Comparison of experiments

An equivalence result 00000000 Discussion

Asymptotic equivalence for inhomogeneous jump diffusion processes and white noise.

Ester Mariucci

Laboratoire Jean Kuntzmann, Grenoble

Dynstoch, 10–12 September 2014

An equivalence result 0000000 Discussion

Table of contents

1 Introduction

2 Comparison of experiments

- General theory of statistical models
- Distance between statistical models
- Examples
- Non parametric statistical models

3 An equivalence result

- Inhomogeneous jump diffusion processes
- Main result
- Examples
- Sketch of the proof

Introduction	Comparison of experiments	An equivalence result	Discus
	00000	0000000	

Inhomogeneous jump diffusion processes

$$X_{t} = \int_{0}^{t} f(s)ds + \int_{0}^{t} \sigma(s)dW_{s} + \sum_{i=1}^{N_{t}} Y_{i}, \quad t \ge 0,$$

- $W = \{W_t\}_{t \ge 0}$ is a standard Brownian motion;
- N = {N_t}_{t≥0} is an inhomogeneous Poisson process with intensity function λ(·), independent of W;
- (Y_i)_{i≥1} is a sequence of i.i.d. real random variables with distribution G (either concentrated on Z or absolutely continuous with respect to Lebesgue), independent of W and N;
- σ²(·), λ(·) and G are supposed to be known and f(·) belongs to a certain non-parametric class F.

Introduction	Comparison of experiments	An equivalence result	Discussion
	00000	0000000	

The problem we consider

We suppose to observe $\{X_t\}_{t \ge 0}$ at discrete times $0 = t_1 < \cdots < t_n = T_n$ such that

$$\Delta_n = \max_{1 \le i \le n} \left\{ |t_i - t_{i-1}| \right\} \downarrow 0 \text{ as } n \to \infty.$$

Problem: To estimate the drift function $f(\cdot)$ from the discrete data $(X_{t_i})_{i=1}^n$.

At least two natural questions arise:

- How much information about the parameter $f(\cdot)$ do we lose by observing $(X_{t_i})_{i=1}^n$ instead of $\{X_t\}_{t \in [0,T_n]}$?
- ② Can we construct an easier (read: mathematically more tractable), but equivalent, model from $(X_{t_i})_{i=1}^n$?

Introduction	Comparison of experiments	An equivalence result	Discussion
	00000	0000000	
General theory of	statistical models		
The gener	al problem		

The statistician has several experiments at his disposal to estimate a parameter θ . How to compare them?

- Experiment $1 \mapsto \mathcal{E}_1 = (\mathcal{X}_1, \mathcal{T}_1, (P_\theta)_{\theta \in \Theta}),$
- Experiment $2 \mapsto \mathcal{E}_2 = (\mathcal{X}_2, \mathcal{T}_2, (Q_\theta)_{\theta \in \Theta}),$

First idea (Bohnenblust, Sharpey, Sherman, 1949): \mathcal{E}_1 is more informative than \mathcal{E}_2 if for any bounded loss function L and any decision ρ_2 for the experiment \mathcal{E}_2 there exists a decision ρ_1 for the experiment \mathcal{E}_1 s.t.

$$R_{\theta}(\mathcal{E}_1, L, \rho_1) \leq R_{\theta}(\mathcal{E}_2, L, \rho_2), \quad \forall \theta \in \Theta.$$

Problem: With this approach \mathcal{E}_1 and \mathcal{E}_2 may be non comparable.

Comparison of experiments

An equivalence result 00000000 Discussion

Distance between statistical models

The notion of deficiency

Le Cam idea (1964): "How much do we lose if we use the experiment \mathcal{E}_1 instead of the experiment \mathcal{E}_2 ?"

Definition

The **deficiency** $\delta(\mathcal{E}_1, \mathcal{E}_2)$ of \mathcal{E}_1 with respect to \mathcal{E}_2 is defined as

$$\delta(\mathcal{E}_1, \mathcal{E}_2) = \inf_K \sup_{\theta \in \Theta} \|KP_\theta - Q_\theta\|_{TV},$$

where the infimum is taken over all "randomizations".

Remark 1: Markov kernels are special cases of randomizations.Remark 2: The deficiency is defined for any pair of statistical models indexed by the same parameter space.

Comparison of experiments

An equivalence result 00000000 Discussion

Distance between statistical models

The Le Cam Δ -distance

Property

Let $\varepsilon > 0$ be fixed. $\delta(\mathcal{E}_1, \mathcal{E}_2) \leq \varepsilon \iff \forall$ bounded loss function L, \forall decision rule ρ_2 on \mathcal{E}_2 , \exists a decision rule ρ_1 on \mathcal{E}_1 such that

$$R_{\theta}(\mathcal{E}_1, L, \rho_1) \leq R_{\theta}(\mathcal{E}_2, L, \rho_2) + \varepsilon, \quad \forall \theta \in \Theta.$$

Definition

The so called Δ -distance between \mathcal{E}_1 and \mathcal{E}_2 is the pseudometric defined by:

$$\Delta(\mathcal{E}_1, \mathcal{E}_2) = \max(\delta(\mathcal{E}_1, \mathcal{E}_2), \delta(\mathcal{E}_2, \mathcal{E}_1)).$$

The experiments \mathcal{E}_1 and \mathcal{E}_2 are said to be **equivalent** if $\Delta(\mathcal{E}_1, \mathcal{E}_2) = 0$. Two sequences of statistical models $(\mathcal{E}_1^n)_{n \in \mathbb{N}}$ and $(\mathcal{E}_2^n)_{n \in \mathbb{N}}$ are called **asymptotically equivalent** if $\Delta(\mathcal{E}_1^n, \mathcal{E}_2^n) \to 0$ as $n \to \infty$.

Introduction	Comparison of experiments ○○○●○	An equivalence result 0000000	Discussion
Examples			
Examples			

Parametric case: estimation of a real parameter $\theta \in \Theta \subset \mathbb{R}$.

•
$$\mathcal{E}_1^n = (\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n), (P_{n,\theta} : \theta \in \Theta)), P_{n,\theta} = \bigotimes_{i=1}^n \mathcal{L}(\mathcal{N}(\theta, 1)).$$

• $\mathcal{E}_2^n = (\mathbb{R}, \mathcal{B}(\mathbb{R}), (Q_{n,\theta} : \theta \in \Theta)), Q_{n,\theta} = \mathcal{L}(\mathcal{N}(\theta, n^{-1})).$

Non parametric case: estimation of a function $h: [0,1] \to \mathbb{R}$

Y_i = h(i/n) + σ(i/n)ξ_i, ξ_i ~ N(0, 1), i = 1, ..., n, i.i.d; h is an unknown function in H, σ is supposed to be known.
 Eⁿ₁ = (ℝⁿ, B(ℝⁿ), (P_{n,h} : h ∈ H)), P_{n,h} = L((Y₁,...,Y_n))
 dY_t = h(t)dt + σ(t)/√n dW_t, t ∈ [0, 1], (W_t) SBM.
 Eⁿ₂ = (C[0, 1], C, (Q_{n,h} : h ∈ H)), Q_{n,h} = LY.

Comparison of experiments

An equivalence result 00000000 Discussion

Non parametric statistical models

Asymptotic equivalence in a non parametric framework

If, for the estimation of a function f, the sequences of experiments $(\mathcal{E}_1^n)_{n\in\mathbb{N}}$ and $(\mathcal{E}_2^n)_{n\in\mathbb{N}}$ are asymptotically equivalent in the Le Cam's sense:

$$\Delta(\mathcal{E}_1^n, \mathcal{E}_2^n) \to 0,$$

then asymptotic properties of any inference problem are the same for these experiments (rates of convergence, minimax exact constants) \implies it is enough to choose the simplest one when studying these properties.

- Brown and Low (1996): regression and white noise
- Nussbaum (1996): density estimation and white noise
- + numerous papers showing the global asymptotic equivalence between non-parametric experiences (generalized linear models, time series, diffusion models without jumps, GARCH model, functional linear regression, spectral density estimation).

Introduction	Comparison of experiments	An equivalence result	Discussion
Inhomogeneous jui	np diffusion processes	0000000	
Notations			

- (D, \mathcal{D}) : Skorokhod space (càdlàg functions);
- $P^{(f,\sigma^2,\lambda G)}$: law of the process $\{X_t\}_{t\in[0,T_n]}$ on (D,\mathcal{D}) ;
- $Q_n^{(f,\sigma^2,\lambda G)}$: law of the vector (X_{t_1},\ldots,X_{t_n}) on $(\mathbb{R}^n,\mathcal{B}(\mathbb{R}^n));$

•
$$\mathscr{P}^{(f,\sigma^2,\lambda G)} = \left(D, \mathcal{D}, \left(P^{(f,\sigma^2,\lambda G)}\right)_{f\in\mathcal{F}}\right);$$

 $\mathscr{P}^{(f,\sigma^2,\lambda G)} = \left(\mathbb{D}^n, \mathcal{D}^{(\mathcal{D}^n)}, \left(\mathcal{O}^{(f,\sigma^2,\lambda G)}\right)\right)$

•
$$\mathscr{Q}_n^{(f,\sigma^2,\lambda G)} = \left(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n), \left(Q_n^{(f,\sigma^2,\lambda G)}\right)_{f\in\mathcal{F}}\right).$$

Remark

 $\mathscr{P}^{(f,\sigma^2,0)}$ is the experiment associated with the observation of a trajectory of the process:

$$X_t^c = \int_0^t f(s)ds + \int_0^t \sigma(s)dW_s, \quad t \in [0, T_n].$$

Comparison of experiments 00000 An equivalence result $0 \bullet 0 \circ 0 \circ 0 \circ 0$

Discussion

Main result

 \mathcal{F} : a class of α -Hölder, uniformly bounded functions on \mathbb{R} ; diffusion coefficient $\sigma_0 < \sigma(\cdot) < \sigma_1$ such that $\sigma'(\cdot) \in L_{\infty}(\mathbb{R})$; intensity $\lambda(\cdot) \in L_{\infty}(\mathbb{R})$.

Theorem (M., 2014)

$$\Delta(\mathscr{D}_{n}^{(f,\sigma^{2},\lambda G)},\mathscr{P}^{(f,\sigma^{2},0)}) \to 0$$

$$\Delta(\mathscr{P}^{(f,\sigma^{2},\lambda G)},\mathscr{D}_{n}^{(f,\sigma^{2},\lambda G)}) \to 0$$
 as $n \to \infty$,

under either of the following two sets of conditions:

- Y_1 is discrete with support on \mathbb{Z} , $\alpha \geq \frac{1}{2}$ and $T_n \Delta_n \to 0$ as $n \to \infty$; in this case the rate of convergence is $O(\sqrt{T_n \Delta_n})$.
- ② Y₁ admits a density with respect to the Lebesgue measure on
 ℝ, α ≥ 1/4 and T_n√Δ_n → 0 as n → ∞; in this case the rate
 of convergence is O(T^{1/2}_nΔ^{1/4}_n).

Introduction	Comparison of experiments 00000	An equivalence result 0000000	Discussion
Main result			

Gaussian white model

Recall: The main interest in the Le Cam asymptotic theory lies in the approximation of general statistical models by simpler ones \implies we can reduce the more complicated model $\mathscr{Q}_n^{(f,\sigma^2,\lambda G)}$ to a simpler one since $\mathscr{P}^{(f,\sigma^2,0)}$ is essentially a Gaussian white noise model.

Indeed, when $\sigma^2(\cdot)=\sigma^2$ is constant, the experiment associated with

$$dX_t^c = f(t)dt + \sigma dW_t, \quad t \in [0, T_n]$$

is equivalent to that associated with

$$dY_u = F(u)du + \varepsilon dW_u, \quad u \in [0, 1],$$

where $F(u) := \frac{f(uT_n)}{T_n}$ and $\varepsilon := \sigma T_n^{-\frac{3}{2}}$.

Introduction	Comparison of experiments 00000	An equivalence result	Discussion
Examples			

Example (Diffusion + inhomogeneous Poisson process)

$$X_t = \int_0^t f(s)ds + \int_0^t \sigma(s)dW_s + N_t.$$

This is a special case of (1), with $Y_1 \equiv 1$.

Example (Merton model, inhomogeneous in time)

$$X_{t} = \int_{0}^{t} f(s)ds + \int_{0}^{t} \sigma(s)dW_{s} + \sum_{i=1}^{N_{t}} Y_{i}, \quad t \ge 0,$$

where Y_i are Gaussian r.v. $\mathcal{N}(m, \Gamma^2), \Gamma > 0$. This is a special case of (2).

Introduction	Comparison of experiments 00000	An equivalence result 0000000	Discussion
Sketch of the proof			
Main ideas			

Goal:
$$(X_{t_i})_{i=1}^n \stackrel{\Delta}{\Longrightarrow} (X_t^c)_{t \in [0, T_n]}$$
.
• $(X_{t_i})_{i=1}^n \stackrel{\Delta}{\Longleftrightarrow} (X_{t_i} - X_{t_{i-1}})_{i=1}^n$;
• $X_{t_i} - X_{t_{i-1}} \sim N_i * \sum_{j=1}^{\mathscr{P}(\lambda_i)} Y_j$ with $N_i \sim \mathcal{N}(m_i, \sigma_i^2)$, $m_i = \int_{t_{i-1}}^{t_i} f(s) ds$, $\sigma_i^2 = \int_{t_{i-1}}^{t_i} \sigma^2(s) ds$, $\lambda_i = \int_{t_{i-1}}^{t_i} \lambda(s) ds$.

Step 1: Reduce to having in each interval at most one jump (Bernoulli approximation);

Step 2: Filter it out with an explicit Markov kernel \implies reducing ourselves to $(N_i)_{i=1}^n$;

Step 3: Apply an argument similar to that in Brown and Low.

Introduction	Comparison of experiments 00000	An equivalence result 00000000	Discussio
Sketch of the proof			

Bernoulli approximation

Let $(\varepsilon_i)_{i=1}^n$ be a sequence of Bernoulli independent r.v. with parameter $\alpha_i = \lambda_i e^{-\lambda_i}$, then:

Lemma $\left\|\bigotimes_{i=1}^{n} N_{i} * \sum_{j=1}^{\mathscr{P}(\lambda_{i})} Y_{j} - \bigotimes_{i=1}^{n} N_{i} * \varepsilon_{i} Y_{1}\right\|_{TV} \leq 2\sqrt{\sum_{i=1}^{n} \lambda_{i}^{2}}.$

Conclusion: $\Delta((X_{t_i})_{i=1}^n, \otimes_{i=1}^n N_i * \varepsilon_i Y_1) = O(\sqrt{T_n \Delta_n}).$

Introduction	Comparison of experiments	An equivalence result	Discussi
	00000	00000000	

Sketch of the proof

Explicit construction of Markov kernels: discrete case

Lemma

Define the Markov kernel: $K(x, A) = \mathbb{I}_A(x - [x]), \quad \forall A \in \mathcal{B}(\mathbb{R}).$ For n big enough s.t. $|m_i| \leq \frac{1}{3}$, one has $\left\|\bigotimes^n K(N_i \ast \varepsilon_i Y_1) - \bigotimes^n N_i\right\|_{_{TV}} \le$ $\sqrt{2\sum_{i=1}^{n} \left(\frac{6}{\sigma_i}\varphi(\frac{1}{6\sigma_i}) + 4\Phi(\frac{-1}{6\sigma_i})\right)}.$

Here Φ stands for the cumulative distribution of a r.v. $\mathcal{N}(0,1)$ and φ for its derivative.

Introduction	Comparison of experiments 00000	An equivalence result ○○○○○○○●	Discussion
Sketch of the proo	f		
Continuou	Is case		

Lemma

Let $0 < \varepsilon < 1$ be fixed and $\beta_i := 1 + \sigma_i^{1-\varepsilon}$. Define

$$K_{i}(x,A) = \begin{cases} \mathbb{I}_{A}(x) & \text{if } x \in [-\beta_{i},\beta_{i}], \\ \frac{1}{\sqrt{2\pi\sigma_{i}^{2}}} \int_{A} e^{-\frac{y^{2}}{2\sigma_{i}^{2}}} dy, & \text{otherwise.} \end{cases}$$

For n big enough s.t. $|m_i| \leq 1$, one has $\left\|\bigotimes_{i=1}^n K_i(N_i * \varepsilon_i Y_1) - \bigotimes_{i=1}^n N_i\right\|_{TV} \leq \sqrt{2\sum_{i=1}^n \left(8\Phi(-\sigma_i^{-\varepsilon}) + \frac{\alpha_i |m_i|}{\sqrt{2}\sigma_i} + 2\alpha_i \int_{-2\beta_i}^{2\beta_i} G'(y) dy\right)}$

Conclusion: $\Delta((X_{t_i})_{i=1}^n, \otimes_{i=1}^n N_i) = O(T_n^{\frac{1}{2}} \Delta_n^{\frac{1}{4}}).$

-							
	÷			0	÷		
-		11		0	0		

Comparison of experiments

An equivalence result 00000000

Discussion

The parametric space

(F1)
$$\sup_{t \in \mathbb{R}} \{ |f(t)| : f \in \mathcal{F} \} = B < \infty.$$

(F2) Defining:

$$\bar{f}_n(t) = \begin{cases} f(t_i) & \text{if } t_{i-1} \le t < t_i, \quad i = 1, \dots, n; \\ f(T_n) & \text{if } t = T_n; \end{cases}$$

we have

$$\lim_{n \to \infty} \sup_{f \in \mathcal{F}} \int_0^{T_n} \frac{(f(t) - \bar{f}_n(t))^2}{\sigma^2(t)} dt = 0$$

(F3) $\forall i = 1, \dots, n$, let γ_i and η_i be in $[t_{i-1}, t_i]$ and s.t.

$$\int_{t_{i-1}}^{t_i} \sigma^2(s) ds = \sigma^2(\eta_i)(t_i - t_{i-1}), \ \int_{t_{i-1}}^{t_i} f(s) ds = f(\gamma_i)(t_i - t_{i-1}).$$

Then we ask:

$$\lim_{n \to \infty} \sup_{f \in \mathcal{F}} \sum_{i=1}^{n} \frac{(f(t_i) - f(\gamma_i))^2}{\sigma^2(\eta_i)} (t_i - t_{i-1}) = 0.$$

т		1			
Ŧ	\mathbf{r}		τ		

Comparison of experiments

An equivalence result 0000000

Discussion

Conclusion and extensions

Asymptotic framework: $n \to \infty$, $\Delta_n \to 0$, T_n can be fixed or go to infinity.

Extension to the case of unknown $\lambda(\cdot)$ and $G(\cdot)$: Work in progress.

Extension to the case of unknown $\sigma(\cdot)$: The statistical procedures to estimate f generally do not use the knowledge of $\sigma(\cdot)$ which is considered as a nuisance parameter. How to extend our result to the case where $\sigma(\cdot)$ is unknown is still an open problem.

Remark: Carter(2007), Asymptotic approximation of nonparametric regression experiments with unknown variances.

Introduction	Comparison of experiments 00000	An equivalence result 00000000	Discussion

References

- Lawrence D. Brown and Mark G. Low, Asymptotic equivalence of nonparametric regression and white noise, Ann. Statist. 24 (1996).
- Andrew V. Carter, Asymptotic approximation of nonparametric regression experiments with unknown variances, Ann. Statist. **35** (2007).
- Ester Mariucci, Asymptotic equivalence for inhomogeneous jump diffusion processes and white noise, arXiv preprint arXiv:1405.0480 (2014).
- Michael Nussbaum, Asymptotic equivalence of density estimation and Gaussian white noise, Ann. Statist. 24 (1996).