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The Big Picture

Problems addressed by the discipline of statistics typically have the
following structure.

You (Good 1950) [note the capital Y]: a generic person wishing to
reason sensibly in the presence of uncertainty) are given a problem
P = (Q,C) involving uncertainty about θ , the unknown aspect of
P of principal interest.

Here Q identifies the main questions to be answered, and C
represents the (real-world) context in which the questions are
raised, instantiated through a finite set B of (true/false)
propositions, all rendered true by problem context.

You examine Your resources and find that it’s possible to obtain a
new data set D to decrease Your uncertainty about θ.

In this setting, a Theorem due to Cox (1946) and Jaynes (2002) —
recently rigorized and extended by Terenin and Draper (2016) —
says that

2 / 46



The Big Picture

Problems addressed by the discipline of statistics typically have the
following structure.

You (Good 1950) [note the capital Y]: a generic person wishing to
reason sensibly in the presence of uncertainty) are given a problem
P = (Q,C) involving uncertainty about θ , the unknown aspect of
P of principal interest.

Here Q identifies the main questions to be answered, and C
represents the (real-world) context in which the questions are
raised, instantiated through a finite set B of (true/false)
propositions, all rendered true by problem context.

You examine Your resources and find that it’s possible to obtain a
new data set D to decrease Your uncertainty about θ.

In this setting, a Theorem due to Cox (1946) and Jaynes (2002) —
recently rigorized and extended by Terenin and Draper (2016) —
says that

2 / 46



The Big Picture

Problems addressed by the discipline of statistics typically have the
following structure.

You (Good 1950) [note the capital Y]: a generic person wishing to
reason sensibly in the presence of uncertainty) are given a problem
P = (Q,C) involving uncertainty about θ , the unknown aspect of
P of principal interest.

Here Q identifies the main questions to be answered, and C
represents the (real-world) context in which the questions are
raised, instantiated through a finite set B of (true/false)
propositions, all rendered true by problem context.

You examine Your resources and find that it’s possible to obtain a
new data set D to decrease Your uncertainty about θ.

In this setting, a Theorem due to Cox (1946) and Jaynes (2002) —
recently rigorized and extended by Terenin and Draper (2016) —
says that

2 / 46



The Big Picture

Problems addressed by the discipline of statistics typically have the
following structure.

You (Good 1950) [note the capital Y]: a generic person wishing to
reason sensibly in the presence of uncertainty) are given a problem
P = (Q,C) involving uncertainty about θ , the unknown aspect of
P of principal interest.

Here Q identifies the main questions to be answered, and C
represents the (real-world) context in which the questions are
raised, instantiated through a finite set B of (true/false)
propositions, all rendered true by problem context.

You examine Your resources and find that it’s possible to obtain a
new data set D to decrease Your uncertainty about θ.

In this setting, a Theorem due to Cox (1946) and Jaynes (2002) —
recently rigorized and extended by Terenin and Draper (2016) —
says that

2 / 46



The Big Picture

Problems addressed by the discipline of statistics typically have the
following structure.

You (Good 1950) [note the capital Y]: a generic person wishing to
reason sensibly in the presence of uncertainty) are given a problem
P = (Q,C) involving uncertainty about θ , the unknown aspect of
P of principal interest.

Here Q identifies the main questions to be answered, and C
represents the (real-world) context in which the questions are
raised, instantiated through a finite set B of (true/false)
propositions, all rendered true by problem context.

You examine Your resources and find that it’s possible to obtain a
new data set D to decrease Your uncertainty about θ.

In this setting, a Theorem due to Cox (1946) and Jaynes (2002) —
recently rigorized and extended by Terenin and Draper (2016) —
says that

2 / 46



The Big Picture (continued)

If You’re prepared to specify two probability distributions
— p(θ | B), encoding Your information about θ external
to D, and p(D | θB) ∝ `(θ |D B), capturing Your
information about θ internal to D — then optimal
inference about θ is based (Bayes’s Theorem) on the
distribution p(θ |D B) ∝ p(θ | B) `(θ |D B),

and optimal
prediction of new data D∗ is based on the distribution
p(D∗ |D B) =

∫
Θ p(D∗ | θD B) p(θ |D B) dθ, where Θ is

the set of possible values of θ; and
If You’re prepared to specify two additional ingredients —
Your action space {a ∈ (A |B)}, an exhaustive set of
possible actions, and Your real-valued utility function
U(a, θ∗ | B), quantifying the costs and benefits that
would result if You took action a and the unknown θ
actually had the value θ∗ — then optimal
decision-making is attained by finding the action a∗ that
maximizes the expected utility E(θ |D B) U(a∗, θ | B).

(Bayesian game theory is more general than Bayesian decision theory ...)
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The Big Picture (continued)

If inference and/or prediction are the goals defined by Q,

let’s
agree to call M = {p(θ | B), p(D | θB)} Your model for Your
uncertainty about θ and D∗; and

If instead decision-making is the goal defined by Q, let’s agree to
call Md = {p(θ | B), p(D | θB), (A |B),U(a, θ | B)} Your model for
Your uncertainty about a∗.

The two main practical challenges in using Cox’s Theorem are

(technical) Integrals arising in computing the inferential
and predictive distributions may be difficult to approximate
accurately, and the optimization over the action space may
be difficult to perform; and
(substantive) The mapping from P to M or Md is rarely

unique, giving rise to model uncertainty.

How do hypothesis and significance testing fit into
this framework?
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Significance and Hypothesis Testing
In the context of parametric statistical modeling, testing typically

looks like this:

Your sampling distribution p(D | θB) is assumed by You to be a member
of a family of densities with known mathematical form but indexed by
an unknown parameter vector θ ∈ Θ = Rk , for some positive integer k.

A subset Θ1 of Θ is singled out in some way; for example, (θ ∈ Θ1)
corresponds to a scientific theory being true or false.

The frequentist testing story now has a bifurcation:

(Fisher significance testing) “Every experiment may be said to exist
only in order to give the [data] a chance of disproving [the truth of the

(true/false) proposition (θ ∈ Θ1)]”: use D either to reject (θ ∈ Θ1) or to
fail to reject (θ ∈ Θ1), but WITHOUT regard for the plausibility of D

under the opposite proposition (θ /∈ Θ1); versus

(Neyman-Pearson hypothesis testing) Use D either to reject
(θ ∈ Θ1) or to fail to reject (θ ∈ Θ1), but WITH regard for the

plausibility of D under the opposite proposition (θ /∈ Θ1).
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Bayesian Testing
Bayesian testing would seem to be completely straightforward:

Augment the previously specified sampling distribution p(D | θB) with
a prior distribution p(θ | B) specified by problem context C, update to

Your posterior distribution p(θ |D B), and compute

p(θ ∈ Θ1 |D B) =
∫

Θ1

p(θ |D B) dθ . (1)

However, not so fast:

If Θ1 defines a subspace of Rk of dimension less than k, the
integral in (1) will be 0 unless Your prior p(θ | B) places non-zero
probability on the lower-dimensional subspace, which in many
settings is inappropriate (more about this later);

You may well have model uncertainty about either or both of
p(D | θB) and p(θ | B), which may not be uniquely specified by
problem context, so that p(θ ∈ Θ1 |D B) may not even be
approximately uniquely specified; and
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Testing As Decision

The simplicity of equation (1) sidesteps an important issue,
equally crucial for frequentists and Bayesians alike:

Is this an inferential problem (the scientific acquisition of
knowledge for its own sake), or a decision problem (using
that knowledge to choose an action), or both?

It’s arguable that testing virtually always involves both inference
and decision, even when inference appears to be the only goal.

Example: Finding the Higgs boson. (Louis Lyon) On 4
Jul 2012 researchers at the Large Hadron Collider (LHC) in
Geneva, Switzerland made this announcement:

“CMS observes an excess of events at a mass of
approximately 125 GeV with a statistical significance
of five standard deviations (5 sigma) above
background expectations. The probability of the
background alone fluctuating up by this amount or
more is about one in three million.”
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This Sure Looks Like Inference

The 1 in 3 million figure is a frequentist P–value

(and would actually
be Φ(−5) .= 1 in about 3.5 million if a Gaussian approximation had

been used):

Let θ ∈ Θ = R be the underlying excess fluctuation above
background at about 125 GeV (a value predicted by Higg’s theory), so

that in this problem Θ1 = {0}, and let t(D) be a one-dimensional
summary of the data set D that (after standardization) has — by

assumption (i.e., no bias in the measuring process) and the Central Limit
Theorem — an approximately N(θ, 1) sampling distribution; then the

LHC researchers computed PRS,θ=0[t(D) > 5] .= Φ(−5), where RS
stands for repeated-sampling.

This was a standard Fisherian significance test: the researchers were
interested in rejecting the hypothesis that

θ = 0←→ (the Higgs boson doesn’t exist)

and they gathered data (400 “Higgs-like events” out of 6 trillion
particle-particle collisions) until they achieved a 5–sigma P–value.
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But It Was Actually Both Inference and Decision
We now go through the usual inferential

stochastic proof by contradiction:

(a) assume the Higgs doesn’t exist;

(b) the data are exceedingly unlikely under supposition (a); therefore

(c) (a) must be wrong and the Higgs exists after all.

Peter Higgs and another theoretician got the Nobel Prize in physics for
this discovery, only one year later.

Just one nagging question: Q: Why 5 sigma?

A: The LHC people were worried about the consequences of a false
positive, for their careers and for the scientific reputation of the LHC;

over time the physics community has arrived at 5 sigma as a convention,
not as the result of careful calculation (why 1 in 3–3.5 million?).

Thus the LHC significance test represented both inference (the particle
exists) and decision (whether to announce their findings earlier,

now (5 sigma) or later).
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Home Truth #1
Home Truth #1(a): Hypothesis and significance testing may look

purely inferential,

but there’s almost always a decision-theoretic
component as well, and it’s worthwhile to be as explicit as possible about

the real-world consequences of false-positive and
false-negative mistakes.

Example: Evaluating a hypertension drug. Consider assessing the
performance of a drug, for lowering systolic blood pressure (SBP) in
hypertensive patients, in a phase–II clinical trial, and suppose that a

Gaussian sampling distribution for the outcome variable is
reasonable (possibly after transformation).

Two frequent designs in settings of this type have as their goals
quantifying improvement and establishing bio-equivalence.

• (quantifying improvement) Here You want to estimate the mean
decline in blood pressure under this drug, and it would be natural to
choose a repeated-measures (pre-post) experiment, in which SBP

values are obtained for each patient, both before and after taking the
drug for a sufficiently long period of time for its effect to become

apparent (MacGregor et al., 1979: BMJ : Captopril).
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Decision, Not Inference
Let θ stand for the mean difference (SBPbefore − SBPafter ) in the

population of patients to which it’s appropriate to generalize from
the patients in Your trial,

and let D = y = (y1, . . . , yn), where yi is the
observed difference (SBPbefore − SBPafter ) for patient i (i = 1, . . . , n).

The real-world purpose of this experiment is to decide whether to
take the drug forward to phase III; under the weight of 20th-century
inertia (in which decision-making was strongly — and incorrectly —
subordinated to inference), Your first impulse might be to treat this

as an inferential problem about θ, but it’s not;
it’s a decision problem that involves θ (Roche).

Home Truth #1(b): It’s good to get out of the habit of using
inferential methods to make decisions: their implicit utility

structure is often far from optimal.

The action space here is (A |B) = (a1, a2) = (don’t take the drug
forward to phase III, do take it forward), and a sensible utility

function U(aj , θ | B) should be continuous and monotonically
increasing in θ over a broad range of positive θ values
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Nothing Special About θ = 0

(the bigger the SBP decline for hypertensive patients who start at
(say) 160 mmHg, the better, up to a drop of about 60 mmHg,

beyond which the drug starts inducing fainting spells).

However, to facilitate a comparison between Neyman-Pearson
hypothesis testing and Bayesian methods, here I’ll compare two
models M1 and M2 that dichotomize the θ range, but not at 0:

despite a century of textbook claims to the contrary, there’s nothing
special about θ = 0 in this setting, and in fact You

know scientifically that θ is not exactly 0 (because the outcome
variable in this experiment is conceptually continuous).

What matters here is whether θ > ∆, where ∆ is a
practical significance improvement threshold below which the drug is

not worth advancing into phase III (for example, any drug that did
not lower SBP for severely hypertensive patients — those whose

pre-drug values average 160 mmHg or more — by at least 15 mmHg
would not deserve further attention).
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When Not To Test
Home Truth #2(a): It’s both silly and inappropriate to test a sharp

hypothesis of the form θ = θ1

in problems in which (a) Your
uncertainty about θ is continuous and (b) other values near θ1 would

have the same real-world consequences.

Suppose (as above) that the parameter space is Θ = Rk

for k a positive integer.

Definition: A structural subspace is any Θ1 ⊂ Θ of dimension less
than k for which the conclusion that θ ∈ Θ1 would have different

scientific and behavioral consequences than those arising from the
less restrictive statement that θ ∈ Θ. If Θ1 consists of a single point

{θ1}, such a point is a structural singleton.

Home Truth #2(b): Sharp-null (θ = θ1) hypothesis testing is only
appropriate when θ1 is a structural singleton. This rules out a great

deal of testing performed in routine practice (Andrew Gelman); in the
absence of a structural subspace, the most scienfically useful approach

to inference is estimation via appropriate summaries of the
posterior distribution p(θ |D B).
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A Hypothesis Is Just a Prior Specification

Example: Evaluating a hypertension drug (continued).

I argued
above that, if dichotomization of Θ = R is to be pursued at all,

the right dichotomization is

θ ≤ ∆ ←→ don’t take drug to Phase III
θ > ∆ ←→ take drug to Phase III . (2)

Suppose that little information about θ external to the experimental
data set You’re about to collect is available.

Then, from a Bayesian point of view, hypothesis testing amounts to
comparing the two models

M1:
{ (θ|B) ∼ diffuse for θ ≤ ∆

(yi |θB) IID∼ N(θ, σ2)

}
and (3)

M2:
{ (θ|B) ∼ diffuse for θ > ∆

(yi |θB) IID∼ N(θ, σ2)

}
, (4)

in which for simplicity I’ll take σ to be known (the results presented
below are similar with σ learned from the data).
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The Bigger Picture: Bayesian Model Specification
Here’s a rather general algorithm for finding good Bayesian models:

(a) Start at a model M0 (how choose?); set the current model
Mcurrent ← M0 and the current model ensemble Mcurrent ← {M0}.

(b) If Mcurrent is good enough to stop (how decide?), return Mcurrent; else
(c) Generate a new candidate model Mnew (how choose?) and set
Mcurrent ←Mcurrent ∪Mnew.

(d) If Mnew is better than Mcurrent (how decide?), set Mcurrent ← Mnew.
(e) Go to (b).

The question in step (a) — Where to start? — is often easy to
answer; by contrast, the question in step (c) is so hard to answer that
we currently don’t have any reliable Bayesian modeling robots/AIs.

Implementing the algorithm above involves facing two additional
important questions, in steps (d) and (b) (respectively):

Q1 : Is M1 better than M2? Q2 : Is M1 good enough?

15 / 46



The Bigger Picture: Bayesian Model Specification
Here’s a rather general algorithm for finding good Bayesian models:

(a) Start at a model M0 (how choose?); set the current model
Mcurrent ← M0 and the current model ensemble Mcurrent ← {M0}.

(b) If Mcurrent is good enough to stop (how decide?), return Mcurrent; else
(c) Generate a new candidate model Mnew (how choose?) and set
Mcurrent ←Mcurrent ∪Mnew.

(d) If Mnew is better than Mcurrent (how decide?), set Mcurrent ← Mnew.
(e) Go to (b).

The question in step (a) — Where to start? — is often easy to
answer; by contrast, the question in step (c) is so hard to answer that
we currently don’t have any reliable Bayesian modeling robots/AIs.

Implementing the algorithm above involves facing two additional
important questions, in steps (d) and (b) (respectively):

Q1 : Is M1 better than M2? Q2 : Is M1 good enough?

15 / 46



The Bigger Picture: Bayesian Model Specification
Here’s a rather general algorithm for finding good Bayesian models:

(a) Start at a model M0 (how choose?); set the current model
Mcurrent ← M0 and the current model ensemble Mcurrent ← {M0}.

(b) If Mcurrent is good enough to stop (how decide?), return Mcurrent; else
(c) Generate a new candidate model Mnew (how choose?) and set
Mcurrent ←Mcurrent ∪Mnew.

(d) If Mnew is better than Mcurrent (how decide?), set Mcurrent ← Mnew.
(e) Go to (b).

The question in step (a) — Where to start? — is often easy to
answer;

by contrast, the question in step (c) is so hard to answer that
we currently don’t have any reliable Bayesian modeling robots/AIs.

Implementing the algorithm above involves facing two additional
important questions, in steps (d) and (b) (respectively):

Q1 : Is M1 better than M2? Q2 : Is M1 good enough?

15 / 46



The Bigger Picture: Bayesian Model Specification
Here’s a rather general algorithm for finding good Bayesian models:

(a) Start at a model M0 (how choose?); set the current model
Mcurrent ← M0 and the current model ensemble Mcurrent ← {M0}.

(b) If Mcurrent is good enough to stop (how decide?), return Mcurrent; else
(c) Generate a new candidate model Mnew (how choose?) and set
Mcurrent ←Mcurrent ∪Mnew.

(d) If Mnew is better than Mcurrent (how decide?), set Mcurrent ← Mnew.
(e) Go to (b).

The question in step (a) — Where to start? — is often easy to
answer; by contrast, the question in step (c) is so hard to answer that
we currently don’t have any reliable Bayesian modeling robots/AIs.

Implementing the algorithm above involves facing two additional
important questions, in steps (d) and (b) (respectively):

Q1 : Is M1 better than M2? Q2 : Is M1 good enough?

15 / 46



The Bigger Picture: Bayesian Model Specification
Here’s a rather general algorithm for finding good Bayesian models:

(a) Start at a model M0 (how choose?); set the current model
Mcurrent ← M0 and the current model ensemble Mcurrent ← {M0}.

(b) If Mcurrent is good enough to stop (how decide?), return Mcurrent; else
(c) Generate a new candidate model Mnew (how choose?) and set
Mcurrent ←Mcurrent ∪Mnew.

(d) If Mnew is better than Mcurrent (how decide?), set Mcurrent ← Mnew.
(e) Go to (b).

The question in step (a) — Where to start? — is often easy to
answer; by contrast, the question in step (c) is so hard to answer that
we currently don’t have any reliable Bayesian modeling robots/AIs.

Implementing the algorithm above involves facing two additional
important questions, in steps (d) and (b) (respectively):

Q1 : Is M1 better than M2? Q2 : Is M1 good enough?

15 / 46



The Bigger Picture: Bayesian Model Specification
Here’s a rather general algorithm for finding good Bayesian models:

(a) Start at a model M0 (how choose?); set the current model
Mcurrent ← M0 and the current model ensemble Mcurrent ← {M0}.

(b) If Mcurrent is good enough to stop (how decide?), return Mcurrent; else
(c) Generate a new candidate model Mnew (how choose?) and set
Mcurrent ←Mcurrent ∪Mnew.

(d) If Mnew is better than Mcurrent (how decide?), set Mcurrent ← Mnew.
(e) Go to (b).

The question in step (a) — Where to start? — is often easy to
answer; by contrast, the question in step (c) is so hard to answer that
we currently don’t have any reliable Bayesian modeling robots/AIs.

Implementing the algorithm above involves facing two additional
important questions, in steps (d) and (b) (respectively):

Q1 : Is M1 better than M2?

Q2 : Is M1 good enough?

15 / 46



The Bigger Picture: Bayesian Model Specification
Here’s a rather general algorithm for finding good Bayesian models:

(a) Start at a model M0 (how choose?); set the current model
Mcurrent ← M0 and the current model ensemble Mcurrent ← {M0}.

(b) If Mcurrent is good enough to stop (how decide?), return Mcurrent; else
(c) Generate a new candidate model Mnew (how choose?) and set
Mcurrent ←Mcurrent ∪Mnew.

(d) If Mnew is better than Mcurrent (how decide?), set Mcurrent ← Mnew.
(e) Go to (b).

The question in step (a) — Where to start? — is often easy to
answer; by contrast, the question in step (c) is so hard to answer that
we currently don’t have any reliable Bayesian modeling robots/AIs.

Implementing the algorithm above involves facing two additional
important questions, in steps (d) and (b) (respectively):

Q1 : Is M1 better than M2? Q2 : Is M1 good enough?
15 / 46



A Hypothesis Is Just a Prior Specification

Example: Evaluating a hypertension drug (continued). I argued
above that, if dichotomization of Θ = R is to be pursued at all,

the right dichotomization is

θ ≤ ∆ ←→ don’t take drug to Phase III
θ > ∆ ←→ take drug to Phase III . (5)

Suppose that little information about θ external to the experimental
data set You’re about to collect is available.

Then, from a Bayesian point of view, hypothesis testing amounts to
comparing the two models

M1:
{ (θ|B) ∼ diffuse for θ ≤ ∆

(yi |θB) IID∼ N(θ, σ2)

}
and (6)

M2:
{ (θ|B) ∼ diffuse for θ > ∆

(yi |θB) IID∼ N(θ, σ2)

}
, (7)

in which for simplicity I’ll take σ to be known (the results presented
below are similar with σ learned from the data).
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Hypothesis Testing = Model Comparison
Home Truth #3(a): Bayesian hypothesis testing is nothing less,

and nothing more, than Bayesian model comparison:

Q1: Is M1 better than M2?

This question cannot be answered until a more fundamental question
is addressed: better for what purpose? [utility]

This means that Bayesian model specification is fundamentally
decision-theoretic, and again highlights the importance of decision in

Bayesian hypothesis testing.

Strictly speaking, better for what purpose? can only be answered on
a problem-by-problem basis, with a utility function tailored to the

problem at hand; but people have a powerful need for general-purpose
tools whose implied utility structure may be a decent approximation in

the problem they’re working on.

Three such tools are Bayes factors, log scores, and posterior
probabilities (more on this later); any such method appropriate to model

comparison is equally appropriate to hypothesis testing.
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Bayesian Significance Testing Can Be Meaningful Too

Home Truth #3(b): The model comparison in 3(a) nearly always
involves nothing less, and nothing more, than the comparison of two

prior distributions, holding the sampling distribution constant.

The other model specification question

Q2: Is M1 good enough (to stop looking for a better model)?

also cannot be answered using general-purpose methodology, because
answering it also raises a more fundamental question:

good enough for what purpose?

This again fundamentally requires special-purpose decision-theory, but
a related question CAN be answered rather generally:

Home Truth #3(c): Bayesian significance testing typically involves
another important task in Bayesian model specification:

answering the question

Q′2: Could the data set D have arisen from M1?
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PPPs Are Often Badly Calibrated
Q′2: Could the data set D have arisen from M1?

This is what methods such as posterior predictive P–values (PPP;
Gelman et al., 1996) try to do, but PPP is typically badly calibrated

(Bayarri and Berger, 2000; Robins et al., 2000):

if Gelman gives You a P–value of 0.04, that’s bad for M1; but if You get
0.4 from Gelman, a well-calibrated version of that “P–value” could

easily be more like 0.04 (Draper and Krnjajić, 2015, document this and
show how to fix it).

Example: Evaluating a hypertension drug (continued). An
enlightened version of the frequentist Neyman–Pearson approach
would test H1: θ ≤ ∆ against H2: θ > ∆, using the following implied
utility structure with (α, β) = (type I error rate, type II error rate):

N–P Truth
Action θ ≤ ∆ θ > ∆

a1 (stop) 0 −α
a2 (phase III) −β 0
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Neyman–Pearson Utility Structure Is Wrong
N–P Truth

Action θ ≤ ∆ θ > ∆
a1 (stop) 0 −α

a2 (phase III) −β 0

But this utility structure is wrong in all 4 cells: with {uij} ≥ 0,

Bayes Truth
Action θ ≤ ∆ θ > ∆

a1 (stop) u11 −u12
a2 (phase III) −u21 u22

u11 > 0 is the gain from correctly not going forward to phase III;
−u12 < 0 is the loss from incorrectly failing to go forward;
−u21 < 0 is the loss from incorrectly going forward; and
u22 > 0 is the gain from correctly going forward.

The {uij} need to be in money, or QALYs, or ...;
α and β are incorrectly on the probability scale.
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Don’t Use Inferential Tools To Make Decisions
The optimal Bayesian decision turns out to be:

choose a2 (go forward to phase III) iff

P(θ > ∆|y B) ≥ u11 + u21
u11 + u12 + u21 + u22

= u∗ . (8)

The frequentist (hypothesis-testing) inferential approach is
equivalent to this only if

α = (1− u∗) = u12 + u22
u11 + u12 + u21 + u22

. (9)

The built-in trade-off between false positives and false negatives in
level–α hypothesis-testing for any given α may be close to optimal or

not, according to the real-world values of {u11, u12, u21, u22}.

In phase-II clinical trials or micro-array experiments, when You’re
screening many drugs or genes for those that may lead to an

effective treatment and — from the drug company’s point of view
— a false-negative error (of failing to move forward with a drug or
gene that’s actually worth further investigation) can be much more
costly than a false-positive mistake, this corresponds to u12 >> u21
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Home Truth #1(b) Revisited

and leads in the hypothesis-testing approach in phase-II trials to a
willingness to use (much) larger α values than the conventional 0.01

or 0.05,

something that good frequentist biostatisticians have
long known intuitively.

In work I’ve done with the Swiss pharmaceutical company Roche,
this approach led to α values on the order of 0.45.

Home Truth #1(b): It’s good to get out of the habit of using
inferential methods to make decisions: their implicit utility

structure is often far from optimal.

• If the problem had instead been inferential, the optimal conclusion
would simply be based on the posterior for θ: let

M∗ = {(θ|B) ∼ diffuse on R, (yi |θB) IID∼ N(θ, σ2)}

and choose M2 if p(θ > ∆|y M∗ B) > 0.5.
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Establishing Bio-Equivalence
• (establishing bio-equivalence) In this case there’s a previous

hypertension drug B (call the new drug A),

and You’re wondering if
the mean effects of the two drugs are close enough to regard them

as bio-equivalent.

A good design here would again have a repeated-measures character,
in which each patient’s SBP is measured four times: before and after

taking drug A, and before and after taking drug B (allowing enough
time to elapse between taking the two drugs for the effects of the first

drug to disappear).

Let θ stand for the mean difference

[(SBPbefore,A − SBPafter ,A)− (SBPbefore,B − SBPafter ,B)] (10)

in the population of patients to which it’s appropriate to generalize
from the patients in Your trial, and let yi be the corresponding

difference for patient i (i = 1, . . . , n).

Again in this setting there’s nothing special about θ = 0, and as
before You know scientifically that θ is not exactly 0;
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Bio-Equivalence Modeling
what matters here is whether |θ| ≤ λ,

where λ > 0 is a practical
significance bio-equivalence threshold (e.g., 5 mmHg).

Assuming as before a Gaussian sampling story and little information
about θ external to this experimental data set, what counts here is a

comparison of

M3:
{ (θ|B) ∼ diffuse for |θ| ≤ λ

(yi |θB) IID∼ N(θ, σ2)

}
and (11)

M4:
{ (θ|B) ∼ diffuse for |θ| > λ

(yi |θB) IID∼ N(θ, σ2)

}
, (12)

in which σ is again taken for simplicity to be known.

Bayesian decision theory (as in the drug evaluation above) again leads
to the optimal action; if inference were instead the goal, again just

look at the posterior for θ: as before, let

M∗ = {(θ|B) ∼ diffuse on R, (yi |θB) IID∼ N(θ, σ2)},

but this time favor M4 over M3 if p(|θ| > λ|y M∗ B) > 0.5.
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Case Study: Mendel’s Peas

Between 1856 and 1863 the Augustinian monk Gregor Mendel
cultivated about 28,000 plants, most of them garden peas (Pisum
sativum), to study the nature of inheritance, publishing his results
in Mendel (1866).

He examined seven observable (phenotypic) characteristics of his
pea plants, including whether the seeds were round or wrinkled.
He grew multiple generations of many lines of peas for two years, to
ensure that they bred true, meaning that — in the case of seed
shape — every new generation always had round seeds in some of
the lines and always wrinkled seeds in other lines.
He then crossed pure-round and pure-wrinkled plants; all of the
(first-generation) offspring came out round, demonstrating in his
nascent genetic theory that round is the dominant phenotype and
wrinkled the recessive.
But when he crossed the first-generation offspring with each other,
only about θ1 = 3

4 had second-generation offspring with
round seeds.
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Second-Generation Hybrid Results
Precisely the same thing happened with the other six phenotype
characters.

The table below presents Mendel’s raw data (Griffiths et al.
(2000)) for all seven phenotypes; here s is the number of
dominants he observed out of n plants, and ȳ = s

n :

dataset s n y.bar

round x wrinkled seeds 5474 7324 0.7474
yellow x green seeds 6022 8023 0.7506 A a
purple x white petals 705 929 0.7589 +---+---+
inflated x pinched pods 882 1181 0.7468 A | A | A |
green x yellow pods 428 580 0.7379 +---+---+
axial x terminal flowers 651 858 0.7587 a | A | a |
long x short stems 787 1064 0.7397 +---+---+

From this data, Mendel formulated his now-familiar theory of
inheritance with dominant-recessive characteristics: each parent

contributes one of the two alleles, A (dominant) or a (recessive) they got
from their parents, as in the 2× 2 Punnett square above.
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Mendel’s Model Comparison
Roll the clock back mentally to 1865,

and imagine Mendel proposing a
theory involving a structural singleton at θ1 = 3

4 in the context of a
Bernoulli sampling model; how strongly do these data

support or refute such a theory?

Taking one phenotype at a time — green (dominant) versus yellow
pods, say — and letting yi = 1 if second-generation pea plant i is green
and 0 if yellow, Mendel’s experimental setup leads without ambiguity to

the comparison of two models: for (i = 1, . . . , n),

M1:
{ (θ|B) ∼ point mass at θ = θ1

(yi |θB) IID∼ Bernoulli(θ)

}
and (13)

M2:
{ (θ|B) ∼ diffuse for 0 < θ < 1

(yi |θB) IID∼ Bernoulli(θ)

}
, (14)

in which — without loss of much generality — the prior in M2 can be
instantiated with a Beta(α, β) distribution with small positive (α, β).

How to compare these two models? One approach: Bayes factors.
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Bayes Factors
Suppose that the number m of models in Your ensemble
M = {M1, . . . ,Mm} of models under comparison is finite.

In such cases it suffices to make pairwise comparisons of the Mj ;
so specialize to the case m = 2 and M = {M1,M2}.

Bayes factors arise as the data-driven component of a
decision-theoretic approach to model comparison that selects the model

with the highest posterior probability:[
p(M2 |D B)
p(M1 |D B)

]
=

[
p(M2 | B)
p(M1 | B)

]
·

[
p(D |M2 B)
p(D |M1 B)

]
 posterior odds

in favor of
M2 over M1

 =

 prior odds
in favor of

M2 over M1

 ·

 Bayes factor
in favor of

M2 over M1

 .
(15)

Specifying the prior odds ratio in applied settings seems to me to be a
more difficult problem than acknowledged by such writers as Jeffreys
(1939) — e.g., I see nothing remotely “objective” about taking this

ratio to be 1; in my view this should be approached with
sensitivity analysis.
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decision-theoretic approach to model comparison that selects the model

with the highest posterior probability:[
p(M2 |D B)
p(M1 |D B)

]
=

[
p(M2 | B)
p(M1 | B)

]
·

[
p(D |M2 B)
p(D |M1 B)

]
 posterior odds

in favor of
M2 over M1

 =

 prior odds
in favor of

M2 over M1

 ·

 Bayes factor
in favor of

M2 over M1

 .
(15)

Specifying the prior odds ratio in applied settings seems to me to be a
more difficult problem than acknowledged by such writers as Jeffreys
(1939) — e.g., I see nothing remotely “objective” about taking this

ratio to be 1; in my view this should be approached with
sensitivity analysis.
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Bayes Factors (continued)
For now let’s focus only on the Bayes factor and concentrate on

parametric models of the form

(θj |Mj B) ∼ p(θj |Mj B)

(yi |Mj θj B) IID∼ p(yi |Mj θj B) , (16)

in which (i = 1, . . . , n); (j = 1, 2); the yi are (d × 1) vectors of
outcome values that live in Rd (often in what follows d = 1); and the

functional forms of the prior p(θj |Mj B) and sampling distribution
p(yi |Mj θj B) are assumed known.

In this context, with D = y , (y1, . . . , yn), the Bayes factor in favor of
M2 over M1 may be written

BF21 , BF [(M2 ||M1) | y B] ,
[

IL(M2 | y B)
IL(M1 | y B)

]
. (17)

Here IL(Mj | y B) is the integrated likelihood for model j :

IL(Mj | y B) = p(y |Mj B) =
∫

Θj

p(y |Mj θj B) p(θj |Mj B) dθj (18)
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Bayes Factors (continued)

IL(Mj | y B) = p(y |Mj B) =
∫

Θj

p(y |Mj θj B) p(θj |Mj B) dθj

=
∫

Θj

`(θj |Mj y B) p(θj |Mj B) dθj , (19)

in which Θj is the parameter space for model j , of dimension kj (in all
of my examples Θj = Rkj ), and in which

`(θj |Mj y B) =
n∏

i=1
p(yi |Mj θj B) (20)

is the likelihood function for model Mj .

I suppose here that k1 < k2, so that M1 is the simpler of the two models.

An interesting approximate special case of Bayes factors was developed
by Schwarz (1978), who — in the context of parametric models

belonging to the class of regular exponential families — developed an
Op(1) Taylor series approximation to log [IL(Mj | y B)], namely

log [IL(Mj | y B)] = log
[
`(θ̂j |Mj y B)

]
− kj

2 log(n) + Op(1) ; (21)
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BIC
here θ̂j is the maximum-likelihood estimate (MLE) of θj under model

Mj , assumed to exist and to be unique.

Schwarz advocated a preference for the model in M that maximizes
log
[
`(θ̂j |Mj y B)

]
− kj

2 log(n); this is equivalent to minimizing

BIC(Mj | y B) , −2 log
[
`(θ̂j |Mj y B)

]
+ kj log(n) , (22)

in which BIC is the Bayesian information criterion (interestingly,
Schwarz (1978) makes no mention of BIC or multiplication by −2; this
rescaling, which was intended to put the log-likelihood contribution to
BIC on the deviance scale, was first suggested by Akaike (1980), who

does not cite Schwarz).

The attractive feature of BIC is that it neatly decomposes model
comparison into an additive balance between model fit (the

log-likelihood term) and parsimony (the kj log(n) term).

Two centuries earlier, Laplace (1774) developed a more accurate
Op
( 1

n
)

approximation to the log integrated likelihood, of which Schwarz
was apparently unaware:
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BIC and Laplace
log [IL(Mj | y B)] = log

[
`(θ̂j |Mj y B)

]
+ log

[
p(θ̂j |Mj B)

]
+ kj

2 log(2π)− 1
2 log |̂Ij |+ Op

(
1
n

)
, (23)

in which log |̂Ij | is the determinant of the observed information matrix
for model Mj .

A comparison of expressions (21) and (23) immediately begs the
following question: is there a prior distribution p(θj |Mj B) for which

the approximations of Laplace and Schwarz coincide?

Suppose that all of the components of θj have been transformed to live
on R, so that it becomes reasonable to try a multivariate normal prior;

the result that succeeds in making Laplace and Schwarz agree is

(θj |Mj B) ∼ Nkj

(
θ̂j , n Î−1

j

)
. (24)

This has been referred to as a unit-information prior (Kass and
Wasserman( 1995)), because it adds information to the posterior for θj

equivalent to 1 observation that’s consistent with a
maximum-likelihood analysis.
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Enter Ed Jaynes

(This prior is gently data-determined,

but — with 1 prior “observation”
and n data observations in the resulting (n + 1)–“observation” posterior

— the data dependence in the prior is clearly minimal,
even for modest n).

BIC thus has two salient properties:

(a) it’s implicitly based on a reasonable diffuse prior, and

(b) it explicitly trades off model fit against model complexity.

All of this so far is routine, but at the point in the story summarized by
equation (18), Jaynes (2003) did something interesting: assuming (as

above) that the MLE θ̂j for θj exists and is unique, and that the
maximum value `(θ̂j |Mj y B) attained by the likelihood function for

model Mj is strictly positive, Jaynes can write

IL(Mj | y B) = `(θ̂j |Mj y B)
{∫

Θj

[
`(θj |Mj y B)
`(θ̂j |Mj y B)

]
p(θj |Mj B) dθj

}
.
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The Ockham Factor
Jaynes therefore defines

Wj ,
∫

Θj

[
`(θj |Mj y B)
`(θ̂j |Mj y B)

]
p(θj |Mj B) dθj , (25)

and — although Jaynes doesn’t use this name — the Bayes factor in
favor of M2 over M1 becomes

BF [(M2 ||M1) | y B] =
[
`(θ̂2 |M2 y B)
`(θ̂1 |M1 y B)

]
·

[
W2
W1

]
 Bayes factor

in favor of
M2 over M1

 =

 likelihood ratio
in favor of

M2 over M1

 ·

 Ockham factor
in favor of

M2 over M1


BF21 = LR21 · OF21 .

(26)
In this manner Jaynes has decomposed the Bayes factor BF21 into the
product of two quantities that play completely different roles in its

calculation: the likelihood ratio LR21 in favor of M2 over M1, and what
Jaynes referred to as the Ockham factor OF21 in favor of M2 over M1.
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The Jaynes Information Criterion (JIC)
The name Ockham factor is an allusion to Ockham’s Razor,

and
suggests that this term in the product in (26) has

something to do with parsimony.

I don’t find Jaynes’s motivation for OF21 compelling, and in fact at this
point I part company with him (everything below is new); I prefer to

motivate OF21 with a simple Gaussian example (below).

First, however, to faciliate comparison with BIC , let’s transform BF21
affinely to the log scale:

−2 log(BF21) = −2 log(LR21) + [−2 log(OF21)]{
−2 IL(M2 | y B)
− [−2 IL(M1 | y B)]

}
=
{

−2 log `(θ̂2 |M2 y B)
−
[
−2 log `(θ̂1 |M1 y B)

] } +
{

−2 log(W2)
− [−2 log(W1)]

}
.

(27)

Therefore I define, in Jaynes’s honor, the Jaynes Information Criterion

JIC(Mj |D B) , −2 log
[
`(θ̂j |Mj y B)

]
− 2 log(Wj) ; (28)

this implies that, in the data-driven part of equation (15), models with
lower JIC values are to be preferred.
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Gaussian Mean, Known Variance
To motivate the Ockham factor in the JIC definition,

consider the
following model comparison, which is identical to the large-sample

approximate Higgs boson setup: M1 is defined by

(yi |M1 B) IID∼ N
(
θ1, σ

2) , (29)
in which the standard deviation (SD) σ > 0 is assumed known and where
θ1 is a known structural singleton arising from a scientific theory.

M2 has the same form but with unknown mean θ (here, and
throughout, I use conjugate priors when they exist):

(θ |M2 B) ∼ N(θ0, σ
2
0)

(yi |M2 θB) IID∼ N
(
θ, σ2) , (30)

with known (θ0, σ0, σ); note that the dimensions of Θ1 and Θ2 in this
setup are 0 and 1, respectively.

The joint sampling distribution for y under M1 is

p(y |M1 B) = σ−n (2π)− n
2 exp

[
− 1

2σ2

n∑
i=1

(yi − θ1)2

]
; (31)
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Gaussian Example (continued)
here the sum in the last term may be rewritten as

n∑
i=1

(yi − θ1)2 =
[ n∑

i=1
(yi − ȳ)2

]
+ n(ȳ − θ1)2 , (32)

where ȳ = 1
n
∑n

i=1 yi .

There are no unknown parameters in M1, so the log
[
`(θ̂1 |M1 y B)

]
term in JIC(M1 |D B) is to be interpreted as simply

log [p(y |M1 B)] = −n log(σ)− n
2 log(2π)−

n
[
s2 + (ȳ − θ1)2]

2σ2 , (33)

in which s2 , 1
n
∑n

i=1(yi − ȳ)2.

Similarly, there’s nothing to maximize as a function of unknowns in
(33) and M1 has no prior distribution; in situations like this (i.e.,

whenever k1 = 0) I adopt the convention W1 , 1. Thus
JIC(M1 |D B) = −2 log [p(y |M1 B)]

= 2 n log(σ) + 2 n log(2π) +
n
[
s2 + (ȳ − θ1)2]

σ2 ; (34)
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s2 + (ȳ − θ1)2]

σ2 ; (34)

37 / 46



Gaussian Example (continued)
here the sum in the last term may be rewritten as

n∑
i=1

(yi − θ1)2 =
[ n∑

i=1
(yi − ȳ)2
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s2 + (ȳ − θ1)2]

σ2 ; (34)
37 / 46



Gaussian Example (continued)
note that as the sample size increases JIC(M1 |D B) = Op(n).

As for M2, its log likelihood function is

log [`(θ |M2 y B)] = −n log(σ)− n
2 log(2π)− 1

2σ2

n∑
i=1

(yi − θ)2 , (35)

which is maximized at θ̂ = ȳ ; using an expression similar to (32), the
maximum log likelihood contribution to JIC(M2 |D B) simplifies to

log
[
`(θ̂ |M2 y B)

]
= −n log(σ)− n

2 log(2π)− n s2

2σ2 , (36)

which is also Op(n) as n increases.

This leads to a difference between the log likelihood components of
JIC(M1 |D B) and JIC(M2 |D B) of the form

− 2 log
[
`(θ̂ |M2 y B)

]
− {−2 log [p(y |M1 B)]} = −n

(
ȳ − θ1
σ

)2
.

Both the minus sign and the structure of this expression
make good sense:
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which is maximized at θ̂ = ȳ ; using an expression similar to (32), the
maximum log likelihood contribution to JIC(M2 |D B) simplifies to

log
[
`(θ̂ |M2 y B)

]
= −n log(σ)− n

2 log(2π)− n s2

2σ2 , (36)

which is also Op(n) as n increases.

This leads to a difference between the log likelihood components of
JIC(M1 |D B) and JIC(M2 |D B) of the form

− 2 log
[
`(θ̂ |M2 y B)

]
− {−2 log [p(y |M1 B)]} = −n

(
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Gaussian Example (continued)

− 2 log
[
`(θ̂ |M2 y B)

]
− {−2 log [p(y |M1 B)]} = −n

(
ȳ − θ1
σ

)2

the farther ȳ is from θ1 (in units of the SD σ), the stronger the evidence
for M2 becomes, increasing at an Op(n) rate on the log likelihood scale.

The calculation of W2 requires an integration, which in this problem
(and many other parametric settings) produces an answer in closed form:

W2 =

∫ ∞
−∞

σ−n(2π)−
n
2 exp

[
− 1

2 σ2

∑n
i=1

(yi − θ)2
]

σ−n(2π)−
n
2 exp

[
− 1

2 σ2

∑n
i=1

(yi − ȳ)2
] { 1

σ
√

2π
exp

[
−

1
2σ2

n∑
i=1

(θ − θ0)2

]}
dθ .

(37)

After simplification and affine transformation to the log scale, You get

− 2 log(W2) = log(n) + log
(
σ2

0
σ2 + 1

n

)
+ (ȳ − θ0)2

σ2
0 + σ2

n
, (38)

so that
JIC(M2 |D B) =

[
2 n log(σ) + 2 n log(2π) +

ns2

σ2

]
+
[

log(n) + log
(
σ2

0
σ2 +

1
n

)
+

(ȳ − θ0)2

σ2
0 + σ2

n

]
(39)
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+ (ȳ − θ0)2

σ2
0 + σ2

n
, (38)

so that
JIC(M2 |D B) =

[
2 n log(σ) + 2 n log(2π) +

ns2

σ2

]
+
[

log(n) + log
(
σ2

0
σ2 +

1
n

)
+
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∑n
i=1

(yi − θ)2
]

σ−n(2π)−
n
2 exp

[
− 1

2 σ2

∑n
i=1

(yi − ȳ)2
] { 1

σ
√

2π
exp

[
−

1
2σ2

n∑
i=1

(θ − θ0)2

]}
dθ .

(37)

After simplification and affine transformation to the log scale, You get

− 2 log(W2) = log(n) + log
(
σ2

0
σ2 + 1

n

)
+ (ȳ − θ0)2

σ2
0 + σ2

n
, (38)

so that

JIC(M2 |D B) =
[

2 n log(σ) + 2 n log(2π) +
ns2

σ2

]
+
[

log(n) + log
(
σ2

0
σ2 +

1
n

)
+

(ȳ − θ0)2

σ2
0 + σ2

n

]
(39)
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Now the Role of the Ockham Factor Is Clear
and finally

JIC(M2 |D B)− JIC(M1 |D B) =
[
−n
( ȳ − θ1

σ

)2
]

+
[

log(n) + log
(
σ2

0
σ2 +

1
n

)
+

(ȳ − θ0)2

σ2
0 + σ2

n

]
.

Thus in this problem

JIC(M1 |D B) = BIC(M1 |D B) (40)

and

JIC(M2 |D B) = BIC(M2 |D B) +
[

log
(
σ2

0
σ2 + 1

n

)
+ (ȳ − θ0)2

σ2
0 + σ2

n

]
. (41)

Now the nature of the Ockham factor W2
W1

becomes clear: on the
−2 log

(
W2
W1

)
scale the Ockham factor reproduces BIC ’s

Op[(k2 − k1) log(n)] approximate parsimony penalty, but JIC is based
on an exact Bayes factor that in addition includes Op(1) correction

terms that arise from the priors in the two models.
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( ȳ − θ1

σ

)2
]

+
[

log(n) + log
(
σ2

0
σ2 +

1
n

)
+
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+ (ȳ − θ0)2

σ2
0 + σ2

n

]
. (41)

Now the nature of the Ockham factor W2
W1

becomes clear: on the
−2 log

(
W2
W1

)
scale the Ockham factor reproduces BIC ’s

Op[(k2 − k1) log(n)] approximate parsimony penalty, but JIC is based
on an exact Bayes factor that in addition includes Op(1) correction

terms that arise from the priors in the two models.
40 / 46



Interpreting the Prior Correction Terms
As a result,

if You have non-trivial and well-calibrated prior
information, JIC will do a better job of model comparison than BIC ,

while retaining BIC ’s appealing fit-parsimony decomposition.

Neglecting O
( 1

n
)

terms, the JIC prior correction in this problem is of
the approximate form[

log
(
σ2

0
)
− log

(
σ2)]+

(
ȳ − θ0
σ0

)2
, (42)

which makes good intuitive sense:

as σ0 increases, the evidence for M2 weakens, because You then
have more uncertainty about the underlying data-generating θDG
in M2;
as σ increases, the evidence for M2 strengthens, because it
becomes harder to demonstrate that θDG = θ1; and
as ȳ moves away from its prior expectation θ0 under M2, this
undermines the evidence in favor of M2, because of conflict
between the prior and the data.
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ȳ − θ0
σ0

)2
, (42)

which makes good intuitive sense:

as σ0 increases, the evidence for M2 weakens, because You then
have more uncertainty about the underlying data-generating θDG
in M2;
as σ increases, the evidence for M2 strengthens, because it
becomes harder to demonstrate that θDG = θ1; and
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Back To Mendel
Taking one phenotype at a time —

green (dominant) versus yellow
pods, say — and letting yi = 1 if second-generation pea plant i is green
and 0 if yellow, Mendel’s experimental setup leads without ambiguity to

the comparison of two models: for (i = 1, . . . , n),

M1:
{ (θ|B) ∼ point mass at θ = θ1

(yi |θB) IID∼ Bernoulli(θ)

}
and (43)

M2:
{ (θ|B) ∼ Beta(α, β)

(yi |θB) IID∼ Bernoulli(θ)

}
. (44)

Calculation reveals that θ̂MLE = ȳ = 1
n
∑n

i=1 yi and

− 2 log
[
`(θ̂ |M1 y B)

]
= −2 n [ȳ log(θ1) + (1− ȳ) log(1− θ1)]

= −Op(n) ; (45)

− 2 log(W1) = 0 ; (46)

− 2 log
[
`(θ̂ |M2 y B)

]
= −2 n [ȳ log(ȳ) + (1− ȳ) log(1− ȳ)]

= −Op(n) ; (47)
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= −Op(n) ; (47)

42 / 46



Back To Mendel
Taking one phenotype at a time — green (dominant) versus yellow

pods, say — and letting yi = 1 if second-generation pea plant i is green
and 0 if yellow, Mendel’s experimental setup leads without ambiguity to

the comparison of two models: for (i = 1, . . . , n),

M1:
{ (θ|B) ∼ point mass at θ = θ1

(yi |θB) IID∼ Bernoulli(θ)

}
and (43)

M2:
{ (θ|B) ∼ Beta(α, β)

(yi |θB) IID∼ Bernoulli(θ)

}
. (44)

Calculation reveals that θ̂MLE = ȳ = 1
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Mendel (continued)
− 2 log(W2) = −2 log Γ(α + β)− 2 log Γ(α + n ȳ)

−2 log [β + n(1− ȳ)] + 2 n ȳ log(ȳ)
+2 n(1− ȳ) log(1− ȳ) + 2 log Γ(α)
+2 log Γ(β) + 2 log Γ(α + β + n)

= +Op [log(n)] . (48)

With α = β = 1 in JIC for illustration,
--- model 1 --- ---- model 2 -----

jic-m2
-2 minus

dataset s n y.bar -2 LL lOF jic -2 LL -2 lOF jic jic-m1

round x
wrinkled
seeds 5474 7324 0.7474 8278.8 0 8278.8 8278.6 8.728 8287.3 8.466

bic 8278.8 0 8278.8 8278.6 8.899 8287.5 8.637

yellow x
green
seeds 6022 8023 0.7506 9012.8 0 9012.8 9012.8 8.828 9021.6 8.813

bic 9012.8 0 9012.8 9012.8 8.990 9021.8 8.975
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Conclusions
Home Truth #1(a): Hypothesis and significance testing may look

purely inferential,

but there’s almost always a decision-theoretic
component as well, and it’s worthwhile to be as explicit as possible about

the real-world consequences of false-positive and
false-negative mistakes.

Home Truth #1(b): It’s good to get out of the habit of using
inferential methods to make decisions: their implicit utility

structure is often far from optimal.

Home Truth #2(a): It’s both silly and inappropriate to test a sharp
hypothesis of the form θ = θ1 in problems in which (a) Your

uncertainty about θ is continuous and (b) other values near θ1 would
have the same real-world consequences.

Home Truth #2(b): Sharp-null (θ = θ1) hypothesis testing is only
appropriate when θ1 is a structural singleton. This rules out a great

deal of testing performed in routine practice; in the absence of a
structural subspace, the most useful approach to inference is estimation

via summarization of the posterior distribution p(θ |D B).
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Conclusions (continued)
Home Truth #3(a): Bayesian hypothesis testing is nothing less,

and nothing more, than Bayesian model comparison.

Home Truth #3(b): The model comparison in 3(a) nearly always
involves nothing less, and nothing more, than the comparison of two

prior distributions, holding the sampling distribution constant.

Home Truth #3(c): Bayesian significance testing typically involves
another important task in Bayesian model specification:

answering the question

Q′2: Could the data set D have arisen from M1?

Posterior predictive P–values are in general an uncalibrated approach
to answering Q′2: , but (Draper and Krnjajić, 2015) this can be fixed.

The Jaynes Information Criterion is

JIC(Mj |D B) , −2 log
[
`(θ̂j |Mj y B)

]
− 2 log(Wj) ; (49)

models with lower JIC values are to be preferred; here
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Conclusions (concluded)

Wj ,
∫

Θj

[
`(θj |Mj y B)
`(θ̂j |Mj y B)

]
p(θj |Mj B) dθj . (50)

JIC is based on an exact Bayes factor that — when compared with BIC
— includes Op(1) correction terms arising from the priors in the models

under comparison.

As a result, if You have non-trivial and well-calibrated prior
information, JIC will do a better job of model comparison than BIC ,

while retaining BIC ’s appealing fit-parsimony decomposition.
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