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Summary

Tool: change of measure

Define FK models via Markov and CoM

FK formalism of given probabilistic models

Explore properties of FK models: recursion, marginalisation,
Markovianity

Apply the machinery on specific SSMs: HMMs.
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Change of measure

Definition

Let (X ,B(X )) be a measurable space, and M and Q two
probability measures defined on this space. We then say that Q is
absolutely continuous with respect to M, if for any A 2 B(X ) for
which M(A) = 0, Q(A) = 0. In this case, we also say that M
dominates Q.

In fact, Q is a.c. wrt to M i↵ 9

w(x) =
Q(dx)

M(dx)

(Radon-Nikodym)
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Lemma

Suppose that Q and M are probability mesures on a space X , and
w(x) / Q(dx)/M(dx). Then, for any test function �,

M(�w) = Q(�)M(w) .
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The other way around

Alternatively, if you give me:

A probability measure M;

a function G such that

L := M(G ) 2 (0,1)

Then I can define:

Q(dx) =
1

L
M(dx)G (x)
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The components of a Feynman-Kac model

Markov measure:

MT (dx0:T ) = M0(dx0)
TY

t=1

Mt(xt�1, dxt) .

Potential functions, G0 : X ! R+, and Gt : X 2 ! R+, for
1  t  T

Change of measure: for t  T

Qt(dx0:T ) =
1

Lt
G0(x0)

(
tY

s=1

Gs(xs�1, xs)

)
MT (dx0:T )

Components: T ,G0,M0, Gt(xt�1, xt),Mt(xt�1, dxt)
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Partition function/evidence/marginal likelihood

Lt =

ˆ
X t+1

G0(x0)
tY

s=1

Gs(xs�1, xs)Mt(dx0:t)

= EMt

"
G0(X0)

tY

s=1

Gs(Xs�1,Xs)

#
.

and assume that Gt ’s such that 0 < Lt <1 for all t
Normalising factors: `t = Lt/Lt�1
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The “bootstrap” Feynman-Kac formalism of a

state-space model

Consider a state-space model with signal transition kernels
Pt(xt�1, dxt) and observation densities ft(yt |xt). We define its
“bootstrap” Feynman-Kac formalism to be a
Feynman-Kacmodel with the following components

M0(dx0) = P0(dx0) , G0(x0) = f0(y0|x0)
Mt(xt�1, dxt) = Pt(xt�1, dxt) , Gt(xt�1, xt) = ft(yt |xt) .

Then

Qt�1(dx0:t) = Pt(X0:t 2 dx0:t |Y0:t�1 = y0:t�1)

Qt(dx0:t) = Pt(X0:t 2 dx0:t |Y0:t = y0:t)

Lt = pt(y0:t)nicolas.chopin@ensae.fr Feynman-Kac models & HMMs
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Is this the only one? And what is this formalism useful for?
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The “guided” Feynman-Kac formalism of a state-space

model

Consider a state-space model with signal transition kernels
Pt(xt�1, dxt) and observation densities ft(yt |xt). We define its
“guided” Feynman-Kac formalism to be a Feynman-Kacmodel
with the following components

G0(x0)M0(dx0) = f0(y0|x0)P0(dx0) ,

Gt(xt�1, xt)Mt(xt�1, dxt) = ft(yt |xt)Pt(xt�1, dxt) .

meaning of equalities, special case

nicolas.chopin@ensae.fr Feynman-Kac models & HMMs



Feynman-Kac models
HMMs

Change of measure
Feynman-Kac formalism
Feynman-Kac formalisms of a state space model
Forward recursion
FK as Markov measures

The “auxiliary” Feynman-Kac formalism of a state-space

model

Consider a state-space model with signal transition kernels
Pt(xt�1, dxt) and observation densities ft(yt |xt). Additionally,
let ⌘t(xt) be user-chosen, “auxiliary” functions, such that
EPt [⌘t(Xt)|Y0:t = y0:t ] <1 for all t. We define its “auxiliary”
Feynman-Kac formalism to be a Feynman-Kacmodel with the
following components

G0(x0)M0(dx0) = f0(y0|x0)P0(dx0)⌘0(x0)

Gt(xt�1, xt)Mt(xt�1, dxt) = ft(yt |xt)Pt(xt�1, dxt)
⌘t(xt)

⌘t�1(xt�1)

terminology, matching of distributions, plan for next slides
nicolas.chopin@ensae.fr Feynman-Kac models & HMMs



Feynman-Kac models
HMMs

Change of measure
Feynman-Kac formalism
Feynman-Kac formalisms of a state space model
Forward recursion
FK as Markov measures

Use of formalism

Decouple a statistical model (the state-space model) from its
mathematical representation ! unified treatment of theory
(recursions) and numerics (particle filters)

Feynman-Kacmodels share the same fundamental structure:
the specific change of measure from a Markov measure !
common set of recursions regardless of the details of
components

Feynman-Kac representation and modularity

Feynman-Kac outside state-space models
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Forward recursion (Feynman-Kac formalism) pt1

Initialise with Q�1(dx0) = M0(dx0), then, for t = 0 : T ,

Extension:

Qt�1(dxt�1:t) = Qt�1(dxt�1)Mt(xt�1, dxt)

Recall definition

Change of measure:

Qt(dxt�1:t) =
1

`t
Gt(xt�1, xt)Qt�1(dxt�1:t)
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Forward recursion (Feynman-Kac formalism) pt2

with

`0 = L0 =

ˆ
X
G0(x0)M0(dx0)

and

`t =
Lt
Lt�1

=

ˆ
X 2

Gt(xt�1, xt)Qt�1(dxt�1:t)

for t � 1.

Marginalisation:

Qt(dxt) =

ˆ
X
Qt(dxt�1:t)

=
1

`t

ˆ
X
Gt(xt�1, xt)Mt(xt�1, dxt)Qt�1(dxt�1)

Prediction after extension; Proof
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Implications for the ”b”-fm: recursion for filter, prediction,
likelihood

Pt�1(Xt 2 dxt |Y0:t�1 = y0:t�1)

=

ˆ
X
Pt(xt�1, dxt)Pt(Xt�1 2 dxt�1|Y0:t�1 = y0:t�1) ,

Pt(Xt 2 dxt |Y0:t = y0:t) =
1

pt(yt |y0:t�1)
ft(yt |xt)

Pt�1(Xt 2 dxt |Y0:t�1 = y0:t�1).

pt(yt |y0:t�1) =

ˆ
X 2

ft(yt |xt)Pt�1(Xt�1:t 2 dxt�1:t |Y0:t�1 = y0:t�1) .
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Feynman-Kac model as a Markov measure - cost-to-go
functions

HT :T (xT ) = 1 ,

Ht:T (xt) =

ˆ
XT�t

TY

s=t+1

Gs(xs�1, xs)Ms(xs�1, dxs) , t < T .

Hence

Ht:T (xt) =

ˆ
X
Gt+1(xt , xt+1)Ht+1:T (xt+1)Mt+1(xt , dxt+1)

but also

Ht:T (xt) = EMT

"
TY

s=t+1

Gs(Xs�1,Xs)
���Xt = xt

#

= EMt+1 [Gt+1(Xt ,Xt+1)Ht+1:T (Xt+1)|Xt = xt ] .

proof of results, dynamic programming
nicolas.chopin@ensae.fr Feynman-Kac models & HMMs
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Proposition

QT is the law of a Markov process with state-space X , initial
distribution

Q0|T (dx0) =
H0:T (x0)

LT
G0(x0)M0(dx0) ,

forward transition kernels Qt|T (xt�1, dxt) given by:

Qt|T (xt�1, dxt) =
Ht:T (xt)

Ht�1:T (xt�1)
Gt(xt�1, xt)Mt(xt�1, dxt) ,

and backward kernels given by:

 �
Q t�1|T (xt , dxt�1) =

Qt|T (xt�1, dxt)

QT (dxt)
QT (dxt�1) .

Meaning of ratios; Proof by telescoping; each term a kernelnicolas.chopin@ensae.fr Feynman-Kac models & HMMs



Feynman-Kac models
HMMs

Change of measure
Feynman-Kac formalism
Feynman-Kac formalisms of a state space model
Forward recursion
FK as Markov measures

Implications for the ”b”-fm: POMP

By immediate translation:

Ht:T (xt) =
PT (Yt+1:T 2 dyt+1:T |Xt = xt)

⌫T�t(dyt+1:T )
, t < T .

pt(yt+1:T |xt) =
ˆ
X
f (yt+1|xt+1)p(yt+2:T |xt+1)Pt(xt , dxt+1) .

Hence, the conditioned Markov process is also Markov with

P0|T (dx0) =
p(y1:T |x0)
p(y0:T )

f0(y0|x0)P0(dx0) ,

Pt|T (xt�1, dxt) =
p(yt+1:T |xt)
p(yt:T |xt�1)

ft(yt |xt)Pt(xt�1, dxt) .

Stability properties
nicolas.chopin@ensae.fr Feynman-Kac models & HMMs
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Forward-backward recursions in Feynman-Kac models

Recall that MT (dx0:t) = Mt(dx0:t). For the Feynman-Kacmodel
we have:

Proposition

For any t < T ,

QT (dx0:t) =
Lt
LT

Ht:T (xt)Qt(dx0:t) .

Ideas for proof?
Proof: use the Markov property of the Q process
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Corollary

QT (dxt) =
Lt
LT

Ht:T (xt)Qt(dxt) .

& from Proposition .3 and the result above we get:

Corollary

 �
Q t�1|T (xt , dxt�1) =

1

`t
Gt(xt�1, xt)

Mt(xt�1, dxt)

Qt(dxt)
Qt�1(dxt�1)
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Implications for the ”b”-fm: forward filtering/backward
smoothing

P(Xt 2 dxt |Y0:T = y0:T ) =
1

p(yt+1:T |y0:t)
p(yt+1:T |xt)

P(Xt 2 dxt |Y0:t = y0:t)

 �
P t�1|T (xt , dxt�1) =

1

p(yt |y0:t�1)
ft(yt |xt)

Pt(xt�1, dxt)

Pt(Xt 2 dxt |Y0:t = y0:t)
Pt�1(Xt�1 2 dxt�1|Y0:t�1 = y0:t�1) .
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Forward-backward simulation

How generate draws from QT (dx0:T )?

Then, we should know how to generate from

PT (X0:T 2 dx0:T |Y0:T = y0:T )

ideas?

nicolas.chopin@ensae.fr Feynman-Kac models & HMMs



Feynman-Kac models
HMMs

Change of measure
Feynman-Kac formalism
Feynman-Kac formalisms of a state space model
Forward recursion
FK as Markov measures

Further reading

The “Don Quixote” of SMC: Feynman-Kac formulae (Del
Moral, Springer)
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HMMs

X = {1, . . . ,K}
Integrals ! sums; measures ! vectors; kernels ! matrices

Following based on “bootstrap” formalism
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Complexity

Predictive probabilities: O(K 2) (unless sparse transition
matrix, e.g. change point models)

Given those, filter & likelihood factors obtained at O(K )

Overall cost: O(TK 2) as opposed to O(KT )

Still, K might be large...
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Objectives

introduce a generic PF algorithm for a given
Feynman-Kac model {(M

t

, G
t

)}T

t=0

discuss the di�erent algorithms one may obtain for a given
state-space model, by using di�erent Feynman-Kac formalisms.
give more details on the implementation, complexity, and so on
of the algorithm.
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Input

A Feynman-Kac model {(M
t

, G
t

)}T

t=0

such that:
the weight function G

t

may be evaluated pointwise (for all t);
it is possible to simulate from M

0

(dx
0

) and from M
t

(x
t≠1

, dx
t

)
(for any x

t≠1

and t)

The number of particles N
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Structure

Algorithm 1 Basic PF algorithm

All operations to be performed for all n œ 1 : N.
At time 0:

(a) Generate Xn

0

≥ M
0

(dx
0

).
(b) Compute wn

0

= G
0

(Xn

0

), W n

0

= wn

0

/
q

N

m=1

wm

0

, and
LN

0

= N≠1

q
N

n=1

wn

0

.
Recursively, for t = 1, . . . , T :

(a) Generate ancestor variables An

t

œ 1 : N independently
from M(W 1:N

t≠1

).
(b) Generate Xn

t

≥ M
t

(XA

n

t

t≠1

, dx
t

).
(c) Compute wn

t

= G
t

(XA

n

t

t≠1

, Xn

t

), W n

t

= wn

t

/
q

N

m=1

wm

t

,
and LN

t

= LN

t≠1

{N≠1

q
N

n=1

wn

t

}.
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Output

the algorithm delivers the following approximations at each time t:

1
N

Nÿ

n=1

”
X

n

t

approximates Q
t≠1

(dx
t

)

QN

t

(dx
t

) =
Nÿ

n=1

W n

t

”
X

n

t

approximates Q
t

(dx
t

)

LN

t

approximates L
t

nicolas.chopin@ensae.fr Particle filtering



some comments

by approximates, we mean: for any test function Ï, the
quantity

QN

t

(Ï) =
Nÿ

n=1

W n

t

Ï(Xn

t

)

converges to Q
t

(Ï) as N æ +Œ (at the standard Monte Carlo
rate O

P

(N≠1/2)).

complexity is O(N) per time step.
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by approximates, we mean: for any test function Ï, the
quantity

QN

t

(Ï) =
Nÿ

n=1

W n

t

Ï(Xn

t

)

converges to Q
t

(Ï) as N æ +Œ (at the standard Monte Carlo
rate O

P

(N≠1/2)).
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Particle algorithms for a given state-space model
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Principle

We now consider a given state-space model:

with initial law P
0

(dx
0

) and Markov kernel P
t

(x
t≠1

, dx
t

) for
{X

t

};
with conditional probability density f

t

(y
t

|x
t

) for Y
t

|X
t

and discuss how the choice of a particular Feynman-Kac formalism
leads to more or less e�cient particle algorithms.
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The bootstrap filter

Bootstrap Feynman-Kac formalism:

M
t

(x
t≠1

, dx
t

) = P
t

(x
t≠1

, dx
t

), G
t

(x
t≠1

, x
t

) = f
t

(y
t

|x
t

)

then Q
t

is the filtering distribution, L
t

is the likelihood of y
0:t

, and
so on.
The resulting algorithm is called the boostrap filter, and is
particularly simple to interpret: we sample particles from Markov
transition P

t

(x
t≠1

, dx
t

), and we reweight particles according to how
compatible they are with the data.
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The boostrap filter: algorithm

All operations to be performed for all n œ 1 : N.
At time 0:

(a) Generate Xn

0

≥ P
0

(dx
0

).
(b) Compute wn

0

= f
0

(y
0

|Xn

0

), W n

0

= wn

0

/
q

N

m=1

wm

0

, and
LN

0

= N≠1

q
N

n=1

wn

0

.

Recursively, for t = 1, . . . , T :

(a) Generate ancestor variables An

t

œ 1 : N independently
from M(W 1:N

t≠1

).
(b) Generate Xn

t

≥ P
t

(XA

n

t

t≠1

, dx
t

).
(c) Compute wn

t

= f
t

(y
t

|Xn

t

), W n

t

= wn

t

/
q

N

m=1

wm

t

, and
LN

t

= LN

t≠1

{N≠1

q
N

n=1

wn

t

}.
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The bootstrap filter: output

1
N

Nÿ

n=1

Ï(Xn

t

) approximates E[Ï(X
t

)|Y
0:t≠1

= y
0:t≠1

]

Nÿ

n=1

W n

t

Ï(Xn

t

) approximates E[Ï(X
t

)|Y
0:t

= y
0:t

]

LN

t

approximates p(y
0:t

)
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The bootstrap filter: pros and cons

Pros:

particularly simple
does not require to compute the density X

t

|X
t≠1

: we can apply
it to models with intractable dynamics

Cons:

We simulate particles blindly: if Y
t

|X
t

is very informative, few
particles will get a non-negligible weight.
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The guided PF

Guided Feynman-Kac formalism: M
t

is a user-chosen proposal

kernel such that M
t

(x
t≠1

, dx
t

) dominates P
t

(x
t≠1

, dx
t

), and

G
t

(x
t≠1

, x
t

) = f
t

(y
t

|x
t

)P
t

(x
t≠1

, dx
t

)
M

t

(x
t≠1

, dx
t

)

= f
t

(y
t

|x
t

) p
t

(x
t

|x
t≠1

)
m

t

(x
t

|x
t≠1

)

(assuming in the second line that both kernels admit a density wrt a
common measure). We still have that Q

t

(dx
t

) is the filtering
distribution, and L

t

is the likelihood.
We call the resulting algorithm the guided particle filter, as in
practice we would like to choose M

t

so as to guide particles to
regions of high likelihood.
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The guided PF: choice of Mt (local optimality)

Suppose that (G
s

, M
s

) have been chosen to satisfy (??) for
s Æ t ≠ 1. Among all pairs (M

t

, G
t

) that satisfy (??), the Markov
kernel

Mopt

t

(x
t≠1

, dx
t

) = f
t

(y
t

|x
t

)´
X f (y

t

|x Õ) P
t

(x
t≠1

, dx Õ)P
t

(x
t≠1

, dx
t

)

minimises the variance of the weights, Var
Ë
G

t

(XA

n

t

t≠1

, Xn

t

)
È
.
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Interpretation and discussion of this result

Mopt

t

is simply the law of X
t

given X
t≠1

and Y
t

. In a sense it
is the perfect compromise between the information brought by
P

t

(x
t≠1

, dx
t

) and by f
t

(y
t

|x
t

).
In most practical cases, Mopt

t

is not tractable, hence this result
is mostly indicative (on how to choose M

t

).
Note also that the local optimality criterion is debatable. For
instance, we do not consider the e�ect of future datapoints.
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A first example: stochastic volatility

There, the log-density of X
t

|X
t≠1

, Y
t

is (up to a constant):

≠ 1
2‡2

{x
t

≠ µ ≠ „(x
t≠1

≠ µ)}2 ≠ x
t

2 ≠ e≠x

t

2 y2

t

We can use ex≠x

0 ¥ 1 + (x ≠ x
0

) + (x ≠ x
0

)2/2 to get a Gaussian
approximation.
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A second example: bearings-only tracking

In that case, P
t

(x
t≠1

, dx
t

) imposes deterministic constraints:

X
t

(k) = X
t≠1

(k) + X
t≠1

(k + 2), k = 1, 2

We can choose a M
t

that imposes the same constraints. However,
in this case, we find that

Mopt

t

(x
t≠1

, dx
t

) = P
t

(x
t≠1

, dx
t

).

Discuss.
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Guided particle filter pros and cons

Pro:

may work much better that bootstrap filter when Y
t

|X
t

is
informative (provided we are able to derive a good proposal).

Cons:

requires to be able to compute density p
t

(x
t

|x
t≠1

).
sometimes local optimality criterion is not so sound.
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The auxiliary particle filter

In the auxiliary Feynman-Kac formalism, an extra degree of freedom
is gained by introducing auxiliary function ÷

t

, and set:

G
0

(x
0

) = f
0

(y
0

|x
0

) P
0

(dx
0

)
M

0

(dx
0

)÷
0

(x
0

),

G
t

(x
t≠1

, x
t

) = f
t

(y
t

|x
t

) P
t

(x
t≠1

, dx
t

)
M

t

(x
t≠1

, dx
t

)
÷

t

(x
t

)
÷

t≠1

(x
t≠1

) .

so that
Q

t

(dx
0:t

) Ã P(dx
0:t

|Y
0:t

= y
0:t

)÷
t

(x
t

)

and we recover the filtering distribution by reweighting by 1/÷
t

.
Idea: choose ÷

t

so that G
t

is as constant as possible.
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Output of APF

Let w̃n

t

:= wn

t

/÷
t

(Xn

t

), W̃ n

t

:= w̃n

t

/
q

N

m=1

w̃m

t

, then

1
q

N

m=1

˜

W

m

t

f (y

t

|Xm

t

)

Nÿ

n=1

W̃ n

t

f
t

(y
t

|Xn

t

)Ï(Xn

t

) approx. E[Ï(X
t

)|Y
0:t≠1

= y
0:t≠1

]

Nÿ

n=1

W̃ n

t

Ï(Xn

t

) approx. E[Ï(X
t

)|Y
0:t

= y
0:t

]

LN

t

◊ N≠1

Nÿ

n=1

w̃n

t

approx. p(y
0:t

)
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Local optimality for Mt and ÷t

For a given state-space model, suppose that (G
s

, M
s

) have been
chosen to satisfy (??) for s Æ t ≠ 2, and M

t≠1

has also been chosen.
Among all pairs (M

t

, G
t

) that satisfy (??) and functions ÷
t≠1

, the
Markov kernel

Mopt

t

(x
t≠1

, dx
t

) = f
t

(y
t

|x
t

)´
X f (y

t

|x Õ) P
t

(x
t≠1

, dx Õ)P
t

(x
t≠1

, dx
t

)

and the function

÷opt

t≠1

(x
t≠1

) =
ˆ

X
f (y

t

|x Õ) P
t

(x
t≠1

, dx Õ)

minimise Var
Ë
G

t

(XA

n

t

t≠1

, Xn

t

)/÷
t

(Xn

t

)
È
.
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Interpretation and discussion

We find again that the optimal proposal is the law of X
t

given
X

t≠1

and Y
t

. In addition, the optimal auxiliary function is the
probability density of Y

t

given X
t≠1

.
For this ideal algorithm, we would have

G
t

(x
t≠1

, x
t

) = ÷opt

t

(x
t

);

the density of Y
t+1

given X
t

= x
t

; not constant, but intuitively
less variable than f

t

(y
t

|x
t

) (as in the bootstrap filter).
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Example: stochastic volatility

We use the same ideas as for the guided PF: Taylor expansion of
log-density, then we integrate wrt x

t

.
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APF pros and cons

Pros:

usually gives some extra performance.

Cons:

a bit di�cult to interpret and use;
they are some (contrived) examples where the auxiliary particle
filter actually performs worse than the bootstrap filter.
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Note on the generality of APF

From the previous descriptions, we see that:

the guided PF is a particular instance of the auxiliary particle
filter (take ÷

t

= 1);
the bootstrap filter is a particular instance of the guided
PF(take M

t

= P
t

).

This is why some recent papers focus on the APF.
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When to resample?
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Resampling or not resampling, that is the question

For the moment, we resample every time. When we introduced
resampling, we explained that the decision to resample was based on
a trade-o�: adding noise at time t ≠ 1, while hopefully reducing
noise at time t (assuming that {X

t

} forgets its past).

We do know that never resample would be a bad idea: consider
M

t

(x
t≠1

, dx
t

) defined such that the X
t

are IID N (0, 1),
G

t

(x
t

) = 1(x
t

> 0). (More generally, recall the curse of
dimensionality of importance sampling.)
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The ESS recipe

Trigger the resampling step whenever the variability of the weights
is too large, as measured by e.g. the ESS (e�ective sample size):

ESS(W 1:N

t

) := 1
q

N

n=1

(W n

t

)2

= {
q

N

n=1

w
t

(Xn)}2

q
N

n=1

w
t

(Xn)2

.

Recall that ESS(W 1:N

t

) œ [1, N], and that if k weights equal one,
and N ≠ k weights equal zero, then ESS(W 1:N

t

) = k.
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PF with adaptive resampling

(Same operations at t = 0.)
Recursively, for t = 1, . . . , T :

(a) If ESS(W 1:N

t≠1

) < “N
generate ancestor variables A1:N

t≠1

from resampling
distribution RS(W 1:N

t≠1

), and set Ŵ n

t≠1

= W A

n

t

t≠1

;
Else (no resampling)
set An

t≠1

= n and Ŵ n

t≠1

= 1/N
(b) Generate Xn

t

≥ M
t

(XA

n

t

t≠1

, dx
t

).
(c) Compute wn

t

= (NŴ n

t≠1

) ◊ G
t

(XA

n

t

t≠1

, Xn

t

),
LN

t

= LN

t≠1

{N≠1

q
N

n=1

wn

t

}, W n

t

= wn

t

/
q

N

m=1

wm

t

.
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