Variance reduction

Art B. Owen
Stanford University

Adapted from "Monte Carlo theory, methods and examples" http://statweb.stanford.edu/~owen/mc/

Variance reduction

Probability is based on a random outcome $\omega \in \Omega$
with some sets $E \subset \Omega$,
and their probabilities $\mathbb{P}(E) \equiv \mathbb{P}(\omega \in E)$
In Monte Carlo, we control ω
Suppose that

$$
\begin{aligned}
& \mu=\mathbb{E}\left(f_{0}(\boldsymbol{x})\right) \text { for } \boldsymbol{x} \sim p_{0}, \text { and } \\
& \mu=\mathbb{E}\left(f_{1}(\boldsymbol{x})\right) \text { for } \boldsymbol{x} \sim p_{1}
\end{aligned}
$$

Then we can work with either of those.

Outline

1) Antithetic sampling
2) Stratification
3) Control variates
4) Common random variables

Efficiency

Method	Variance	Cost
Old	σ_{0}^{2} / n_{0}	$n_{0} c_{0}$
New	σ_{1}^{2} / n_{1}	$n_{1} c_{1}$

To get $\operatorname{Var}(\hat{\mu})=\tau^{2}$ we need $n_{j}=\sigma_{j}^{2} / \tau^{2}$.
That will cost $n_{j} c_{j}$.
The relative efficiency of the new method is

$$
\frac{\text { old cost }}{\text { new cost }}=\frac{c_{0} \sigma_{0}^{2} / \tau^{2}}{c_{1} \sigma_{1}^{2} / \tau^{2}}=\frac{\sigma_{0}^{2}}{\sigma_{1}^{2}} \times \frac{c_{0}}{c_{1}}
$$

Does not depend on τ^{2} or n.

Variance reduction

Addresses the first factor $\sigma_{0}^{2} / \sigma_{1}^{2}$.
Keep an eye on the second factor c_{0} / c_{1}.
Also increasing σ_{j}^{2} while lowering c_{j} could pay
How much reduction is 'worth it'?
It depends.
A 10\% improvement might not be worth the nuisance, unless the task is taking months of CPU [e.g., graphical rendering]

Reducing cost from 1 second to 0.01 seconds
Only saves you 0.99 seconds
but might allow you to embed your algorithm inside a loop
Simplicity has great value, though it is hard to quantify.

Antithetic sampling

Suppose that $f(x)$ is increasing over $0 \leqslant x \leqslant 1$.
If x_{i} is large then so is $f\left(x_{i}\right)$.
Antithetic sampling looks also at $f\left(1-x_{i}\right)$ to balance it out.

Antithetic estimator

$$
\hat{\mu}_{\mathrm{anti}}=\frac{1}{n / 2} \sum_{i=1}^{n / 2} \frac{f\left(\boldsymbol{x}_{i}\right)+f\left(\tilde{\boldsymbol{x}}_{i}\right)}{2}=\frac{1}{n} \sum_{i=1}^{n / 2}\left(f\left(\boldsymbol{x}_{i}\right)+f\left(\tilde{\boldsymbol{x}}_{i}\right)\right)
$$

More generally

For $\mu=\mathbb{E}(f(\boldsymbol{X}))$ for $\boldsymbol{X} \sim p$, suppose that

1) $\tilde{\boldsymbol{X}} \sim p$, and
2) $\tilde{\tilde{\boldsymbol{X}}}=\boldsymbol{X}$,
like $\tilde{x}=1-x$ does for $x \sim \mathbf{U}(0,1)$.

Antithetics

$$
\tilde{\boldsymbol{x}}=1-\boldsymbol{x}, \boldsymbol{x} \in[0,1]^{d} \quad \tilde{S}(t)=-S(t), \quad 0 \leqslant t \leqslant 1
$$

Some samples and antithetic counterparts

Antithetic variance

After a little algebra

$$
\begin{gathered}
\operatorname{Var}\left(\hat{\mu}_{\text {anti }}\right)=\frac{\sigma^{2}}{n}(1+\rho), \quad \rho=\operatorname{Corr}(f(\boldsymbol{X}), f(\tilde{\boldsymbol{X}})) \\
\text { Because }-1 \leqslant \rho \leqslant 1 \\
0 \leqslant \frac{\operatorname{Var}\left(\hat{\mu}_{\text {anti }}\right)}{\operatorname{Var}(\hat{\mu})} \leqslant 2
\end{gathered}
$$

Worst case: we double σ^{2}.
Sometimes: lots of work to generate \boldsymbol{x} and only a little for $\tilde{\boldsymbol{x}}$.

Odd and even functions

$$
\begin{aligned}
& f(\boldsymbol{x})=f_{\mathrm{E}}(\boldsymbol{x})+f_{\mathrm{O}}(\boldsymbol{x}) \\
& f_{\mathrm{E}}(\boldsymbol{x}) \equiv \frac{1}{2}(f(\boldsymbol{x})+f(\tilde{\boldsymbol{x}})) \\
& f_{\mathrm{O}}(\boldsymbol{x}) \equiv \frac{1}{2}(f(\boldsymbol{x})-f(\tilde{\boldsymbol{x}}))
\end{aligned} \sigma_{\mathrm{E}}^{2}=\operatorname{Var}\left(f_{\mathrm{E}}(\boldsymbol{X})\right)
$$

After more algebra

$$
\binom{\operatorname{Var}(\hat{\mu})}{\operatorname{Var}\left(\hat{\mu}_{\text {anti }}\right)}=\frac{1}{n}\left(\begin{array}{ll}
1 & 1 \\
2 & 0
\end{array}\right)\binom{\sigma_{\mathrm{E}}^{2}}{\sigma_{\mathrm{O}}^{2}}
$$

Antithetics remove the odd component but double the even one.
We like it for odd f.
Exercise: $\rho=\left(\sigma_{\mathrm{E}}^{2}-\sigma_{\mathrm{O}}^{2}\right) /\left(\sigma_{\mathrm{E}}^{2}+\sigma_{\mathrm{O}}^{2}\right)$

Expected log return

We invest $\lambda_{k} \geqslant 0$ in stock k with $\sum_{k} \lambda_{k}=1$.
Stock k grows by $e^{X_{k}}$ per day.
Our fortune grows like $\exp \left(N \mu+o_{p}(N)\right)$, where

$$
\mu(\lambda)=\mathbb{E}\left(\log \left(\sum_{k} \lambda_{k} e^{X_{k}}\right)\right)
$$

Example from notes
K stocks, $\lambda_{k}=1 / K, X_{k} \sim \mathcal{N}\left(0.001,0.03^{2}\right)$
$t_{(4)}$ copula with $\Sigma=0.3 \times \mathbf{1 1}^{\top}+0.7 \times I$

Results from notes

Stocks	Period	Correlation	Reduction	Estimate	Uncertainty
20	week	-0.99957	2320.0	0.00130	6.35×10^{-6}
500	week	-0.99951	2030.0	0.00132	6.49×10^{-6}
20	year	-0.97813	45.7	0.06752	3.27×10^{-4}
500	year	-0.99512	40.2	0.06850	3.33×10^{-4}

About antithetics

- The best way to see if it helps is to do it.
- Partial antithetics, flipping just some components of \boldsymbol{x} also works.

Stratification

$$
\text { Partition } \quad \mathcal{D}=\cup_{j=1}^{J} \mathcal{D}_{j}, \quad \text { Sample } \quad \boldsymbol{X}_{i j} \in \mathcal{D}_{j}, \quad i=1, \ldots, n_{j}
$$

Some stratified samples

Stratification

Let $p_{j}(\boldsymbol{x})=p\left(\boldsymbol{x} \mid \boldsymbol{x} \in \mathcal{D}_{j}\right)$.
Get $\boldsymbol{x}_{i j}$ from p_{j}
Moments

$$
\begin{aligned}
\hat{\mu}_{\text {strat }} & =\sum_{j=1}^{J} \omega_{j} \times \frac{1}{n_{j}} \sum_{i=1}^{n_{j}} f\left(\boldsymbol{x}_{i j}\right), \quad \omega_{j}=\mathbb{P}\left(\boldsymbol{X} \in \mathcal{D}_{j}\right) \\
\mathbb{E}\left(\hat{\mu}_{\text {strat }}\right) & =\sum_{j=1}^{d} \mu_{j}=\mu \\
\operatorname{Var}\left(\hat{\mu}_{\text {strat }}\right) & =\sum_{j=1}^{d} \omega_{j}^{2} \times \frac{\sigma_{j}^{2}}{n_{j}}
\end{aligned}
$$

For stratum means μ_{j} and variances σ_{j}^{2}.

Within and between

$$
\begin{aligned}
f(\boldsymbol{x}) & =f_{W}(\boldsymbol{x})+f_{B}(\boldsymbol{x})=\underbrace{\mu_{j(\boldsymbol{x})}}_{\text {within }}+\underbrace{f(\boldsymbol{x})-\mu_{j(\boldsymbol{x})}}_{\text {between }} \\
\sigma_{B}^{2} & =\sum_{j=1}^{J} \omega_{j}\left(\mu_{j}-\mu\right)^{2} \\
\sigma_{W}^{2} & =\sum_{j=1}^{J} \omega_{j}^{2} \sigma_{j}^{2}
\end{aligned}
$$

Proportional sampling: $n_{j} \propto \omega_{j}$
After some algebra

$$
\binom{\operatorname{Var}(\hat{\mu})}{\operatorname{Var}\left(\hat{\mu}_{\text {strat }}\right)}=\frac{1}{n}\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)\binom{\sigma_{W}^{2}}{\sigma_{B}^{2}}
$$

Good strata give large σ_{B}^{2}.

Stratified process

Make final points representative.
Fill in conditionally.

Stratified Brownian motion

Exercises

Post stratification: What if we sample \boldsymbol{x}_{i} IID and then group them into strata afterwards?

What if we choose the strata after seeing the \boldsymbol{x}_{i} ?

Non proportional sampling: What if n_{j} not proportional to ω_{j} ?

d dimensional stratification

Can get $\operatorname{Var}\left(\hat{\mu}_{\text {strat }}\right)=O\left(n^{-1-2 / d}\right)$, Or $O\left(n^{-1-4 / d}\right)$ with antithetics, and some smoothness.

Grid based stratification

Original

Latin hypercube sampling

Latin hypercube sample

- Stratify each dimension
- $x_{i j}=\left(\pi_{j}(i)-U_{i j}\right) / n$
- π_{j} permutes $1,2, \ldots, n$
- $U_{i j} \sim \mathbf{U}(0,1)$
- Can have $d>n$

LHS ctd

For any $f \in L^{2}[0,1]^{d}$

$$
\operatorname{Var}\left(\hat{\mu}_{\mathrm{LHS}}\right) \leqslant \frac{\sigma^{2}}{n-1}
$$

So it is never much worse than plain MC.
ANOVA of $[0,1]^{d}$
Hoeffding (1948), Sobol' (1967)

$$
f(\boldsymbol{x})=\mu+f_{1}\left(x_{1}\right)+\cdots+f_{d}\left(x_{d}\right)+f_{1,2}\left(x_{1}, x_{2}\right)+\text { et cetera }
$$

LHS gets the additive part at $o_{p}\left(n^{-1 / 2}\right)$
the rest at $O_{p}\left(n^{-1 / 2}\right)$
Stein (1987)
Orthogonal array sampling
We can balance bivariate margins too.
Ulitimate balance from quasi-Monte Carlo.

Control variates

We want $\mu=\int f(\boldsymbol{x}) p(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}$
and for $f \approx h$
we know $\theta=\int h(\boldsymbol{x}) p(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}$

$$
\begin{gathered}
\text { Difference estimator } \\
\hat{\mu}_{\mathrm{diff}}=\theta+\frac{1}{n} \sum_{i=1}^{n}\left(f\left(\boldsymbol{x}_{i}\right)-h\left(\boldsymbol{x}_{i}\right)\right) \equiv \theta+\hat{\mu}-\hat{\theta} \\
\text { Ratio estimator } \\
\hat{\mu}=\theta \times \frac{\hat{\mu}}{\hat{\theta}} \\
\text { Product estimator }
\end{gathered}
$$

$$
\hat{\mu}=\frac{\hat{\mu} \times \hat{\theta}}{\theta}
$$

These can all help but there's something better.

Regression estimator

$$
\begin{aligned}
\hat{\mu}_{\beta} & =\frac{1}{n} \sum_{i=1}^{n}\left(f\left(\boldsymbol{x}_{i}\right)-\beta h\left(\boldsymbol{x}_{i}\right)\right)+\beta \theta \\
\mathbb{E}\left(\hat{\mu}_{\beta}\right) & =\mu, \quad \text { for any } \beta
\end{aligned}
$$

The best β

$$
\operatorname{Var}\left(\hat{\mu}_{\beta}\right)=\frac{1}{n}\left(\operatorname{Var}(f(\boldsymbol{X}))-2 \beta \operatorname{Cov}(f(\boldsymbol{X}), h(\boldsymbol{X}))+\beta^{2} \operatorname{Var}(h(\boldsymbol{X}))\right)
$$

So it is a least squares problem. Optimal β yields

$$
\rho \equiv \operatorname{Corr}(f(\boldsymbol{X}), h(\boldsymbol{X}))
$$

Via regression

Given $\int p(\boldsymbol{x}) h_{j}(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}=\theta_{j}$ for $j=1, \ldots, J$

$$
\begin{aligned}
\hat{\mu}_{\beta} & =\frac{1}{n} \sum_{i=1}^{n}\left(f\left(\boldsymbol{x}_{i}\right)-\beta^{\top} \boldsymbol{h}\left(\boldsymbol{x}_{i}\right)\right)+\beta^{\top} \theta \\
\hat{\beta} & =\text { by least squares }
\end{aligned}
$$

Short cut

Regress $Y_{i} \equiv f\left(\boldsymbol{x}_{i}\right)$ on $X_{i j} \equiv h_{j}\left(\boldsymbol{x}_{i}\right)-\theta_{j}$
Then $\hat{\mu}_{\hat{\beta}}$ is the intercept. You also get a standard error.
Estimated β
Our $\hat{\beta}$ is random, not fixed.
It's usually ok: $\hat{\beta}-\beta_{\mathrm{opt}}=O_{p}\left(n^{-1 / 2}\right)$.
For $J \ll n$.

Control variates

Maybe h has closed form and f is a 'tweak'
The h_{j} can be polynomials.
The h_{j} can be densities p_{j}.
Don't forget the additional cost of computing h_{j}.
Multiple everything

1) Multiple regression for control variates
2) Latin hypercube sampling is multiple stratification
3) Multiple importance sampling (coming later)
4) There is also multiple antithetic sampling

Moment matching

We get \boldsymbol{x}_{i} but we know $\theta \equiv \mathbb{E}(\boldsymbol{X})$.
Adjust them: $\quad \tilde{\boldsymbol{x}}_{i}=\boldsymbol{x}_{i}+\theta-\overline{\boldsymbol{x}}$.
Or we know $\Sigma \equiv \mathbb{E}\left((\boldsymbol{X}-\theta)(\boldsymbol{X}-\theta)^{\top}\right)$.
Rescale them
Boyle et al (1997) show it is like control variates with perhaps sub-optimal β.

Reweighting

Use $\sum_{i} w_{i} f\left(\boldsymbol{x}_{i}\right)$ where

$$
\begin{equation*}
\sum_{i=1}^{n} w_{i} \boldsymbol{h}\left(\boldsymbol{x}_{i}\right)=\theta, \quad \text { and } \quad \sum_{i=1}^{n} w_{i}=1 \tag{*}
\end{equation*}
$$

The regression estimator already does this
but it can have $w_{i}<0$
If we want positive weights
we can use empirical likelihood maximize $\prod_{i} w_{i}$ subject to $(*)$

Conditioning

Sometimes we can integrate out part of the problem.

$$
\begin{gathered}
\int_{0}^{1} \int_{0}^{1} e^{g(x) y} \mathrm{~d} y \mathrm{~d} x=\int_{0}^{1} h(x) \mathrm{d} x, \quad h(x)=\left(e^{g(x)}-1\right) / g(x) \\
\text { For } h(\boldsymbol{x})=\mathbb{E}(f(\boldsymbol{x}, \boldsymbol{Y}) \mid \boldsymbol{X}=\boldsymbol{x}) \\
\hat{\mu}=\frac{1}{n} \sum_{i=1}^{n} f\left(\boldsymbol{x}_{i}, \boldsymbol{y}_{i}\right) \text { vs } \hat{\mu}_{\text {cond }}=\frac{1}{n} \sum_{i=1}^{n} h\left(\boldsymbol{x}_{i}\right) \\
\operatorname{Var}\left(\hat{\mu}_{\text {cond }}\right)=\frac{1}{n} \operatorname{Var}(f(\boldsymbol{X}, \boldsymbol{Y}) \mid \boldsymbol{X}) \leqslant \frac{1}{n} \operatorname{Var}(f(\boldsymbol{X}, \boldsymbol{Y}))=\operatorname{Var}(\hat{\mu})
\end{gathered}
$$

But check
whether h costs more than f.

Rao-Blackwell theorem

In statistical theory:
If we can find any unbiased estimate $\hat{\theta}$ of θ, and a complete sufficient statistics S

Then $\mathbb{E}(\hat{\theta} \mid S)$ is a minimum variance unbiased estimate of θ.

Rao-Blackwellization

In Monte Carlo conditioning is sometimes called Rao-Blackwellization.
There is usually no sufficient statistic.

Example: roulette Wilson (1965)

Number	Wheel 1	Wheel 2
00	2127	1288
1	2082	1234
36	2221	1251
24	2192	$1164 \mathbf{w}$
3	2008	$1438 \mathbf{b}$
15	2035	1264
17	2044	1326
32	2133	1302
20	$1912 \mathbf{w}$	1227
7	1999	1192
11	1974	1278
18	2191	1392
31	2192	1306
19	$2284 \mathbf{b}$	1330
8	2136	1266
12	2110	1224
\cdots	\cdots	\cdots
10	2121	1320
27	2158	1336
Avg	2100	1279.16

Hole 19

Hole 19 is the best on wheel 1 . Seems to pay 2284/2100 times average.
That would be a long term win.

What is $\mathbb{P}(19$ is best $)$?

If counts C_{j} are $\operatorname{Mult}(N, \boldsymbol{p})$ and prior $\boldsymbol{p} \sim \operatorname{Dir}(1, \ldots, 1)$ then $\boldsymbol{p} \mid$ counts $\sim \operatorname{Dir}\left(\cdots, 1+C_{j}, \cdots\right)$

$$
\mathbb{P}\left(p_{19}=\max _{1 \leqslant j \leqslant 38} p_{j}\right)
$$

Dirichiet vianornnailzeoc sann a

$$
\begin{gathered}
\text { Recall } p_{j} \stackrel{\mathrm{~d}}{=} \frac{X_{j}}{\sum_{k} X_{k}} \quad X_{j} \sim \operatorname{Gam}\left(1+C_{j}\right) \\
\mathbb{P}\left(p_{19} \text { best } \mid X_{19}=x_{19}\right)=\prod_{k \neq 19} \mathbb{P}\left(X_{k} \leqslant x_{19}\right) \equiv h\left(x_{19}\right)
\end{gathered}
$$

So we sample $X_{19} \sim \operatorname{Gam}\left(C_{19}+1\right)$ and average $h\left(X_{19}\right)$.

Exercises

Find this value
Find $\mathbb{P}(19$ is second best $)$
Find \mathbb{P} (19 pays)
Empirical Bayes

Common variates

Now $f \approx g$, and we want $\Delta=\mathbb{E}(f(\boldsymbol{X})-g(\boldsymbol{X}))$. So use

$$
\hat{\Delta}=\frac{1}{n} \sum_{i=1}^{n} f\left(\boldsymbol{x}_{i}\right)-g\left(\boldsymbol{x}_{i}\right)
$$

Intuitively better than

$$
\hat{\Delta}=\frac{1}{n} \sum_{i=1}^{n} f\left(\boldsymbol{x}_{i}\right)-\sum_{i=n+1}^{2 n} g\left(\boldsymbol{x}_{i}\right)
$$

Who would even do that?
Really better so long as $\operatorname{Corr}(f(\boldsymbol{X}), g(\boldsymbol{X}))>0$.
Especially if cost $\boldsymbol{x} \sim p$ is large.

couniling

Same f, different p :

$$
\text { Now } \Delta=\mathbb{E}(f(\boldsymbol{X}) \mid \boldsymbol{X} \sim p)-\mathbb{E}(f(\boldsymbol{X}) \mid \boldsymbol{X} \sim q)
$$

$$
\hat{\Delta}=\frac{1}{n} \sum_{i=1}^{n} f\left(\psi_{p}\left(\boldsymbol{u}_{i}\right)\right)-f\left(\psi_{q}\left(\boldsymbol{u}_{i}\right)\right)
$$

Here $\psi_{p}(\boldsymbol{U}) \sim p$ and $\psi_{q}(\boldsymbol{U}) \sim q$

Parametric p

$$
\boldsymbol{X}=\psi_{\theta}(\boldsymbol{U}) \sim p(\cdot ; \theta) \quad \theta \in \Theta
$$

Called the "reparametrization trick" in machine learning.
It supports differentation wrt θ.

A space of $f s$

From a parametric function

$$
\begin{aligned}
\mu(\theta) & =\int h(\boldsymbol{x}, \theta) p(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}, \quad \theta \in \Theta \subset \mathbb{R}^{d} \\
\hat{\mu}\left(\theta_{j}\right) & =\frac{1}{n} \sum_{i=1}^{n} h\left(\boldsymbol{x}_{i}, \theta_{j}\right), \quad j=1, \ldots, J
\end{aligned}
$$

Double loop over i and j.
If j is the outer loop, reset your random seed!

Content uniformity trials

Will a batch of medications meet their specified doses?
Complicated multistage sampling rule from regulator.
Target potency 100. Suppose $X \sim \mathcal{N}\left(100, \sigma^{2}\right)$.
Estimated probability to pass content uniformity test

Vary μ and σ

Contours of acceptance probability

Order statistics

Product fails when r out of k components have failed.
Component times $X_{j} \stackrel{\text { iid }}{\sim} F$
Mean failure time
Sample $X_{i j} \stackrel{\text { iid }}{\sim} F, \quad i=1, \ldots, n, \quad j=1, \ldots, k$
Sort $X_{i(1)} \leqslant X_{i(2)} \leqslant \cdots \leqslant X_{i(k)}$
Average the $X_{i(r)}$

Via inversion

If $u_{1}, \ldots, u_{k} \stackrel{\text { iid }}{\sim} \mathbf{U}(0,1)$
then $u_{(r)} \sim \operatorname{Beta}(r, k-r+1)$
Generate $v_{i} \stackrel{\text { iid }}{\sim} \operatorname{Beta}(r, k-r+1)$
Average $F^{-1}\left(v_{i}\right)$.

Control variates plus

Plus antithetics

Antithetic sampling for f with a control variate h.
It helps if f_{E} is correlated with h_{E}
Correlation from the 'odd parts' does no good.

Plus stratification

It helps if f and h are correlated 'within strata'.

Plus LHS

It helps if the "nonadditive parts" of f and h are correlated.
You can't subtract the same source of variance twice.

Thanks

- Lecturers: Nicolas Chopin, Mark Huber, Jeffrey Rosenthal
- Guest speakers: Michael Giles, Gareth Roberts
- The London Mathematical Society: Elizabeth Fisher, lain Stewart
- CRISM \& The University of Warwick, Statistics
- Sponsors: Amazon, Google
- Partners: ISBA, MCQMC, BAYSM
- Poster: Talissa Gasser, Hidamari Design
- NSF: DMS-1407397 \& DMS-1521145
- Planners: Murray Pollock, Christian Robert, Gareth Roberts
- Support: Paula Matthews, Murray Pollock, Shahin Tavakoli

