Variance reduction

Art B. Owen Stanford University

Adapted from "Monte Carlo theory, methods and examples" http://statweb.stanford.edu/~owen/mc/

1

Variance reduction

Probability is based on a random outcome $\omega \in \Omega$ with some sets $E \subset \Omega$, and their probabilities $\mathbb{P}(E) \equiv \mathbb{P}(\omega \in E)$

In Monte Carlo, we control ω

Suppose that

 $\mu = \mathbb{E}(f_0(m{x}))$ for $m{x} \sim p_0$, and $\mu = \mathbb{E}(f_1(m{x}))$ for $m{x} \sim p_1$

Then we can work with **either** of those.

Outline

- 1) Antithetic sampling
- 2) Stratification
- 3) Control variates
- 4) Common random variables

Efficiency

Method	Variance	Cost
Old	σ_0^2/n_0	$n_0 c_0$
New	σ_1^2/n_1	$n_1 c_1$

To get
$$\operatorname{Var}(\hat{\mu}) = \tau^2$$
 we need $n_j = \sigma_j^2/\tau^2$.
That will cost $n_j c_j$.

The relative efficiency of the new method is

$$\frac{\operatorname{old cost}}{\operatorname{new cost}} = \frac{c_0 \sigma_0^2 / \tau^2}{c_1 \sigma_1^2 / \tau^2} = \frac{\sigma_0^2}{\sigma_1^2} \times \frac{c_0}{c_1}$$

Does not depend on τ^2 or n .

Variance reduction

Addresses the first factor σ_0^2/σ_1^2 . Keep an eye on the second factor c_0/c_1 . Also increasing σ_j^2 while lowering c_j could pay

How much reduction is 'worth it'?

It depends.

A 10% improvement might not be worth the nuisance, unless the task is taking months of CPU [e.g., graphical rendering]

Reducing cost from 1 second to 0.01 seconds

Only saves you 0.99 seconds

but might allow you to embed your algorithm inside a loop

Simplicity has great value, though it is hard to quantify.

Antithetic sampling

Suppose that f(x) is increasing over $0 \leq x \leq 1$.

If x_i is large then so is $f(x_i)$.

Antithetic sampling looks also at $f(1 - x_i)$ to balance it out.

LMS Invited Lecture Series, CRISM Summer School 2018

More generally

For $\mu = \mathbb{E}(f(X))$ for $X \sim p$, suppose that 1) $\tilde{X} \sim p$, and $\tilde{\tilde{z}}_{T} = T$

2) $\tilde{ ilde{X}} = X$,

like $\tilde{x} = 1 - x$ does for $x \sim \mathbf{U}(0, 1)$.

Antithetics

 $\tilde{\boldsymbol{x}} = 1 - \boldsymbol{x}, \, \boldsymbol{x} \in [0, 1]^d$ $\tilde{S}(t) = -S(t), \quad 0 \leqslant t \leqslant 1$

LMS Invited Lecture Series, CRISM Summer School 2018

Antithetic variance

After a little algebra

$$\begin{aligned} \operatorname{Var}(\hat{\mu}_{\mathrm{anti}}) &= \frac{\sigma^2}{n} (1+\rho), \quad \rho = \operatorname{Corr}(f(\boldsymbol{X}), f(\tilde{\boldsymbol{X}})) \\ & \mathbf{Because} - 1 \leqslant \rho \leqslant 1 \\ & 0 \leqslant \frac{\operatorname{Var}(\hat{\mu}_{\mathrm{anti}})}{\operatorname{Var}(\hat{\mu})} \leqslant 2 \end{aligned}$$

Worst case: we double σ^2 .

Sometimes: lots of work to generate $m{x}$ and only a little for $ilde{m{x}}$.

Odd and even functions

$$egin{aligned} f(m{x}) &= f_{\mathrm{E}}(m{x}) + f_{\mathrm{O}}(m{x}) \ & f_{\mathrm{E}}(m{x}) &\equiv rac{1}{2}ig(f(m{x}) + f(ilde{m{x}})ig) & \sigma_{\mathrm{E}}^2 &= \mathrm{Var}(f_{\mathrm{E}}(m{X})) \ & f_{\mathrm{O}}(m{x}) &\equiv rac{1}{2}ig(f(m{x}) - f(ilde{m{x}})ig) & \sigma_{\mathrm{O}}^2 &= \mathrm{Var}(f_{\mathrm{O}}(m{X})) \end{aligned}$$

After more algebra

$$\begin{pmatrix} \operatorname{Var}(\hat{\mu}) \\ \operatorname{Var}(\hat{\mu}_{\mathrm{anti}}) \end{pmatrix} = \frac{1}{n} \begin{pmatrix} 1 & 1 \\ 2 & 0 \end{pmatrix} \begin{pmatrix} \sigma_{\mathrm{E}}^2 \\ \sigma_{\mathrm{O}}^2 \end{pmatrix}$$

Antithetics remove the odd component but double the even one. We like it for odd f.

Exercise:
$$ho = (\sigma_{
m E}^2 - \sigma_{
m O}^2)/(\sigma_{
m E}^2 + \sigma_{
m O}^2)$$

Expected log return

We invest $\lambda_k \ge 0$ in stock k with $\sum_k \lambda_k = 1$. Stock k grows by e^{X_k} per day.

Our fortune grows like $\exp(N\mu+o_p(N)),$ where

$$\mu(\lambda) = \mathbb{E}\left(\log\left(\sum_{k} \lambda_{k} e^{X_{k}}\right)\right)$$

Example from notes

K stocks, $\lambda_k = 1/K$, $X_k \sim \mathcal{N}(0.001, 0.03^2)$ $t_{(4)}$ copula with $\Sigma = 0.3 \times \mathbf{11}^{\mathsf{T}} + 0.7 \times I$

Results from notes

Stocks	Period	Correlation	Reduction	Estimate	Uncertainty
20	week	-0.99957	2320.0	0.00130	$6.35 imes 10^{-6}$
500	week	-0.99951	2030.0	0.00132	6.49×10^{-6}
20	year	-0.97813	45.7	0.06752	3.27×10^{-4}
500	year	-0.99512	40.2	0.06850	3.33×10^{-4}

About antithetics

- The best way to see if it helps is to do it.
- Partial antithetics, flipping just some components of x also works.

5 points per subsquare

or 3 points per 'ring'.

Stratification

Let $p_j(\boldsymbol{x}) = p(\boldsymbol{x} \mid \boldsymbol{x} \in \mathcal{D}_j).$ Get \boldsymbol{x}_{ij} from p_j

Moments

$$\hat{\mu}_{\text{strat}} = \sum_{j=1}^{J} \omega_j \times \frac{1}{n_j} \sum_{i=1}^{n_j} f(\boldsymbol{x}_{ij}), \qquad \omega_j = \mathbb{P}(\boldsymbol{X} \in \mathcal{D}_j)$$
$$\mathbb{E}(\hat{\mu}_{\text{strat}}) = \sum_{j=1}^{d} \mu_j = \mu$$
$$\operatorname{Var}(\hat{\mu}_{\text{strat}}) = \sum_{j=1}^{d} \omega_j^2 \times \frac{\sigma_j^2}{n_j}$$

For stratum means μ_j and variances σ_j^2 .

Within and between

$$f(\boldsymbol{x}) = f_W(\boldsymbol{x}) + f_B(\boldsymbol{x}) = \underbrace{\mu_{j(\boldsymbol{x})}}_{\text{within}} + \underbrace{f(\boldsymbol{x}) - \mu_{j(\boldsymbol{x})}}_{\text{hotomore}}$$

between

$$\sigma_B^2 = \sum_{j=1}^J \omega_j (\mu_j - \mu)^2$$
$$\sigma_W^2 = \sum_{j=1}^J \omega_j^2 \sigma_j^2$$

Proportional sampling: $n_j \propto \omega_j$

After some algebra

$$\begin{pmatrix} \operatorname{Var}(\hat{\mu}) \\ \operatorname{Var}(\hat{\mu}_{\mathrm{strat}}) \end{pmatrix} = \frac{1}{n} \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \sigma_W^2 \\ \sigma_B^2 \end{pmatrix}$$

Good strata give large σ_B^2 .

Stratified process

Make final points representative.

Fill in conditionally.

Stratified Brownian motion

LMS Invited Lecture Series, CRISM Summer School 2018

Exercises

Post stratification: What if we sample x_i IID and then group them into strata afterwards?

What if we choose the strata after seeing the x_i ?

Non proportional sampling: What if n_j **not** proportional to ω_j ?

d dimensional stratification

Can get $\operatorname{Var}(\hat{\mu}_{\mathrm{strat}}) = O(n^{-1-2/d})$, Or $O(n^{-1-4/d})$ with antithetics,

and some smoothness.

Grid based stratification

Latin hypercube sampling

• Stratify each dimension

•
$$x_{ij} = (\pi_j(i) - U_{ij})/n$$

- π_j permutes $1, 2, \ldots, n$
- $U_{ij} \sim \mathbf{U}(0,1)$
- Can have d > n

LHS ctd

For any $f \in L^2[0,1]^d$

$$\operatorname{Var}(\hat{\mu}_{\mathsf{LHS}}) \leqslant rac{\sigma^2}{n-1}$$

So it is never much worse than plain MC.

ANOVA of $[0,1]^d$

Hoeffding (1948), Sobol' (1967)

$$f(\boldsymbol{x}) = \mu + f_1(x_1) + \dots + f_d(x_d) + f_{1,2}(x_1, x_2) +$$
et cetera

LHS gets the additive part at $o_p(n^{-1/2})$ the rest at $O_p(n^{-1/2})$ Stein (1987)

Orthogonal array sampling

We can balance bivariate margins too.

Ulitimate balance from quasi-Monte Carlo.

Control variates

We want $\mu = \int f(x) p(x) \, \mathrm{d}x$ and for $f \approx h$ we know $\theta = \int h(x) p(x) \, \mathrm{d}x$

Difference estimator

$$\hat{\mu}_{\text{diff}} = \theta + \frac{1}{n} \sum_{i=1}^{n} (f(\boldsymbol{x}_i) - h(\boldsymbol{x}_i)) \equiv \theta + \hat{\mu} - \hat{\theta}$$

Ratio estimator

$$\hat{\mu} = \theta \times \frac{\hat{\mu}}{\hat{\theta}}$$

Product estimator

$$\hat{\mu} = \frac{\hat{\mu} \times \hat{\theta}}{\theta}$$

These can all help but there's something better.

Regression estimator

$$\begin{split} \hat{\mu}_{\beta} &= \frac{1}{n} \sum_{i=1}^{n} \big(f(\boldsymbol{x}_{i}) - \beta h(\boldsymbol{x}_{i}) \big) + \beta \theta \\ \mathbb{E}(\hat{\mu}_{\beta}) &= \mu, \quad \text{for any } \beta \end{split}$$

The best β

$$\operatorname{Var}(\hat{\mu}_{\beta}) = \frac{1}{n} \Big(\operatorname{Var}(f(\boldsymbol{X})) - 2\beta \operatorname{Cov}(f(\boldsymbol{X}), h(\boldsymbol{X})) + \beta^2 \operatorname{Var}(h(\boldsymbol{X})) \Big)$$

So it is a least squares problem. Optimal β yields

$$\operatorname{Var}(\hat{\mu}_{\beta_{\text{opt}}}) = \frac{1}{n}\sigma^2(1-\rho^2)$$

 $\rho \equiv \operatorname{Corr}(f(\boldsymbol{X}), h(\boldsymbol{X}))$

Via regression

Given $\int p(\boldsymbol{x})h_j(\boldsymbol{x}) \,\mathrm{d}\boldsymbol{x} = \theta_j$ for $j = 1, \dots, J$

$$\hat{\mu}_{eta} = rac{1}{n} \sum_{i=1}^{n} (f(m{x}_i) - eta^{\mathsf{T}} m{h}(m{x}_i)) + eta^{\mathsf{T}} heta$$
 $\hat{eta} =$ by least squares

Short cut

Regress
$$Y_i \equiv f(x_i)$$
 on $X_{ij} \equiv h_j(x_i) - \theta_j$
Then $\hat{\mu}_{\hat{\beta}}$ is the **intercept**. You also get a standard error.

Estimated β

Our $\hat{\beta}$ is random, not fixed. It's usually ok: $\hat{\beta} - \beta_{\rm opt} = O_p(n^{-1/2})$. For $J \ll n$.

Control variates

Maybe h has closed form and f is a 'tweak' $% f(x) = h^{2} h^$

The h_j can be polynomials.

The h_j can be densities p_j .

Don't forget the additional cost of computing h_j .

Multiple everything

- 1) Multiple regression for control variates
- 2) Latin hypercube sampling is multiple stratification
- 3) Multiple importance sampling (coming later)
- 4) There is also multiple antithetic sampling

Moment matching

We get \boldsymbol{x}_i but we know $\theta \equiv \mathbb{E}(\boldsymbol{X})$.

Adjust them: $ilde{m{x}}_i = m{x}_i + heta - ar{m{x}}_i$.

Or we know $\Sigma \equiv \mathbb{E}((\boldsymbol{X} - \boldsymbol{\theta})(\boldsymbol{X} - \boldsymbol{\theta})^{\mathsf{T}}).$

Rescale them

Boyle et al (1997) show it is like control variates with perhaps sub-optimal β .

Reweighting

Use $\sum_i w_i f({m x}_i)$ where

$$\sum_{i=1}^{n} w_i \boldsymbol{h}(\boldsymbol{x}_i) = \theta, \quad \text{and} \quad \sum_{i=1}^{n} w_i = 1 \tag{(*)}$$

The regression estimator already does this

but it can have $w_i < 0$

If we want positive weights we can use empirical likelihood maximize $\prod_i w_i$ subject to (*)

Conditioning

Sometimes we can integrate out part of the problem.

$$\int_{0}^{1} \int_{0}^{1} e^{g(x)y} \, \mathrm{d}y \, \mathrm{d}x = \int_{0}^{1} h(x) \, \mathrm{d}x, \quad h(x) = (e^{g(x)} - 1)/g(x)$$
For $h(\boldsymbol{x}) = \mathbb{E}(f(\boldsymbol{x}, \boldsymbol{Y}) \mid \boldsymbol{X} = \boldsymbol{x})$

$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} f(\boldsymbol{x}_{i}, \boldsymbol{y}_{i}) \quad \text{vs} \quad \hat{\mu}_{\text{cond}} = \frac{1}{n} \sum_{i=1}^{n} h(\boldsymbol{x}_{i})$$

$$\operatorname{Var}(\hat{\mu}_{\text{cond}}) = \frac{1}{n} \operatorname{Var}(f(\boldsymbol{X}, \boldsymbol{Y}) \mid \boldsymbol{X}) \leqslant \frac{1}{n} \operatorname{Var}(f(\boldsymbol{X}, \boldsymbol{Y})) = \operatorname{Var}(\hat{\mu})$$

$$\operatorname{var}(\mu_{\operatorname{cond}}) = -\operatorname{var}(f(\boldsymbol{X}, \boldsymbol{Y}) \mid \boldsymbol{X}) \leqslant -\operatorname{var}(f(\boldsymbol{X}, \boldsymbol{Y})) = \operatorname{var}(f(\boldsymbol{X}, \boldsymbol{Y})) = \operatorname{var}(f(\boldsymbol{X}, \boldsymbol{Y}))$$
But check

whether h costs more than f.

Rao-Blackwell theorem

In statistical theory:

If we can find **any** unbiased estimate $\hat{\theta}$ of θ ,

and a complete sufficient statistics S

Then $\mathbb{E}(\hat{\theta} \mid S)$ is a minimum variance unbiased estimate of θ .

Rao-Blackwellization

In Monte Carlo conditioning is sometimes called Rao-Blackwellization. There is usually no sufficient statistic.

Example: roulette Wilson (1965)

Number	Wheel 1	Wheel 2		
00	2127	1288		
1	2082	1234		
36	2221	1251		
24	2192	1164 w		
3	2008	1438ь		
15	2035	1264		
17	2044	1326		
32	2133	1302		
20	1912w	1227		
7	1999	1192		
11	1974	1278		
18	2191	1392		
31	2192	1306		
19	2284 ь	1330		
8	2136	1266		
12	2110	1224		
• • •	• • •	• • •		
10	2121	1320		
27	2158	1336		
Ava	2100	LMS Invited Lee 1279.16	ture Series,	CRISM S

Hole 19

Hole 19 is the best on wheel 1. Seems to pay 2284/2100 times average. That would be a long term win.

What is $\mathbb{P}(19 \text{ is best})$?

If counts C_j are Mult(N, p) and prior $p \sim Dir(1, ..., 1)$ then $p \mid counts \sim Dir(\cdots, 1 + C_j, \cdots)$

$$\mathbb{P}\Big(p_{19} = \max_{1 \leqslant j \leqslant 38} p_j\Big)$$

Dirichlet via normalized Gamma

Recall
$$p_j \stackrel{d}{=} \frac{X_j}{\sum_k X_k} \quad X_j \sim \text{Gam}(1+C_j)$$

$$\mathbb{P}(p_{19} \text{ best } \mid X_{19} = x_{19}) = \prod_{k \neq 19} \mathbb{P}(X_k \leqslant x_{19}) \equiv h(x_{19})$$

So we sample $X_{19} \sim \text{Gam}(C_{19}+1)$ and average $h(X_{19})$.

Exercises

Find this value Find $\mathbb{P}(19 \text{ is second best})$ Find $\mathbb{P}(19 \text{ pays})$ Empirical Bayes

Common variates

Now $f \approx g$, and we want $\Delta = \mathbb{E}(f(X) - g(X))$. So use

$$\hat{\Delta} = \frac{1}{n} \sum_{i=1}^{n} f(\boldsymbol{x}_i) - g(\boldsymbol{x}_i)$$

Intuitively better than

$$\hat{\Delta} = \frac{1}{n} \sum_{i=1}^{n} f(\boldsymbol{x}_i) - \sum_{i=n+1}^{2n} g(\boldsymbol{x}_i)$$

Who would even do that?

Really better so long as Corr(f(X), g(X)) > 0. Especially if cost $x \sim p$ is large. 31

Coupling

Same f, different p: Now $\Delta = \mathbb{E}(f(\mathbf{X}) \mid \mathbf{X} \sim p) - \mathbb{E}(f(\mathbf{X}) \mid \mathbf{X} \sim q)$

$$\hat{\Delta} = \frac{1}{n} \sum_{i=1}^{n} f(\psi_p(\boldsymbol{u}_i)) - f(\psi_q(\boldsymbol{u}_i))$$

Here
$$\psi_p(oldsymbol{U}) \sim p$$
 and $\psi_q(oldsymbol{U}) \sim q$

Parametric p

$$\boldsymbol{X} = \psi_{\theta}(\boldsymbol{U}) \sim p(\cdot; \theta) \qquad \theta \in \Theta$$

Called the "reparametrization trick" in machine learning. It supports differentation wrt θ .

A space of fs

From a parametric function

$$\mu(\theta) = \int h(\boldsymbol{x}, \theta) p(\boldsymbol{x}) \, \mathrm{d}\boldsymbol{x}, \quad \theta \in \Theta \subset \mathbb{R}^d$$
$$\hat{\mu}(\theta_j) = \frac{1}{n} \sum_{i=1}^n h(\boldsymbol{x}_i, \theta_j), \quad j = 1, \dots, J$$

Double loop over i and j.

If j is the outer loop, reset your random seed!

Content uniformity trials

Will a batch of medications meet their specified doses?

Complicated multistage sampling rule from regulator.

Target potency 100. Suppose $X \sim \mathcal{N}(100, \sigma^2)$.

Estimated probability to pass content uniformity test

Vary μ and σ

Contours of acceptance probability

Order statistics

Product fails when r out of k components have failed.

Component times $X_j \stackrel{\mathrm{iid}}{\sim} F$

Mean failure time

Sample
$$X_{ij} \stackrel{\text{ind}}{\sim} F$$
, $i = 1, \dots, n$, $j = 1, \dots, k$
Sort $X_{i(1)} \leqslant X_{i(2)} \leqslant \dots \leqslant X_{i(k)}$
Average the $X_{i(r)}$

Via inversion

If
$$u_1, \ldots, u_k \stackrel{\text{iid}}{\sim} \mathbf{U}(0, 1)$$

then $u_{(r)} \sim \text{Beta}(r, k - r + 1)$
Generate $v_i \stackrel{\text{iid}}{\sim} \text{Beta}(r, k - r + 1)$
Average $F^{-1}(v_i)$.

Control variates plus

Plus antithetics

Antithetic sampling for f with a control variate h.

It helps if f_E is correlated with h_E

Correlation from the 'odd parts' does no good.

Plus stratification

It helps if f and h are correlated 'within strata'.

Plus LHS

It helps if the "nonadditive parts" of f and h are correlated.

You can't subtract the same source of variance twice.

Thanks

- Lecturers: Nicolas Chopin, Mark Huber, Jeffrey Rosenthal
- Guest speakers: Michael Giles, Gareth Roberts
- The London Mathematical Society: Elizabeth Fisher, Iain Stewart
- CRISM & The University of Warwick, Statistics
- Sponsors: Amazon, Google
- Partners: ISBA, MCQMC, BAYSM
- Poster: Talissa Gasser, Hidamari Design
- NSF: DMS-1407397 & DMS-1521145
- Planners: Murray Pollock, Christian Robert, Gareth Roberts
- Support: Paula Matthews, Murray Pollock, Shahin Tavakoli