledge about Brownian bridges:
 - The distribution of bridge coordinates.
 - The distribution of the minimum, m_T , and its time, t_m .
 - The distribution of bridge coordinates conditioned on (m_T, t_m) .
 - The ability to sample from these distributions *exactly*.

- Large ϕ is a symptom of a poor likelihood ratio, i.e. Brownian motion is a poor mimic of the target diffusion.
- Idea: Replace Brownian motion with a different candidate process—one with an entrance boundary.
- But: the exact algorithms rely heavily on our knowledge about Brownian bridges:
 - The distribution of bridge coordinates.
 - The distribution of the minimum, m_T , and its time, t_m .
 - The distribution of bridge coordinates conditioned on (m_T, t_m) .
 - The ability to sample from these distributions *exactly*.

- Large ϕ is a symptom of a poor likelihood ratio, i.e. Brownian motion is a poor mimic of the target diffusion.
- Idea: Replace Brownian motion with a different candidate process—one with an entrance boundary.
- But: the exact algorithms rely heavily on our knowledge about Brownian bridges:
 - The distribution of bridge coordinates.
 - The distribution of the minimum, m_T , and its time, t_m .
 - The distribution of bridge coordinates conditioned on (*m*_T, *t_m*).
 - The ability to sample from these distributions exactly.

Question. Does there exist a diffusion:

- with infinitesimal variance equal to 1,
- with an entrance boundary, and such that
- the finite-dimensional distributions of its bridges are known, and
- which can be simulated exactly, and
- (bonus) whose extrema are well characterized?

Introduction	Exact algorithm	Bessel-EA	Wright-Fisher diffusion	Summary 00
Outline				

2 Overview of the exact algorithm

Wright-Fisher diffusion

5 Summary

Introduction	Exact algorithm	Bessel-EA ●oooooooo	Wright-Fisher diffusion	Summary 00
Ressel r	araces			

- - Infinitesimal variance 1?

✓ Drift
$$\beta(y) = (\delta - 1)/(2y)$$
,
variance $\sigma^2(y) = 1$.

- Entrance boundary?
- Finitedimensional distributions?

- Exact simulation?
- Distributions of extrema?

Introduction	Exact algorithm	Bessel-EA ●oooooooo	Wright-Fisher diffusion	Summary 00
Bessel p	rocess			

- Infinitesimal variance 1?
- Entrance boundary?
- Finitedimensional distributions?

- ✓ Drift $\beta(y) = (\delta 1)/(2y)$, variance $\sigma^2(y) = 1$.
- ✓ Zero is an entrance boundary when δ ≥ 2.

- Exact simulation?
- Distributions of extrema?

Introduction	Exact algorithm	Bessel-EA	Wright-Fisher diffusion	Summary	
0000	ooooooooo	●○○○○○○○○		00	
Reseal process					

- Bessel process
 - Infinitesimal variance 1?
 - Entrance boundary?
 - Finitedimensional distributions?

✓ Drift $\beta(y) = (\delta - 1)/(2y)$, variance $\sigma^2(y) = 1$.

✓ Zero is an entrance boundary when δ ≥ 2.

 $\begin{array}{l} \checkmark \quad \rho_{(y,0)\to(z,T)}(x;t) = \\ \frac{T}{2t(T-t)} e^{-\left(\frac{z(T-t)}{2tT} + \frac{xT}{2t(T-t)} + \frac{yt}{2T(T-t)}\right)} \frac{I_{\nu}(\frac{\sqrt{xz}}{t})I_{\nu}(\frac{\sqrt{xy}}{(T-t)^2})}{I_{\nu}(\frac{\sqrt{yz}}{T^2})}, \\ \text{where } \nu = 2(\delta+1), \text{ is the transition density} \\ \text{of the (squared) Bessel bridge.} \end{array}$

- Exact simulation?
- Distributions of extrema?

	orocess	00000000	000000	00
Introduction	Exact algorithm	Bessel-EA	Wright-Fisher diffusion	Summary

- besser process
 - Infinitesimal variance 1?
 - Entrance boundary?
 - Finitedimensional distributions?

- Exact simulation?
- Distributions of extrema?

- ✓ Drift $\beta(y) = (\delta 1)/(2y)$, variance $\sigma^2(y) = 1$.
- ✓ Zero is an entrance boundary when δ ≥ 2.
- $\begin{array}{l} \checkmark \quad \mathcal{P}_{(y,0)\to(z,T)}(x;t) = \\ \frac{T}{2t(T-t)} e^{-\left(\frac{z(T-t)}{2tT} + \frac{xT}{2t(T-t)} + \frac{yt}{2T(T-t)}\right) \frac{l_{\nu}(\frac{\sqrt{xz}}{t})l_{\nu}(\frac{\sqrt{xy}}{(T-t)^2})}{l_{\nu}(\frac{\sqrt{yz}}{T^2})}, \\ \text{where } \nu = 2(\delta+1), \text{ is the transition density} \\ \text{of the (squared) Bessel bridge.} \end{array}$
- ✓ $\delta \in \mathbb{Z}_{\geq 0}$: radial part of a δ -dimensional Brownian motion.

 $\delta \in \mathbb{R}_{\geq 0}$: See Makarov & Glew (2010).

Introduction	Exact algorithm	Bessel-EA ●oooooooo	Wright-Fisher diffusion	Summary 00
Recept	orocaee			

- Infinitesimal variance 1?
- Entrance boundary?
- Finitedimensional distributions?

Exact simulation?

- ✓ Drift $\beta(y) = (\delta 1)/(2y)$, variance $\sigma^2(y) = 1$.
- ✓ Zero is an entrance boundary when δ ≥ 2.
- $\begin{array}{l} \checkmark \quad \mathcal{P}_{(y,0)\to(z,T)}(x;t) = \\ \frac{T}{2t(T-t)} e^{-\left(\frac{z(T-t)}{2tT} + \frac{xT}{2t(T-t)} + \frac{yt}{2T(T-t)}\right)} \frac{l_{\nu}(\frac{\sqrt{xz}}{t})l_{\nu}(\frac{\sqrt{xy}}{(T-t)^2})}{l_{\nu}(\frac{\sqrt{yz}}{T^2})}, \\ \text{where } \nu = 2(\delta+1), \text{ is the transition density} \\ \text{of the (squared) Bessel bridge.} \end{array}$
- ✓ $\delta \in \mathbb{Z}_{\geq 0}$: radial part of a δ -dimensional Brownian motion.

 $\delta \in \mathbb{R}_{\geq 0}$: See Makarov & Glew (2010).

 Distributions of extrema? (√) Partly.

Introduction	Exact algorithm	Bessel-EA o●ooooooo	Wright-Fisher diffusion	Summary 00
Bessel-E	4			

Exact simulation from a diffusion with law Q_y using the Bessel process (law B^δ_y ≫ Q_y) is possible by the following:

Theorem.

Under regularity conditions (similar to EA), \mathbb{Q}_y is the marginal distribution of *Y* when

$$(\mathbf{Y}, \Phi) \sim (\mathbb{B}_{\mathbf{Y}}^{\delta} \otimes \mathbb{L}) \Big| \Big\{ \Phi \subseteq \operatorname{epigraph} \Big[\widetilde{\phi}(\mathbf{Y}) \Big] \Big\},$$

where $\mathbb L$ is the law of a Poisson point process Φ of unit rate on $[0,T]\times[0,\infty),$ and

$$\widetilde{\phi}(u) := \frac{1}{2} [\alpha_{\theta}^2(u) - \beta^2(u) + \alpha_{\theta}'(u) - \beta'(u)] + C.$$

	- f			
Introduction	Exact algorithm	Bessel-EA ००●००००००	Wright-Fisher diffusion	Summary 00

Outline of proof.

Similar to the Brownian case: regularity conditions permit a Girsanov transformation and rearrangement so that

$$\frac{d\mathbb{Q}_y}{d\mathbb{B}_y^{\delta}}(Y) \propto \exp\left\{-\int_0^T \widetilde{\phi}(Y_t) dt\right\} \leq 1,$$

provides the rejection probability for sampling from the conditional law $[\sim 10^{-1}]$

$$\left(\mathbb{B}_{\mathcal{Y}}^{\delta}\otimes\mathbb{L}
ight)\Big|\left\{\Phi\subseteq\operatorname{epigraph}\left[\widetilde{\phi}(\mathcal{Y})
ight]
ight\}.\quad \Box$$

Introduction	Exact algorithm	Bessel-EA ○○●○○○○○○	Wright-Fisher diffusion	Summary 00

Outline of proof.

Similar to the Brownian case: regularity conditions permit a Girsanov transformation and rearrangement so that

$$\frac{d\mathbb{Q}_y}{d\mathbb{B}_y^\delta}(Y) \propto \exp\left\{-\int_0^T \widetilde{\phi}(Y_t) dt\right\} \leq 1,$$

provides the rejection probability for sampling from the conditional law $[\sim 1]$

$$(\mathbb{B}_{\mathcal{Y}}^{\delta}\otimes\mathbb{L})\Big|\left\{\Phi\subseteq\operatorname{epigraph}\left[\widetilde{\phi}(\mathcal{Y})
ight]
ight\}.\ \ \Box$$

So what?

• We have just replaced one candidate process for another, the only substantial difference the appearance of $\widetilde{\phi}(u) := \frac{1}{2} [\alpha_{\theta}^2(u) - \beta^2(u) + \alpha_{\theta}'(u) - \beta'(u)] + C.$ instead of

$$\phi(u) := \frac{1}{2} [\alpha_{\theta}^2(u) + \alpha_{\theta}'(u)] + C.$$

Introduction	Exact algorithm	Bessel-EA ooo●ooooo	Wright-Fisher diffusion	Summary 00

• A diffusion $(X_t)_{0 \le t \le T}$ with drift and diffusion coefficients

$$\mu(\mathbf{x}) = \kappa \mathbf{x}, \qquad \sigma^2(\mathbf{x}) = \mathbf{x} + \omega \mathbf{x}^2,$$

commenced from $X_0 = x_0$ and grown to $X_T = x_T$.

Introduction	Exact algorithm	Bessel-EA	Wright-Fisher diffusion	Summary
		00000000		

• A diffusion $(X_t)_{0 \le t \le T}$ with drift and diffusion coefficients

$$\mu(\mathbf{x}) = \kappa \mathbf{x}, \qquad \sigma^2(\mathbf{x}) = \mathbf{x} + \omega \mathbf{x}^2,$$

commenced from $X_0 = x_0$ and grown to $X_T = x_T$.

• The population has not died out, so we can condition the process on non-absorption at 0.

0000 0000000 0000000 000000 000000 00000	Introduction	Exact algorithm	Bessel-EA	Wright-Fisher diffusion	Summary
			00000000		

• A diffusion $(X_t)_{0 \le t \le T}$ with drift and diffusion coefficients

$$\mu(\mathbf{x}) = \kappa \mathbf{x}, \qquad \sigma^2(\mathbf{x}) = \mathbf{x} + \omega \mathbf{x}^2,$$

commenced from $X_0 = x_0$ and grown to $X_T = x_T$.

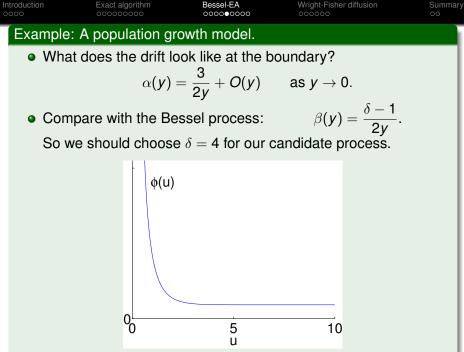
- The population has not died out, so we can condition the process on non-absorption at 0.
- Conditioning and Lamperti transforming leads to new drift

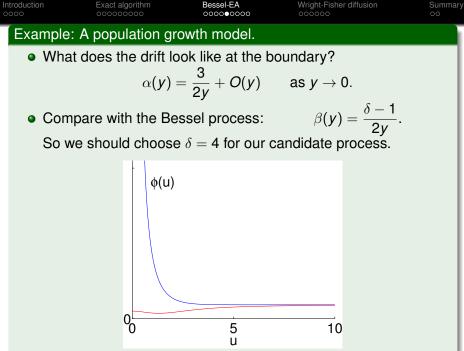
$$\begin{split} \alpha(\mathbf{y}) &= \frac{\kappa}{\sqrt{\omega}} \tanh\left[\frac{\sqrt{\omega}\mathbf{y}}{2}\right] - \frac{\sqrt{\omega}}{2} \coth\left[\sqrt{\omega}\mathbf{y}\right] \\ &+ \frac{\omega - 2\kappa}{\sqrt{w}} \frac{\tanh\left[\frac{\sqrt{\omega}\mathbf{y}}{2}\right]}{1 - \cosh^{\frac{4\kappa}{\omega} - 2}\left[\frac{\sqrt{\omega}\mathbf{y}}{2}\right]}, \end{split}$$

with an entrance boundary at 0.

ntroduction	Exact algorithm	Bessel-EA oooooooo	Wright-Fisher diffusion	Summary 00
Example: A	A population gr	owth model.		
What d		ook like at the bo		
	$\alpha(\mathbf{y})$	$=rac{3}{2y}+O(y)$	as $y \to 0$.	
		<i>2</i> y		

roduction	Exact algorithm	Bessel-EA oooooooo	Wright-Fisher diffusion	Summary 00
Example: A	population grow	vth model.		
What d	loes the drift loo	_	•	
	$\alpha(y) =$	$\frac{3}{2y} + O(y)$	as $y \to 0$.	
•	are with the Bess	•	$\beta(y) = rac{\delta - 1}{2y}.$	
So we	should choose δ	$\delta = 4$ for our ca	andidate process.	





Introduction	Exact algorithm	Bessel-EA	Wright-Fisher diffusion	Summary
		000000000		

• $\tilde{\phi}$ is (tightly) bounded (by *K* say), while ϕ is unbounded as $y \to 0$.

Introduction	Exact algorithm	Bessel-EA	Wright-Fisher diffusion	Summary
		000000000		

- $\tilde{\phi}$ is (tightly) bounded (by *K* say), while ϕ is unbounded as $y \to 0$.
- Hence we can use the following Bessel-EA to return skeleton bridges:
 - Simulate a Poisson point process on $[0, T] \times [0, K]$.
 - Simulate a Bessel bridge of dimension $\delta = 4$ at the times of the Poisson points.
 - If any of the former are beneath any of the latter, return to 1.

Intro 000	duction		ct algorithm	Bessel-EA ○○○○○○●○		ight-Fisher diffusion	Summary 00			
Re	Results									
	Bess	sel-EA1			$Y_0 =$	y to $Y_{0.15} =$	1, $\omega = 3$.			
				Poisson	Skeleton	Random	Total			
	κ	У	Attempts	points	points	variables	Time (s)			
	1.0	10.0	1.1	0.2	0.2	1.9	0			
	1.0	1.0	1.0	0.2	0.2	1.9	0			
	1.0	0.25	1.0	0.2	0.2	2.0	0			
	1.0	0.15	1.0	0.2	0.2	2.0	1			
	1.0	0.1	1.1	0.2	0.2	2.0	1			
	1.0	0.025	1.0	0.2	0.2	2.0	0			
	Brov	vnian-EA	("EA2")							
				Poisson	Skeleton	Random	Total			
	κ	У	Attempts	points	points	variables	Time (s)			
	1.0	10.0	1.0	0.1	0.1	7.3	0			
	1.0	1.0	1.1	0.1	0.1	7.4	0			
	1.0	0.25	1.2	1288.6	420.6	3846.1	6			
	1.0	0.15	1.4	7531.1	617.4	16921.4	16			

DNF

DNF

DNF

DNF

DNF

DNF

1.0

1.0

0.1

0.025

DNF

DNF

DNF

DNF

Intro 000	duction		algorithm	Bessel-EA ○○○○○○○●○		ht-Fisher diffusion	Summary 00		
R	Results								
	Besse	el-EA1			$Y_0 =$	y to $Y_{0.15} =$	1, $\omega =$ 3.		
				Poisson	Skeleton	Random	Total		
	κ	У	Attempts	points	points	variables	Time (s)		
	10.0	10.0	5.2	14.1	6.8	56.4	1		
	10.0	1.0	3.0	7.9	4.9	36.4	1		
	10.0	0.25	2.3	6.1	4.4	30.8	1		
	10.0	0.15	2.2	6.0	4.3	30.3	0		
	10.0	0.1	2.2	5.9	4.4	30.4	0		
	10.0	0.025	2.1	5.8	4.3	29.6	1		
	Browr	nian-EA ("	EA2")						
				Poisson	Skeleton	Random	Total		
	κ	У	Attempts	points	points	variables	Time (s)		
	10.0	10.0	5.0	9.8	4.8	40.9	0		
	10.0	1.0	2.9	5.9	3.6	29.8	0		
	10.0	0.25	2.6	81.4	10.7	201.9	0		
	10.0	0.15	2.9	23052.1	1981.9	52056.9	52		
	10.0	0.1	DNF	DNF	DNF	DNF	DNF		
	10.0	0.025	DNF	DNF	DNF	DNF	DNF 28/38		

Introduction	Exact algorithm	Bessel-EA	Wright-Fisher diffusion	Summary
		00000000		

When is the singularity in the drift at an entrance boundary matched by a Bessel process?

Introduction	Exact algorithm	Bessel-EA oooooooo●	Wright-Fisher diffusion	Summary 00

When is the singularity in the drift at an entrance boundary matched by a Bessel process? Here's a partial answer.

Theorem.

Suppose we have a diffusion *Y* satisfying the requirements of EA1. Then the diffusion *Y*^{*} obtained by conditioning this process on $\{T_b < T_0\}$, can be simulated via Bessel-EA1 with $\delta = 3$.

Introduction	Exact algorithm	Bessel-EA ○○○○○○○●	Wright-Fisher diffusion	Summary 00

When is the singularity in the drift at an entrance boundary matched by a Bessel process? Here's a partial answer.

Theorem.

Suppose we have a diffusion *Y* satisfying the requirements of EA1. Then the diffusion *Y*^{*} obtained by conditioning this process on $\{T_b < T_0\}$, can be simulated via Bessel-EA1 with $\delta = 3$.

Outline of proof.

- Deduce regularity requirements for Bessel-EA1 from the assumptions of EA1.
- Compute the conditioned drift *α*^{*}(*y*) by bare hands, using a Doob *h*-transform.
- We find φ̃*(u) is bounded iff δ = 3 (among all possible δ ≥ 2).

Introduction	Exact algorithm	Bessel-EA 000000000	Wright-Fisher diffusion	Summary 00
Outline				

Introduction

2 Overview of the exact algorithm

3 Bessel-EA

Wright-Fisher diffusion

5 Summary

oduction	Exact algorithm	Bessel-EA	Wright-Fisher diffusion	Summary
			00000	

Example: The Wright-Fisher diffusion with natural selection

 The frequency X_t ∈ [0, 1] of a gene in a large population evolves according to

$$dX_t = \gamma X_t(1-X_t)dt + \sqrt{X_t(1-X_t)}dW_t, \qquad X_0 = x, \quad t \ge 0.$$

oduction	Exact algorithm	Bessel-EA	Wright-Fisher diffusion	Summary
			●ooooo	

Example: The Wright-Fisher diffusion with natural selection

 The frequency X_t ∈ [0, 1] of a gene in a large population evolves according to

 $dX_t = \gamma X_t(1-X_t)dt + \sqrt{X_t(1-X_t)}dW_t, \qquad X_0 = x, \quad t \ge 0.$

• γ parametrizes the selective advantage of this gene.

 Introduction
 Exact algorithm
 Bessel-EA
 Wright-Fisher diffusion
 Summary

 0000
 000000000
 00000000
 000
 00
 00

Example: The Wright-Fisher diffusion with natural selection

 The frequency X_t ∈ [0, 1] of a gene in a large population evolves according to

 $dX_t = \gamma X_t(1-X_t)dt + \sqrt{X_t(1-X_t)}dW_t, \qquad X_0 = x, \quad t \ge 0.$

- γ parametrizes the selective advantage of this gene.
- A gene is observed to be at frequency $X_0 = x_0$ and $X_T = x_T$. What do its sample paths look like?

Example: The Wright-Fisher diffusion with natural selection

 The frequency X_t ∈ [0, 1] of a gene in a large population evolves according to

 $dX_t = \gamma X_t(1-X_t)dt + \sqrt{X_t(1-X_t)}dW_t, \qquad X_0 = x, \quad t \ge 0.$

- γ parametrizes the selective advantage of this gene.
- A gene is observed to be at frequency $X_0 = x_0$ and $X_T = x_T$. What do its sample paths look like?
- 0 is absorbing so we should condition the diffusion not to have hit 0 (T₀ > T).

Example: The Wright-Fisher diffusion with natural selection

 The frequency X_t ∈ [0, 1] of a gene in a large population evolves according to

 $dX_t = \gamma X_t(1-X_t)dt + \sqrt{X_t(1-X_t)}dW_t, \qquad X_0 = x, \quad t \ge 0.$

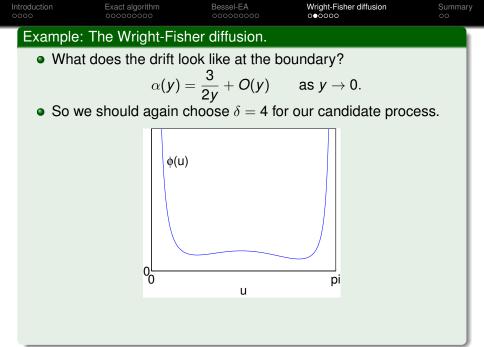
- γ parametrizes the selective advantage of this gene.
- A gene is observed to be at frequency $X_0 = x_0$ and $X_T = x_T$. What do its sample paths look like?
- 0 is absorbing so we should condition the diffusion not to have hit 0 (T₀ > T).
- Conditioning and Lamperti transforming leads to new drift

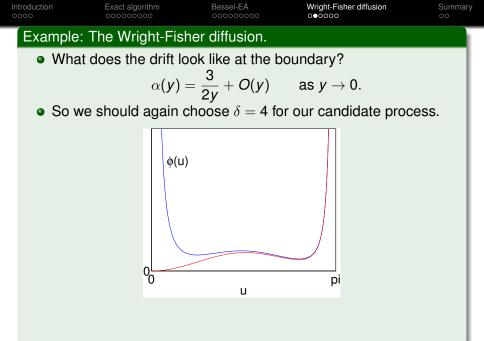
$$\alpha(y) = \frac{1}{2}\gamma\sin(y)\coth\left[\gamma\sin^2\left(\frac{y}{2}\right)\right] - \cot(y).$$

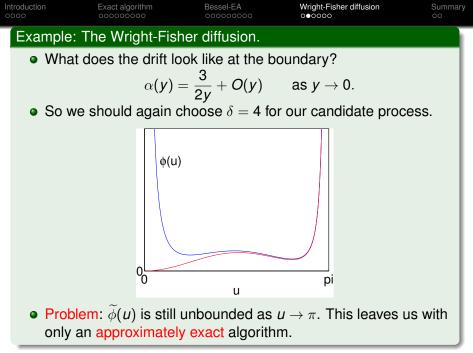
(Schraiber et al., 2013).

Introduction	Exact algorithm	Bessel-EA 000000000	Wright-Fisher diffusion o●oooo	Summary 00
Example:	: The Wright-Fisl	her diffusion.		
What what is a second secon	t does the drift lo			
	$\alpha(y)$:	$=rac{3}{2y}+O(y)$	as $y ightarrow 0$.	
		Ly		

ntroduction	Exact algorithm	Bessel-EA	Wright-Fisher diffusion o●oooo	Summary
Example:	The Wright-Fish	her diffusion.		
What	does the drift lo	~	•	
	$\alpha(y)$ =	$=\frac{3}{2\gamma}+O(\gamma)$	as $y \to 0$.	
So we		,	our candidate proc	cess.







Introduction	Exact algorithm	Bessel-EA	Wright-Fisher diffusion	Summary
			00000	

Ongoing work to fix this issue

In the spirit of (Brownian)-EA2, conditioning on the maximum of a Bessel bridge would solve the problem:

000 0000000 0000000 000000 000000 000000	Introduction	Exact algorithm	Bessel-EA	Wright-Fisher diffusion	Summary
				00000	

Ongoing work to fix this issue

In the spirit of (Brownian)-EA2, conditioning on the maximum of a Bessel bridge would solve the problem:

Simulate the maximum M_T (and the time, t_M , it is attained) of a Bessel bridge from Y_0 to Y_T .

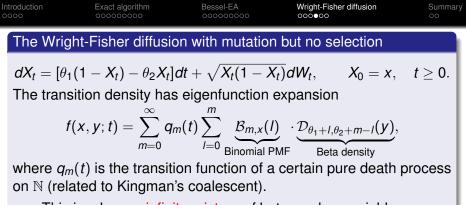
ntroduction	Exact algorithm	Bessel-EA	Wright-Fisher diffusion	Sum
0000			00000	

Ongoing work to fix this issue

In the spirit of (Brownian)-EA2, conditioning on the maximum of a Bessel bridge would solve the problem:

Simulate the maximum M_T (and the time, t_M , it is attained) of a Bessel bridge from Y_0 to Y_T .

Use another version of the Wright-Fisher diffusion as our candidate process.



ntroduction	Exact algorithm	Bessel-EA 000000000	Wright-Fisl ০০০●০০	her diffusion	Summary 00
The Wright-	Fisher diffusion	with mutatior	n but no s	election	
$dX_t = [\theta_1(1$	$(-X_t) - \theta_2 X_t]dt$	$+\sqrt{X_t(1-X)}$	$\overline{(t)}dW_t,$	$X_0 = x,$	$t \ge 0.$
	on density has e $_\infty$	m			
f(x,	$(y; t) = \sum_{m=0}^{\infty} q_m(t)$	t) $\sum_{l=0}^{m} \underbrace{\mathcal{B}_{m,x}(l)}_{\text{Binomial F}}$	$\mathcal{D} \cdot \mathcal{D}_{\theta_1+I, \theta_2}$	$\theta_2 + m - l(y)$, a density	
where $q_m(t)$) is the transition d to Kingman's o	function of a			rocess

Convenient for simulation!

Simulate
$$M \sim \{q_m(t) : m = 0, 1, ...\}.$$

(a realization of Kingman's coalescent with mutation, time t).

ntroduction	Exact algorithm	Bessel-EA 000000000	Wright-Fisher diffusion 000●00	Summary 00
The Wright-	Fisher diffusion	with mutation b	out no selection	
$dX_t = [\theta_1(1$	$(-X_t) - \theta_2 X_t]dt$	$+\sqrt{X_t(1-X_t)}$	$dW_t, \qquad X_0 = x,$	$t \ge 0.$
The transition	on density has ei	igenfunction ex	pansion	
f(x,	$(y;t) = \sum_{m=0}^{\infty} q_m(t)$	$\mathcal{E}(x) \sum_{l=0}^{m} \underbrace{\mathcal{B}_{m,x}(l)}_{\text{Binomial PMF}}$	$\underbrace{\mathcal{D}_{\theta_1+l,\theta_2+m-l}(y)}_{\text{Beta density}},$	
where $q_m(t)$		function of a c	ertain pure death p	process

Convenient for simulation!

Simulate
$$M \sim \{q_m(t) : m = 0, 1, ...\}.$$

(a realization of Kingman's coalescent with mutation, time t).

2 Simulate
$$L \sim \text{Binomial}(M, x)$$
.

ntroduction	Exact algorithm	Bessel-EA 000000000	Wright-Fisher diffusion ০০০●০০	Summary 00
The Wright-	Fisher diffusion	with mutation b	ut no selection	
$dX_t = [\theta_1(1$	$(-X_t) - \theta_2 X_t]dt$	$+\sqrt{X_t(1-X_t)}$	$dW_t, \qquad X_0 = x,$	$t \ge 0.$
The transition	on density has ei	genfunction exp	pansion	
f(x,	$(y;t) = \sum_{n=1}^{\infty} q_m(t)$	$\mathcal{B}(x) \sum_{l=0}^{m} \mathcal{B}_{m,x}(l)$	$\underbrace{\mathcal{D}_{\theta_1+l,\theta_2+m-l}(y)}_{\text{Beta density}},$	
• • • •			ertain pure death p	rocess
on N (relate	d to Kingman's c	coalescent).		

Convenient for simulation!

() Simulate
$$M \sim \{q_m(t) : m = 0, 1, ...\}.$$

(a realization of Kingman's coalescent with mutation, time t).

- **2** Simulate $L \sim \text{Binomial}(M, x)$.
- Seturn $Y \sim \text{Beta}(\theta_1 + L, \theta_2 + M L)$.

Introduction	Exact algorithm	Bessel-EA	Wright-Fisher diffusion	Summary
0000		000000000	০০০০●০	00
Issues				

Example

Mixture weights are known only as an infinite series:

$$q_m(t) = \sum_{k=m}^{\infty} (-1)^{k-m} \frac{(\theta + 2k - 1)\Gamma(\theta + m + k - 1)}{m!(k - m)!\Gamma(\theta + m)} e^{-k(k+\theta - 1)t/2}.$$

Introduction	Exact algorithm	Bessel-EA	Wright-Fisher diffusion	Sum
			000000	

Proposition (Jenkins & Spanò, in preparation).

The coefficients of the ancestral process of Kingman's coalescent,

$$\{q_m(t): m=0,1,\ldots\},\$$

can be rearranged in such a way that this distribution can be simulated exactly.

Introduction	Exact algorithm	Bessel-EA 000000000	Wright-Fisher diffusion	Summary 00
Outline				

Introduction

- 2 Overview of the exact algorithm
- 3 Bessel-EA
- Wright-Fisher diffusion

Introduction	Exact algorithm	Bessel-EA	Wright-Fisher diffusion	Summary
				•0

Summary

• It is possible to simulate efficiently from several diffusions with a finite entrance boundary, without discretization error.

Introduction	Exact algorithm	Bessel-EA	Wright-Fisher diffusion	Summary ●○

Summary

- It is possible to simulate efficiently from several diffusions with a finite entrance boundary, without discretization error.
- Candidate diffusions other than Brownian motion:
 - Bessel process
 - Wright-Fisher diffusion

suggest the potential for further generalizing the exact algorithms.

Introduction	Exact algorithm	Bessel-EA	Wright-Fisher diffusion	Summary

Plug

Jenkins, P. A. "Exact simulation of the sample paths of a diffusion with a finite entrance boundary." arXiv:1311.5777.

Acknowledgements

Many helpful conversations:

- Steve Evans
- Murray Pollock
- Gareth Roberts
- Joshua Schraiber

Introduction	Exact algorithm	Bessel-EA 000000000	Wright-Fisher diffusion	Summary ○●

Plug

Jenkins, P. A. "Exact simulation of the sample paths of a diffusion with a finite entrance boundary." arXiv:1311.5777.

Acknowledgements

Many helpful conversations:

- Steve Evans
- Murray Pollock
- Gareth Roberts
- Joshua Schraiber

Thank you for listening!