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Testing issues

Hypothesis testing

I central problem of statistical inference

I witness the recent ASA’s statement on p-values (Wasserstein,
2016)

I dramatically differentiating feature between classical and
Bayesian paradigms

I wide open to controversy and divergent opinions, includ.
within the Bayesian community

I non-informative Bayesian testing case mostly unresolved,
witness the Jeffreys–Lindley paradox

[Berger (2003), Mayo & Cox (2006), Gelman (2008)]



”proper use and interpretation of the p-value”

”Scientific conclusions and
business or policy decisions
should not be based only on
whether a p-value passes a
specific threshold.”

”By itself, a p-value does not
provide a good measure of
evidence regarding a model or
hypothesis.”

[Wasserstein, 2016]
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Bayesian testing of hypotheses

I Bayesian model selection as comparison of k potential
statistical models towards the selection of model that fits the
data “best”

I mostly accepted perspective: it does not primarily seek to
identify which model is “true”, but compares fits

I tools like Bayes factor naturally include a penalisation
addressing model complexity, mimicked by Bayes Information
(BIC) and Deviance Information (DIC) criteria

I posterior predictive tools successfully advocated in Gelman et
al. (2013) even though they involve double use of data
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Bayesian tests 101

Associated with the risk

R(θ, δ) = Eθ[L(θ, δ(x))]

=

{
Pθ(δ(x) = 0) if θ ∈ Θ0,

Pθ(δ(x) = 1) otherwise,

Bayes test

The Bayes estimator associated with π and with the 0 − 1 loss is

δπ(x) =

{
1 if P(θ ∈ Θ0|x) > P(θ 6∈ Θ0|x),

0 otherwise,
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Bayesian tests 102

Weights errors differently under both hypotheses:

Theorem (Optimal Bayes decision)

Under the 0 − 1 loss function

L(θ, d) =


0 if d = IΘ0(θ)

a0 if d = 1 and θ 6∈ Θ0

a1 if d = 0 and θ ∈ Θ0

the Bayes procedure is

δπ(x) =

{
1 if P(θ ∈ Θ0|x) > a0/(a0 + a1)

0 otherwise
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A function of posterior probabilities

Definition (Bayes factors)

For hypotheses H0 : θ ∈ Θ0 vs. Ha : θ 6∈ Θ0

B01 =
π(Θ0|x)

π(Θc
0|x)

/
π(Θ0)

π(Θc
0)

=

∫
Θ0

f (x |θ)π0(θ)dθ∫
Θc

0

f (x |θ)π1(θ)dθ

[Jeffreys, ToP, 1939, V, §5.01]

Bayes rule under 0 − 1 loss: acceptance if

B01 > {(1 − π(Θ0))/a1}/{π(Θ0)/a0}



self-contained concept

Outside decision-theoretic environment:

I eliminates choice of π(Θ0)

I but depends on the choice of (π0,π1)

I Bayesian/marginal equivalent to the likelihood ratio
I Jeffreys’ scale of evidence:

I if log10(B
π
10) between 0 and 0.5, evidence against H0 weak,

I if log10(B
π
10) 0.5 and 1, evidence substantial,

I if log10(B
π
10) 1 and 2, evidence strong and

I if log10(B
π
10) above 2, evidence decisive

[...fairly arbitrary!]
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consistency

Example of a normal X̄n ∼ N(µ, 1/n) when µ ∼ N(0, 1), leading to

B01 = (1 + n)−
1/2 exp{n2x̄2

n/2(1 + n)}



Some difficulties

I tension between using (i) posterior probabilities justified by
binary loss function but depending on unnatural prior weights,
and (ii) Bayes factors that eliminate dependence but escape
direct connection with posterior, unless prior weights are
integrated within loss

I delicate interpretation (or calibration) of strength of the Bayes
factor towards supporting a given hypothesis or model,
because not a Bayesian decision rule

I similar difficulty with posterior probabilities, with tendency to
interpret them as p-values: only report of respective strengths
of fitting data to both models



Some difficulties

I tension between using (i) posterior probabilities justified by
binary loss function but depending on unnatural prior weights,
and (ii) Bayes factors that eliminate dependence but escape
direct connection with posterior, unless prior weights are
integrated within loss

I referring to a fixed and arbitrary cuttoff value falls into the
same difficulties as regular p-values

I no “third way” like opting out from a decision



Some further difficulties

I long-lasting impact of prior modeling, i.e., choice of prior
distributions on parameters of both models, despite overall
consistency proof for Bayes factor

I discontinuity in valid use of improper priors since they are not
justified in most testing situations, leading to many alternative
and ad hoc solutions, where data is either used twice or split
in artificial ways [or further tortured into confession]

I binary (accept vs. reject) outcome more suited for immediate
decision (if any) than for model evaluation, in connection with
rudimentary loss function [atavistic remain of
Neyman-Pearson formalism]



Some additional difficulties

I related impossibility to ascertain simultaneous misfit or to
detect outliers

I no assessment of uncertainty associated with decision itself
besides posterior probability

I difficult computation of marginal likelihoods in most settings
with further controversies about which algorithm to adopt

I strong dependence of posterior probabilities on conditioning
statistics (ABC), which undermines their validity for model
assessment

I temptation to create pseudo-frequentist equivalents such as
q-values with even less Bayesian justifications

I c© time for a paradigm shift

I back to some solutions



Historical appearance of Bayesian tests

Is the new parameter supported by the observations or is
any variation expressible by it better interpreted as
random? Thus we must set two hypotheses for
comparison, the more complicated having the smaller
initial probability

...compare a specially suggested value of a new
parameter, often 0 [q], with the aggregate of other
possible values [q′]. We shall call q the null hypothesis
and q′ the alternative hypothesis [and] we must take

P(q|H) = P(q′|H) = 1/2 .

(Jeffreys, ToP, 1939, V, §5.0)



A major refurbishment

Suppose we are considering whether a location parameter
α is 0. The estimation prior probability for it is uniform
and we should have to take f (α) = 0 and K [= B10]
would always be infinite (Jeffreys, ToP, V, §5.02)

When the null hypothesis is supported by a set of measure 0
against Lebesgue measure, π(Θ0) = 0 for an absolutely continuous
prior distribution

[End of the story?!]
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When the null hypothesis is supported by a set of measure 0
against Lebesgue measure, π(Θ0) = 0 for an absolutely continuous
prior distribution

[End of the story?!]

Requirement

Defined prior distributions under both assumptions,

π0(θ) ∝ π(θ)IΘ0(θ), π1(θ) ∝ π(θ)IΘ1(θ),

(under the standard dominating measures on Θ0 and Θ1)



A major refurbishment

When the null hypothesis is supported by a set of measure 0
against Lebesgue measure, π(Θ0) = 0 for an absolutely continuous
prior distribution

[End of the story?!]
Using the prior probabilities π(Θ0) = ρ0 and π(Θ1) = ρ1,

π(θ) = ρ0π0(θ) + ρ1π1(θ).



Point null hypotheses

“Is it of the slightest use to reject a hypothesis until we have some
idea of what to put in its place?” H. Jeffreys, ToP(p.390)

Particular case H0 : θ = θ0
Take ρ0 = Prπ(θ = θ0) and g1 prior density under Hc

0 .
Posterior probability of H0

π(Θ0|x) =
f (x |θ0)ρ0∫

f (x |θ)π(θ) dθ
=

f (x |θ0)ρ0
f (x |θ0)ρ0 + (1 − ρ0)m1(x)

and marginal under Hc
0

m1(x) =

∫
Θ1

f (x |θ)g1(θ) dθ.

and

Bπ
01(x) =

f (x |θ0)ρ0
m1(x)(1 − ρ0)

/
ρ0

1 − ρ0
=

f (x |θ0)

m1(x)
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Noninformative proposals

Bayesian testing of hypotheses

Noninformative solutions

Testing via mixtures

Paradigm shift



what’s special about the Bayes factor?!

I “The priors do not represent substantive knowledge of the
parameters within the model

I Using Bayes’ theorem, these priors can then be updated to
posteriors conditioned on the data that were actually observed

I In general, the fact that different priors result in different
Bayes factors should not come as a surprise

I The Bayes factor (...) balances the tension between parsimony
and goodness of fit, (...) against overfitting the data

I In induction there is no harm in being occasionally wrong; it is
inevitable that we shall be”

[Jeffreys, 1939; Ly et al., 2015]



what’s wrong with the Bayes factor?!

I (1/2, 1/2) partition between hypotheses has very little to
suggest in terms of extensions

I central difficulty stands with issue of picking a prior
probability of a model

I unfortunate impossibility of using improper priors in most
settings

I Bayes factors lack direct scaling associated with posterior
probability and loss function

I twofold dependence on subjective prior measure, first in prior
weights of models and second in lasting impact of prior
modelling on the parameters

I Bayes factor offers no window into uncertainty associated with
decision

I further reasons in the summary

[Robert, 2016]



Lindley’s paradox

In a normal mean testing problem,

x̄n ∼ N(θ,σ2/n) , H0 : θ = θ0 ,

under Jeffreys prior, θ ∼ N(θ0,σ
2), the Bayes factor

B01(tn) = (1 + n)1/2 exp
(
−nt2n/2[1 + n]

)
,

where tn =
√

n|x̄n − θ0|/σ, satisfies

B01(tn)
n−→∞−→ ∞

[assuming a fixed tn]
[Lindley, 1957]



A strong impropriety

Improper priors not allowed in Bayes factors:

If ∫
Θ1

π1(dθ1) =∞ or

∫
Θ2

π2(dθ2) =∞
then π1 or π2 cannot be coherently normalised while the
normalisation matters in the Bayes factor B12

Lack of mathematical justification for “common nuisance
parameter” [and prior of]

[Berger, Pericchi, and Varshavsky, 1998; Marin and Robert, 2013]
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On some resolutions of the paradox

I use of pseudo-Bayes factors, fractional Bayes factors, &tc,
which lacks complete proper Bayesian justification

[Berger & Pericchi, 2001]

I use of identical improper priors on nuisance parameters,

I calibration via the posterior predictive distribution,

I matching priors,

I use of score functions extending the log score function

I non-local priors correcting default priors
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I use of pseudo-Bayes factors, fractional Bayes factors, &tc,

I use of identical improper priors on nuisance parameters, a
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[Berger et al., 1998; Marin & Robert, 2013]
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On some resolutions of the paradox

I use of pseudo-Bayes factors, fractional Bayes factors, &tc,

I use of identical improper priors on nuisance parameters,

I Péché de jeunesse: equating the values of the prior densities
at the point-null value θ0,

ρ0 = (1 − ρ0)π1(θ0)

[Robert, 1993]
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On some resolutions of the paradox

I use of pseudo-Bayes factors, fractional Bayes factors, &tc,

I use of identical improper priors on nuisance parameters,

I calibration via the posterior predictive distribution,

I matching priors, whose sole purpose is to bring frequentist
and Bayesian coverages as close as possible

[Datta & Mukerjee, 2004]

I use of score functions extending the log score function

I non-local priors correcting default priors



On some resolutions of the paradox

I use of pseudo-Bayes factors, fractional Bayes factors, &tc,

I use of identical improper priors on nuisance parameters,

I calibration via the posterior predictive distribution,

I matching priors,

I use of score functions extending the log score function

logB12(x) = log m1(x) − log m2(x) = S0(x , m1) − S0(x , m2) ,

that are independent of the normalising constant
[Dawid et al., 2013; Dawid & Musio, 2015]

I non-local priors correcting default priors



On some resolutions of the paradox

I use of pseudo-Bayes factors, fractional Bayes factors, &tc,

I use of identical improper priors on nuisance parameters,

I calibration via the posterior predictive distribution,

I matching priors,

I use of score functions extending the log score function

I non-local priors correcting default priors towards more
balanced error rates

[Johnson & Rossell, 2010; Consonni et al., 2013]



Pseudo-Bayes factors

Idea

Use one part x[i] of the data x to make the prior proper:

I πi improper but πi (·|x[i]) proper

I and ∫
fi (x[n/i]|θi ) πi (θi |x[i])dθi∫
fj(x[n/i]|θj) πj(θj |x[i])dθj

independent of normalizing constant

I Use remaining x[n/i] to run test as if πj(θj |x[i]) is the true prior
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Motivation

I Provides a working principle for improper priors

I Gather enough information from data to achieve properness

I and use this properness to run the test on remaining data

I does not use x twice as in Aitkin’s (1991)
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Issues

I depends on the choice of x[i]
I many ways of combining pseudo-Bayes factors

I AIBF = BN
ji

1

L

∑
`

Bij(x[`])

I MIBF = BN
ji med[Bij(x[`])]

I GIBF = BN
ji exp

1

L

∑
`

log Bij(x[`])

I not often an exact Bayes factor

I and thus lacking inner coherence

B12 6= B10B02 and B01 6= 1/B10 .

[Berger & Pericchi, 1996]
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Fractional Bayes factor

Idea

use directly the likelihood to separate training sample from testing
sample

BF
12 = B12(x)

∫
Lb
2(θ2)π2(θ2)dθ2∫

Lb
1(θ1)π1(θ1)dθ1

[O’Hagan, 1995]

Proportion b of the sample used to gain proper-ness



Fractional Bayes factor

Idea

use directly the likelihood to separate training sample from testing
sample

BF
12 = B12(x)

∫
Lb
2(θ2)π2(θ2)dθ2∫

Lb
1(θ1)π1(θ1)dθ1
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Fractional Bayes factor (cont’d)

Example (Normal mean)

BF
12 =

1√
b

en(b−1)x̄2n/2

corresponds to exact Bayes factor for the prior N
(
0, 1−b

nb

)
I If b constant, prior variance goes to 0

I If b =
1

n
, prior variance stabilises around 1

I If b = n−α, α < 1, prior variance goes to 0 too.

c© Call to external principles to pick the order of b



Bayesian predictive

“If the model fits, then replicated data generated under
the model should look similar to observed data. To put it
another way, the observed data should look plausible
under the posterior predictive distribution. This is really a
self-consistency check: an observed discrepancy can be
due to model misfit or chance.” (BDA, p.143)

Use of posterior predictive

p(y rep|y) =

∫
p(y rep|θ)π(θ|y) dθ

and measure of discrepancy T (·, ·)
Replacing p-value

p(y |θ) = P(T (y rep, θ) > T (y , θ)|θ)

with Bayesian posterior p-value

P(T (y rep, θ) > T (y , θ)|y) =

∫
p(y |θ)π(θ|x) dθ
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Issues

“the posterior predictive p-value is such a [Bayesian]
probability statement, conditional on the model and data,
about what might be expected in future replications.
(BDA, p.151)

I sounds too much like a p-value...!

I relies on choice of T (·, ·)
I seems to favour overfitting

I (again) using the data twice (once for the posterior and twice
in the p-value)

I needs to be calibrated (back to 0.05?)

I general difficulty in interpreting

I where is the penalty for model complexity?



Changing the testing perspective

Bayesian testing of hypotheses

Noninformative solutions

Testing via mixtures

Paradigm shift



Paradigm shift

New proposal for a paradigm shift (!) in the Bayesian processing of
hypothesis testing and of model selection

I convergent and naturally interpretable solution

I more extended use of improper priors

Simple representation of the testing problem as a
two-component mixture estimation problem where the
weights are formally equal to 0 or 1
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Paradigm shift

Simple representation of the testing problem as a
two-component mixture estimation problem where the
weights are formally equal to 0 or 1

I Approach inspired from consistency result of Rousseau and
Mengersen (2011) on estimated overfitting mixtures

I Mixture representation not directly equivalent to the use of a
posterior probability

I Potential of a better approach to testing, while not expanding
number of parameters

I Calibration of posterior distribution of the weight of a model,
moving from artificial notion of posterior probability of a
model



Encompassing mixture model

Idea: Given two statistical models,

M1 : x ∼ f1(x |θ1) , θ1 ∈ Θ1 and M2 : x ∼ f2(x |θ2) , θ2 ∈ Θ2 ,

embed both within an encompassing mixture

Mα : x ∼ αf1(x |θ1) + (1 − α)f2(x |θ2) , 0 6 α 6 1 (1)

Note: Both models correspond to special cases of (1), one for
α = 1 and one for α = 0
Draw inference on mixture representation (1), as if each
observation was individually and independently produced by the
mixture model
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Inferential motivations

Sounds like approximation to the real model, but several definitive
advantages to this paradigm shift:

I Bayes estimate of the weight α replaces posterior probability
of model M1, equally convergent indicator of which model is
“true”, while avoiding artificial prior probabilities on model
indices, ω1 and ω2

I interpretation of estimator of α at least as natural as handling
the posterior probability, while avoiding zero-one loss setting

I α and its posterior distribution provide measure of proximity
to the models, while being interpretable as data propensity to
stand within one model

I further allows for alternative perspectives on testing and
model choice, like predictive tools, cross-validation, and
information indices like WAIC



Computational motivations

I avoids highly problematic computations of the marginal
likelihoods, since standard algorithms are available for
Bayesian mixture estimation

I straightforward extension to a finite collection of models, with
a larger number of components, which considers all models at
once and eliminates least likely models by simulation

I eliminates difficulty of label switching that plagues both
Bayesian estimation and Bayesian computation, since
components are no longer exchangeable

I posterior distribution of α evaluates more thoroughly strength
of support for a given model than the single figure outcome of
a posterior probability

I variability of posterior distribution on α allows for a more
thorough assessment of the strength of this support



Noninformative motivations

I additional feature missing from traditional Bayesian answers:
a mixture model acknowledges possibility that, for a finite
dataset, both models or none could be acceptable

I standard (proper and informative) prior modeling can be
reproduced in this setting, but non-informative (improper)
priors also are manageable therein, provided both models first
reparameterised towards shared parameters, e.g. location and
scale parameters

I in special case when all parameters are common

Mα : x ∼ αf1(x |θ) + (1 − α)f2(x |θ) , 0 6 α 6 1

if θ is a location parameter, a flat prior π(θ) ∝ 1 is available



Weakly informative motivations

I using the same parameters or some identical parameters on
both components highlights that opposition between the two
components is not an issue of enjoying different parameters

I those common parameters are nuisance parameters, to be
integrated out [unlike Lindley’s paradox]

I prior model weights ωi rarely discussed in classical Bayesian
approach, even though linear impact on posterior probabilities.
Here, prior modeling only involves selecting a prior on α, e.g.,
α ∼ B(a0, a0)

I while a0 impacts posterior on α, it always leads to mass
accumulation near 1 or 0, i.e. favours most likely model

I sensitivity analysis straightforward to carry

I approach easily calibrated by parametric boostrap providing
reference posterior of α under each model

I natural Metropolis–Hastings alternative



Comparison with posterior probability
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Plots of ranges of log(n) log(1−E[α|x ]) (gray color) and log(1− p(M1|x)) (red

dotted) over 100 N(0, 1) samples as sample size n grows from 1 to 500. and α

is the weight of N(0, 1) in the mixture model. The shaded areas indicate the

range of the estimations and each plot is based on a Beta prior with

a0 = .1, .2, .3, .4, .5, 1 and each posterior approximation is based on 104

iterations.



Towards which decision?

And if we have to make a decision?

soft consider behaviour of posterior under prior predictives

I or posterior predictive [e.g., prior predictive does not exist]

I boostrapping behaviour

I comparison with Bayesian non-parametric solution

hard rethink the loss function



Conclusion

I many applications of the Bayesian paradigm concentrate on
the comparison of scientific theories and on testing of null
hypotheses

I natural tendency to default to Bayes factors

I poorly understood sensitivity to prior modeling and posterior
calibration

c© Time is ripe for a paradigm shift



Down with Bayes factors!

c© Time is ripe for a paradigm shift

I original testing problem replaced with a better controlled
estimation target

I allow for posterior variability over the component frequency as
opposed to deterministic Bayes factors

I range of acceptance, rejection and indecision conclusions
easily calibrated by simulation

I posterior medians quickly settling near the boundary values of
0 and 1

I potential derivation of a Bayesian b-value by looking at the
posterior area under the tail of the distribution of the weight



Prior modelling

c© Time is ripe for a paradigm shift

I Partly common parameterisation always feasible and hence
allows for reference priors

I removal of the absolute prohibition of improper priors in
hypothesis testing

I prior on the weight α shows sensitivity that naturally vanishes
as the sample size increases

I default value of a0 = 0.5 in the Beta prior



Computing aspects

c© Time is ripe for a paradigm shift

I proposal that does not induce additional computational strain

I when algorithmic solutions exist for both models, they can be
recycled towards estimating the encompassing mixture

I easier than in standard mixture problems due to common
parameters that allow for original MCMC samplers to be
turned into proposals

I Gibbs sampling completions useful for assessing potential
outliers but not essential to achieve a conclusion about the
overall problem
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