MARKOV SWITCHING MODELS FOR HIGH-FREQUENCY TIME SERIES FROM AUTOMATIC MONITORING OF ANIMALS

Cecilia Pinto
School of Biological Sciences
University of Aberdeen
Aberdeen, UK

UNIVERSITY of ABERDEEN

- Flapper skate's depth profile
- High-frequency time series

Long memory process
Non-linear time series

- Markov switching autoregressive models

Dipturus intermedia

- Results
- Current research

```
Spezia and Pinto - Markov switching models for high-frequency time series
    from automatic monitoring of animals
DYNSTOCH 2014 - University of Warwick, 10th-12th September,2014
```


Flapper skate's depth profile

Cecilia Pinto's PhD project:
Estimating the probability of recolonization of endangered marine species integrating demographic and movement parameters.

School of Biological Sciences, University of Aberdeen

Spezia and Pinto - Markov switching models for high-frequency time series

Flapper skate's depth profile

Spezia and Pinto - Markov switching models for high-frequency time series
from automatic monitoring of animals
DYNSTOCH 2014 - University of Warwick, 10th-12th September, 2014

Flapper skates' depth profiles

Spezia and Pinto - Markov switching models for high-frequency time series from automatic monitoring of animals

Flapper skates' depth profiles

Spezia and Pinto - Markov switching models for high-frequency time series from automatic monitoring of animals

Flapper skates' depth profiles
Skate 7967 male juvenile 12 months $\mathrm{T}=254116$

Skate 7972 male adult 6 months $T=127360$

Skate 7968 female adult
6 months
$\mathrm{T}=107891$

Skate 8828 male adult
12 days
$\mathrm{T}=11404$

[^0]
Flapper skates' depth profiles

Flapper skates' depth profiles

Skate 7967

Skate 7968

Skate 7972

Skate 8828

Flapper skates' depth profiles

High-frequency time series exhibit sample ACF that persists for a long time [i.e., long memory processes]

Modelling strategy 1: fractional differentiation (d)

$$
\begin{array}{ll}
(1-B)^{d} y_{t}=e_{t} & e_{t} \sim \mathcal{M}\left(0 ; \sigma_{e}^{2}\right) \\
(1-B)^{d} y_{t}=\sum_{k=0}^{\infty} \frac{\Gamma(k-d)}{\Gamma(k+1) \Gamma(-d)} \\
-0.5<d<0.5
\end{array}
$$

[^1]High-frequency time series exhibit sample ACF that persists for a long time [i.e., long memory processes]

Modelling strategy 1: fractional differentiation

$$
\begin{aligned}
& \text { ARFIMA }(p, d, q) \\
& \varphi(B)(1-B)^{d} y_{t}=\theta(B) e_{t} \\
& \varphi(B)=1-\varphi_{1} B-\ldots-\varphi_{p} B^{p} ; \\
& \theta(B)=1+\theta_{1} B+\ldots+y_{q}=y_{t-j} B^{q} ; j=1, . ., p
\end{aligned}
$$

[^2]Modelling strategy 2: non-linear time series with structural breaks produce realizations that appear to have long memory
"structural change" and "long memory" are effectively different labels for the same phenomenon
structural changes can be modelled as stochastic regime switching
e.g., Markov switching autoregressive models (non-Normal and non-linear models)

[^3]Markov switching autoregressive models
$\left(\left\{y_{\}}\right\} ;\left\{x_{1}\right\}\right)$
$\left\{\mathrm{x}_{\mathrm{t}}\right\}$: m-state hidden Markov chain

$$
S_{x}=\{1,2, \ldots, m\}
$$

$\mathrm{P}\left(\mathrm{x}_{\mathrm{t}}=\mathrm{i} \mid \mathrm{x}_{\mathrm{t}-1}=\mathrm{j}\right)=\gamma_{\mathrm{j}, \mathrm{i}} \quad 0<\gamma_{\mathrm{j}, \mathrm{i}}<1 \quad \forall \mathrm{i}, \mathrm{j} \in \mathrm{S}_{\mathrm{x}}$
$\Gamma=\left[\gamma_{\mathrm{j}, \mathrm{i}}\right]_{(\mathrm{m} \times \mathrm{m})}$
$\left\{y_{t}\right\}: \quad$ conditional autoregressive process of order p

$$
y_{t}=\mu_{(i)}+\varphi_{1(i)} y_{t-1}+\varphi_{2(i)} y_{t-2}+\ldots+\varphi_{p(i)} y_{t-p}+e_{t} \quad e_{t} \sim \mathcal{N}\left(0 ; \lambda_{(i)}^{-1}\right)
$$

[^4]Non-homogeneous Markov switching autoregressive models

$$
\begin{aligned}
& \Gamma^{\mathrm{t}}=\left[\gamma_{\mathrm{j}, \mathrm{i}}^{\mathrm{i}}\right]_{(\mathrm{m} \times \mathrm{m})} \\
& \gamma_{j, i}^{t}=P\left(x_{t}=i \mid x_{t-1}=j\right) \quad 0<\gamma_{j, i}<1 \quad \forall i, j \in S_{x} ; \quad \forall t=2, \ldots, T \\
& Z=\left(z_{p+1}, \ldots, z_{t}, \ldots, z_{T}\right)^{\prime} \\
& \mathrm{z}_{\mathrm{t}}=\left(\mathrm{z}_{\mathrm{t}, 1}, \ldots, \mathrm{z}_{\mathrm{t}, \mathrm{n}}\right)^{\prime} \quad \forall \mathrm{t}=\mathrm{p}+1, \ldots, \mathrm{~T} \\
& \alpha=\left[\alpha_{\mathrm{j}, \mathrm{i}}\right] \quad\left[\alpha_{\mathrm{j}, \mathrm{i}}\right]=\left(\mathrm{a}_{\mathrm{j}, \mathrm{i}, 0}, \alpha_{\mathrm{j}, \mathrm{i}, 1}, \ldots, \mathrm{a}_{\mathrm{j}, \mathrm{i}, \mathrm{n}}\right) \quad \forall \mathrm{i}, \mathrm{j} \in \mathrm{~S}_{\mathrm{X}} \\
& \operatorname{logit}\left(\gamma_{\mathrm{j}, \mathrm{i}}^{\mathrm{i}}\right)=\ln \left(\gamma_{\mathrm{j}, \mathrm{i}}^{\mathrm{i}} / \gamma_{\mathrm{j}, \mathrm{j}}^{\mathrm{j}}\right) \\
& \forall i, j \in S_{x} \\
& \gamma_{\mathrm{j}, \mathrm{i}}^{\mathrm{i}}=\frac{\exp \left(z_{\mathrm{i}} \alpha_{\mathrm{j}, \mathrm{i}}\right)}{1+\sum_{\mathrm{i} \neq j} \exp \left(z_{\mathrm{i}} a_{\mathrm{j}, \mathrm{i}}\right)} \\
& \gamma_{\mathrm{j}, \mathrm{i}}^{\mathrm{i}}=\frac{1}{1+\sum_{\mathrm{i} \neq \mathrm{i}} \exp \left(\mathrm{z}_{\mathrm{i}} \mathrm{a}_{\mathrm{j}, \mathrm{i}}\right)}
\end{aligned}
$$

Non-homogeneous Markov switching autoregressive models

$$
\begin{aligned}
& \Gamma^{\mathrm{t}}=\left[\gamma_{\mathrm{j}, \mathrm{i}}^{\mathrm{i}}\right]_{(\mathrm{m} \times \mathrm{m})} \gamma_{\mathrm{j}, \mathrm{i}}^{\mathrm{t}}= \\
& \mathrm{P}\left(\mathrm{x}_{\mathrm{t}}=\mathrm{i} \mid \mathrm{x}_{\mathrm{t}-1}=\mathrm{j}\right) \\
& 0<\gamma_{\mathrm{j}, \mathrm{i}}<1
\end{aligned} \quad \forall \mathrm{i}, \mathrm{j} \in \mathrm{~S}_{\mathrm{x}} ; \quad \forall \mathrm{t}=2, \ldots, \mathrm{~T}
$$

At each time t:
Categorical covariate D_{t} defined on d categories

$$
\begin{array}{lr}
G^{h}=\left[g_{j, i}^{h}\right]_{(m \times m)} & g_{j, i, i}^{h}=P\left(x_{t}=i \mid x_{t-1}=j, D_{t}=h\right) \\
\Gamma^{t}=\sum_{h=1}^{d} G^{h} \times I\left(D_{t}=h\right) & h=1, \ldots, d \quad \forall i, j \in S_{x} ; \quad \forall t=2, \ldots, T
\end{array}
$$

Spezia and Pinto - Markov switching models for high-frequency time series

$$
\begin{aligned}
& \hline \mathrm{p}\left(\mathrm{G}^{\mathrm{h}}\right)=\prod_{\mathrm{j}=1}^{m} \mathrm{p}\left(\mathrm{G}_{\mathrm{j} \cdot}^{\mathrm{h}}\right) \\
& \mathrm{G}_{\mathrm{j} \cdot}^{\mathrm{h}} \sim \mathscr{D}(\cdot) \\
& \mu_{(\mathrm{i})} \sim \mathcal{N}(\cdot ; \cdot), \\
& \lambda_{(\mathrm{i})} \sim \mathcal{G}(\cdot ; \cdot), \\
& \mathrm{p}(\varphi)=\prod_{\mathrm{i}=1}^{\mathrm{p}} \prod_{\mathrm{i}=1}^{m} \mathrm{p}\left(\varphi_{\mathrm{j}(\mathrm{i})}\right), \\
& \varphi_{\mathrm{j}(\mathrm{i})} \sim \mathcal{N}(\cdot ; \cdot),
\end{aligned}
$$

$G_{j}^{\mathrm{h}}=\left(\mathrm{g}_{\mathrm{j}, 1}^{\mathrm{h}}, \mathrm{g}_{\mathrm{j}, 2}^{\mathrm{h}}, \ldots, \mathrm{g}_{\mathrm{j}, \mathrm{m}}^{\mathrm{h}}\right)$
for all $j=1, \ldots, m$ and $h=1, \ldots, d$
for all $i=1, \ldots, m$
for all $i=1, \ldots, m$
for all $i=1, \ldots, m$ and $j=1, \ldots, p$

Gibbs sampling

- $\mu_{(\mathrm{i})} \leftarrow$ Normal
- $\lambda_{(i)} \leftarrow$ Gamma
for all $i=1, \ldots, m$
- $\varphi_{\mathrm{j}(\mathrm{i})} \leftarrow$ Normal
- $\mathrm{G}_{\mathrm{j}}^{\mathrm{h}} . \leftarrow$ Dirichlet
for all $i=1, \ldots, m$ and $j=1, \ldots, p$
for all $j=1, \ldots, m$ and $h=1, \ldots, d$
- sample permutation
- $\left(\mathrm{x}_{1}, \ldots \mathrm{x}_{\mathrm{T}}\right) \leftarrow$ forward filtering - backward sampling algorithm

Iteration $\mathrm{k}=1, \ldots, \mathrm{~L}$: Burn-in
Iteration $k=L+1, \ldots, L+M$: Posterior mode

$$
\left\{\mu^{*}, \lambda^{*}, \varphi^{*}, G^{*}\right\}=\arg \max p\left(\mu^{(k)}, \lambda^{(k)}, \varphi^{(k)}, G^{(k)}\right)
$$

Iteration $\mathrm{k}=\mathrm{L}+\mathrm{M}+1, \ldots, \mathrm{~L}+\mathrm{M}+\mathrm{N}$: Permutations

$$
\begin{aligned}
& \eta^{*}=\underset{n, H}{\arg \min }\left\|\eta_{j}\left(\mu^{(k)}, \lambda^{(k)}, \varphi^{(k)}, G^{(k)}\right)-\left(\mu^{*}, \lambda^{*}, \varphi^{*}, G^{*}\right)\right\| \\
& \& \\
& \left(\mu^{(k)}, \lambda^{(k)}, \varphi^{(k)}, G^{(k)}\right)=\eta^{*}\left(\mu^{(k)}, \lambda^{(k)}, \varphi^{(k)}, G^{(k)}\right)
\end{aligned}
$$

[^5]
Bayesian inference

$m=1, \ldots, 4 ; p=0, \ldots, 6 ; 3$ covariates $\Rightarrow 224$ competing models

Bayesian inference

3 steps: model choice variable selection parameter estimation and hidden chain reconstruction
$m=1, \ldots, 4 ; p=0, \ldots, 6 ; 3$ covariates $\Rightarrow 224$ competing models
$\Gamma^{\mathrm{t}}=\left[\gamma_{\mathrm{j}, \mathrm{i}}^{\mathrm{t}}\right]_{(\mathrm{m} \times m)} \quad \gamma_{\mathrm{j}, \mathrm{i}}^{\mathrm{t}}=\mathrm{P}\left(\mathrm{x}_{\mathrm{t}}=\mathrm{i} \mid \mathrm{x}_{\mathrm{t}-1}=\mathrm{j}\right)$
3 covariates: Solar cycle $S \quad s \in\{0 ; 1\}$ Lunar cycle $L_{2} \quad I_{2} \in\{0 ; 1\}$ Lunar phase $L_{4} \quad I_{4} \in\{1 ; 2 ; 3 ; 4\}$

Indicator $D_{t} d \in\{1,2,4,8,16\}$
$G^{h}=\left[g_{j, i}^{h}\right]_{(m \times m)} \quad g_{j, i}^{h}=P\left(x_{t}=i \mid x_{t-1}=j, D_{t}=h\right) \quad \Gamma^{t}=\quad G^{h} \times I\left(D_{t}=h\right)$

Bayesian inference

3 steps: model choice variable selection parameter estimation and hidden chain reconstruction
$m=1, \ldots, 4 ; p=0, \ldots, 6 ; 3$ covariates $\Rightarrow 224$ competing models
Pragmatic alternative:
[1] best $(m ; p)$, with $d=1$
[2] best combination of covariates $\Rightarrow 35$ competing models

[^6]Model choice and variable selection: Bayes factors
In(marginal likelihood) computed by the method of Chib (2001)

Skate 7967 (ma; ju;12 months) $\quad m=2 ; p=4 ; L_{4}$
Skate 7972 (ma; ad; 6 months) $\quad m=2 ; p=3 ; L_{4}$
Skate 7968 (fe; ad; 6 months) $\quad m=2 ; p=3 ; L_{4} ; L_{2}$
Skate 8828 (ma; ad; 12 days) $\quad m=2 ; p=4 ; L_{4} ; L_{2} ; S$

Spezia and Pinto - Markov switching models for high-frequency time series from automatic monitoring of animals

DYNSTOCH 2014 - University of Warwick, 10th-12th September, 2014

Results

Results

Skate 7972

ACF of the residuals

Results

Skate 7972 - observations in state 2

State 1 (68,337 visits, 54\%) = low variability (resting, horizontal movement, slow ascending and descending)

State 2 (59,019 visits, 46\%) = high variability (fast ascending and descending)

Results

Skate 7972 -subseries[50001:50500]

Observations in state 1 (blue) and 2 (red)

Extending the model

$\left(\left\{y_{\}}\right\} ;\left\{x_{1}\right\}\right)$

State-dependent autoregressive orders:

$\mathrm{p}=\left(\mathrm{p}_{1}, \mathrm{p}_{2}, \ldots, \mathrm{p}_{\mathrm{m}}\right)$
$\left\{\mathrm{x}_{\mathrm{f}}\right\}$: m-state hidden Markov chain
$\left\{y_{t}\right\}$: conditional autoregressive process of order $p_{x_{t}}$

$$
y_{t}=\mu_{(i)}+\varphi_{1(i)} y_{t-1}+\varphi_{2(i)} y_{t-2}+\ldots+\varphi_{p_{i}(i)} y_{t-p_{i}}+e_{t} \quad e_{t} \sim \mathcal{N}\left(0 ; \lambda_{(i)}{ }^{-1}\right)
$$

[^7] from automatic monitoring of animals

Extending the model

Markov switching ARCH noises:
$e_{t}=\sqrt{h_{t}} u_{t}$

$$
u_{t} \sim \mathcal{N}(0 ; 1)
$$

$h_{t}=\eta_{(i)}+\alpha_{1(i)} e_{t-1}^{2}+\alpha_{2(i)} e_{t-2}^{2}+\ldots+\alpha_{q(i)} e_{t-q}^{2}$

Local stationarity of each state-dependent ARCH process:

$$
\begin{aligned}
& \eta_{(i)}>0 ; \alpha_{1(i)}, \ldots, \alpha_{q(i)} \geq 0 ; \\
& \sum_{j=1}^{q} \alpha_{j(i)} \leq 1
\end{aligned}
$$

Spezia and Pinto - Markov switching models for high-frequency time series

Extending the model

Markov switching ARCH noises:
$e_{t}=\sqrt{h_{t}} u_{t}$

$$
u_{t} \sim \mathcal{N}(0 ; 1)
$$

$h_{t}=\eta_{(i)}+\alpha_{1(i)} e_{t-1}^{2}+\alpha_{2(i)} e_{t-2}^{2}+\ldots+\alpha_{q_{i}(i)} e_{t-q_{i}}^{2}$
with state-dependent autoregressive orders:
$q=\left(q_{1}, q_{2}, \ldots, q_{m}\right)$
[auxiliary variable MCMC method]

Spezia and Pinto - Markov switching models for high-frequency time series from automatic monitoring of animals

DYNSTOCH 2014 - University of Warwick, 1Oth-12th September, 2014

Extending the model

Model and variable selection:

Bayesian Information Criterion (BIC) Deviance Information Criterion (DIC)

on a single subspace.

Spezia and Pinto - Markov switching models for high-frequency time series from automatic monitoring of animals

Extending the model

Model and variable selection:

Bayesian Information Criterion (BIC) Deviance Information Criterion (DIC)

on a single subspace.

Algorithm:
From Gibbs sampling to ...

[^8]Biologgers applied to animals produce long memory processes due to a non-linear dynamics.

Flapper skate's depth profile can be modelled effciently by Markov switching autoregressive models with a non-Homogeneous Markov chain, where the time-varying transition probabilities depend on the dynamics of categorical covariates.

Depth values can be classiefied into two regimes representing two different classes of skates' behaviours.

```
Spezia and Pinto - Markov switching models for high-frequency time series
    from automatic monitoring of animals
DYNSTOCH 2014 - University of Warwick, 10th-12th September,2014
```


[^0]: Spezia and Pinto - Markov switching models for high-frequency time series from automatic monitoring of animals

 DYNSTOCH 2014 - University of Warwick, 10th-12th September,2014

[^1]: Spezia and Pinto - Markov switching models for high-frequency time series from automatic monitoring of animals

[^2]: Spezia and Pinto - Markov switching models for high-frequency time series

[^3]: Spezia and Pinto - Markov switching models for high-frequency time series from automatic monitoring of animals

[^4]: Spezia and Pinto - Markov switching models for high-frequency time series

[^5]: Spezia and Pinto - Markov switching models for high-frequency time series

[^6]: Spezia and Pinto - Markov switching models for high-frequency time series from automatic monitoring of animals

[^7]: Spezia and Pinto - Markov switching models for high-frequency time series

[^8]: Spezia and Pinto - Markov switching models for high-frequency time series from automatic monitoring of animals

