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Adapted from “Monte Carlo theory, methods and examples”
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Variance reduction
Probability is based on a random outcome ω ∈ Ω

with some sets E ⊂ Ω,

and their probabilities P(E) ≡ P(ω ∈ E)

In Monte Carlo, we control ω

Suppose that

µ = E(f0(x)) for x ∼ p0, and

µ = E(f1(x)) for x ∼ p1

Then we can work with either of those.

Outline

1) Antithetic sampling

2) Stratification

3) Control variates

4) Common random variables
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Efficiency
Method Variance Cost

Old σ2
0/n0 n0c0

New σ2
1/n1 n1c1

To get Var(µ̂) = τ2 we need nj = σ2
j /τ

2.

That will cost njcj .

The relative efficiency of the new method is

old cost

new cost
=
c0σ

2
0/τ

2

c1σ2
1/τ

2
=
σ2

0

σ2
1

× c0
c1

Does not depend on τ2 or n.
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Variance reduction
Addresses the first factor σ2

0/σ
2
1 .

Keep an eye on the second factor c0/c1.

Also increasing σ2
j while lowering cj could pay

How much reduction is ‘worth it’?

It depends.

A 10% improvement might not be worth the nuisance,

unless the task is taking months of CPU [e.g., graphical rendering]

Reducing cost from 1 second to 0.01 seconds

Only saves you 0.99 seconds

but might allow you to embed your algorithm inside a loop

Simplicity has great value, though it is hard to quantify.
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Antithetic sampling
Suppose that f(x) is increasing over 0 6 x 6 1.

If xi is large then so is f(xi).

Antithetic sampling looks also at f(1− xi) to balance it out.

f(x)

f(1−x)

Antithetic estimator

µ̂anti =
1

n/2

n/2∑
i=1

f(xi) + f(x̃i)

2
=

1

n

n/2∑
i=1

(
f(xi) + f(x̃i)

)
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More generally
For µ = E(f(X)) for X ∼ p, suppose that

1) X̃ ∼ p, and

2) ˜̃X = X ,

like x̃ = 1− x does for x ∼ U(0, 1).
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Antithetics
x̃ = 1− x, x ∈ [0, 1]d S̃(t) = −S(t), 0 6 t 6 1
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Some samples and antithetic counterparts
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Antithetic variance
After a little algebra

Var(µ̂anti) =
σ2

n

(
1 + ρ), ρ = Corr(f(X), f(X̃))

Because−1 6 ρ 6 1

0 6
Var(µ̂anti)

Var(µ̂)
6 2

Worst case: we double σ2.

Sometimes: lots of work to generate x and only a little for x̃.

LMS Invited Lecture Series, CRISM Summer School 2018



Foundations 4 of 5 9

Odd and even functions

f(x) = fE(x) + fO(x)

fE(x) ≡ 1

2

(
f(x) + f(x̃)

)
σ2

E = Var(fE(X))

fO(x) ≡ 1

2

(
f(x)− f(x̃)

)
σ2

O = Var(fO(X))

After more algebra Var(µ̂)

Var(µ̂anti)

 =
1

n

1 1

2 0

σ2
E

σ2
O


Antithetics remove the odd component but double the even one.

We like it for odd f .

Exercise: ρ = (σ2
E − σ2

O)/(σ2
E + σ2

O)
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Expected log return
We invest λk > 0 in stock k with

∑
k λk = 1.

Stock k grows by eXk per day.

Our fortune grows like exp(Nµ+ op(N)), where

µ(λ) = E
(

log
(∑

k

λke
Xk

))
Example from notes

K stocks, λk = 1/K , Xk ∼ N (0.001, 0.032)

t(4) copula with Σ = 0.3× 11T + 0.7× I
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Results from notes
Stocks Period Correlation Reduction Estimate Uncertainty

20 week −0.99957 2320.0 0.00130 6.35× 10−6

500 week −0.99951 2030.0 0.00132 6.49× 10−6

20 year −0.97813 45.7 0.06752 3.27× 10−4

500 year −0.99512 40.2 0.06850 3.33× 10−4

About antithetics

• The best way to see if it helps is to do it.

• Partial antithetics, flipping just some components of x also works.
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Stratification
Partition D = ∪Jj=1Dj , Sample Xij ∈ Dj , i = 1, . . . , nj
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Some stratified samples

5 points per subsquare or 3 points per ‘ring’.
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Stratification
Let pj(x) = p(x | x ∈ Dj).

Get xij from pj

Moments

µ̂strat =
J∑
j=1

ωj ×
1

nj

nj∑
i=1

f(xij), ωj = P(X ∈ Dj)

E(µ̂strat) =
d∑
j=1

µj = µ

Var(µ̂strat) =

d∑
j=1

ω2
j ×

σ2
j

nj

For stratum means µj and variances σ2
j .
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Within and between
f(x) = fW (x) + fB(x) = µj(x)︸ ︷︷ ︸

within

+ f(x)− µj(x)︸ ︷︷ ︸
between

σ2
B =

J∑
j=1

ωj(µj − µ)2

σ2
W =

J∑
j=1

ω2
jσ

2
j

Proportional sampling: nj ∝ ωj

After some algebra Var(µ̂)

Var(µ̂strat)

 =
1

n

1 1

1 0

σ2
W

σ2
B


Good strata give large σ2

B .
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Stratified process
Make final points representative.

Fill in conditionally.
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Stratified Brownian motion
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Exercises

Post stratification: What if we sample xi IID and then group them into strata

afterwards?

What if we choose the strata after seeing the xi?

Non proportional sampling: What if nj not proportional to ωj?
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d dimensional stratification
Can get Var(µ̂strat) = O(n−1−2/d),

Or O(n−1−4/d) with antithetics,

and some smoothness.
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Grid based stratification

Antithetic
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Latin hypercube sampling
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Latin hypercube sample

• Stratify each dimension

• xij = (πj(i)− Uij)/n

• πj permutes 1, 2, . . . , n

• Uij ∼ U(0, 1)

• Can have d > n
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LHS ctd
For any f ∈ L2[0, 1]d

Var(µ̂LHS) 6
σ2

n− 1
So it is never much worse than plain MC.

ANOVA of [0, 1]d

Hoeffding (1948), Sobol’ (1967)

f(x) = µ+ f1(x1) + · · ·+ fd(xd) + f1,2(x1, x2) + et cetera

LHS gets the additive part at op(n
−1/2)

the rest at Op(n
−1/2)

Stein (1987)

Orthogonal array sampling

We can balance bivariate margins too.

Ulitimate balance from quasi-Monte Carlo.
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Control variates
We want µ =

∫
f(x)p(x) dx

and for f ≈ h
we know θ =

∫
h(x)p(x) dx

Difference estimator

µ̂diff = θ +
1

n

n∑
i=1

(
f(xi)− h(xi)

)
≡ θ + µ̂− θ̂

Ratio estimator

µ̂ = θ × µ̂

θ̂

Product estimator

µ̂ =
µ̂× θ̂
θ

These can all help but there’s something better.
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Regression estimator

µ̂β =
1

n

n∑
i=1

(
f(xi)− βh(xi)

)
+ βθ

E(µ̂β) = µ, for any β

The best β
Var(µ̂β) =

1

n

(
Var(f(X))− 2βCov(f(X), h(X)) + β2Var(h(X))

)
So it is a least squares problem. Optimal β yields

Var(µ̂βopt
) =

1

n
σ2(1− ρ2)

ρ ≡ Corr(f(X), h(X))
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Via regression
Given

∫
p(x)hj(x) dx = θj for j = 1, . . . , J

µ̂β =
1

n

n∑
i=1

(
f(xi)− βTh(xi)

)
+ βTθ

β̂ = by least squares

Short cut

Regress Yi ≡ f(xi) on Xij ≡ hj(xi)− θj
Then µ̂β̂ is the intercept. You also get a standard error.

Estimated β

Our β̂ is random, not fixed.

It’s usually ok: β̂ − βopt = Op(n
−1/2).

For J � n.

LMS Invited Lecture Series, CRISM Summer School 2018



Foundations 4 of 5 23

Control variates
Maybe h has closed form and f is a ‘tweak’

The hj can be polynomials.

The hj can be densities pj .

Don’t forget the additional cost of computing hj .

Multiple everything

1) Multiple regression for control variates

2) Latin hypercube sampling is multiple stratification

3) Multiple importance sampling (coming later)

4) There is also multiple antithetic sampling
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Moment matching
We get xi but we know θ ≡ E(X).

Adjust them: x̃i = xi + θ − x̄.

Or we know Σ ≡ E((X − θ)(X − θ)T).

Rescale them

Boyle et al (1997) show it is like control variates with perhaps sub-optimal β.
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Reweighting
Use

∑
i wif(xi) where

n∑
i=1

wih(xi) = θ, and
n∑
i=1

wi = 1 (∗)

The regression estimator already does this

but it can have wi < 0

If we want positive weights

we can use empirical likelihood

maximize
∏
i wi subject to (∗)
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Conditioning
Sometimes we can integrate out part of the problem.∫ 1

0

∫ 1

0

eg(x)y dy dx =

∫ 1

0

h(x) dx, h(x) = (eg(x) − 1)/g(x)

For h(x) = E(f(x,Y ) |X = x)

µ̂ =
1

n

n∑
i=1

f(xi,yi) vs µ̂cond =
1

n

n∑
i=1

h(xi)

Var(µ̂cond) =
1

n
Var
(
f(X,Y ) |X) 6

1

n
Var
(
f(X,Y )

)
= Var(µ̂)

But check

whether h costs more than f .
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Rao-Blackwell theorem
In statistical theory:

If we can find any unbiased estimate θ̂ of θ,

and a complete sufficient statistics S

Then E(θ̂ | S) is a minimum variance unbiased estimate of θ.

Rao-Blackwellization

In Monte Carlo conditioning is sometimes called Rao-Blackwellization.

There is usually no sufficient statistic.
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Example: roulette Wilson (1965)
Number Wheel 1 Wheel 2

00 2127 1288
1 2082 1234

36 2221 1251
24 2192 1164w

3 2008 1438b

15 2035 1264
17 2044 1326
32 2133 1302
20 1912w 1227

7 1999 1192
11 1974 1278
18 2191 1392
31 2192 1306
19 2284b 1330

8 2136 1266
12 2110 1224
· · · · · · · · ·
10 2121 1320
27 2158 1336

Avg 2100 1279.16
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Hole 19
Hole 19 is the best on wheel 1. Seems to pay 2284/2100 times average.

That would be a long term win.

What is P(19 is best)?

If counts Cj are Mult(N,p) and prior p ∼ Dir(1, . . . , 1)

then p | counts ∼ Dir( · · · , 1 + Cj , · · · )

P
(
p19 = max

16j638
pj

)
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Dirichlet via normalized Gamma

Recall pj
d
=

Xj∑
kXk

Xj ∼ Gam(1 + Cj)

P(p19 best | X19 = x19) =
∏
k 6=19

P(Xk 6 x19) ≡ h(x19)

So we sample X19 ∼ Gam(C19 + 1) and average h(X19).

Exercises

Find this value

Find P(19 is second best)

Find P(19 pays)

Empirical Bayes
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Common variates
Now f ≈ g, and we want ∆ = E(f(X)− g(X)). So use

∆̂ =
1

n

n∑
i=1

f(xi)− g(xi)

Intuitively better than

∆̂ =
1

n

n∑
i=1

f(xi)−
2n∑

i=n+1

g(xi)

Who would even do that?

Really better so long as Corr(f(X), g(X)) > 0.

Especially if cost x ∼ p is large.
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Coupling
Same f , different p:

Now ∆ = E(f(X) |X ∼ p)− E(f(X) |X ∼ q)

∆̂ =
1

n

n∑
i=1

f(ψp(ui))− f(ψq(ui))

Here ψp(U) ∼ p and ψq(U) ∼ q

Parametric p

X = ψθ(U) ∼ p(·; θ) θ ∈ Θ

Called the “reparametrization trick” in machine learning.

It supports differentation wrt θ.
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A space of fs
From a parametric function

µ(θ) =

∫
h(x, θ)p(x) dx, θ ∈ Θ ⊂ Rd

µ̂(θj) =
1

n

n∑
i=1

h(xi, θj), j = 1, . . . , J

Double loop over i and j.

If j is the outer loop, reset your random seed!
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Content uniformity trials
Will a batch of medications meet their specified doses?

Complicated multistage sampling rule from regulator.

Target potency 100. Suppose X ∼ N (100, σ2).
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Vary µ and σ
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Order statistics
Product fails when r out of k components have failed.

Component times Xj
iid∼ F

Mean failure time

Sample Xij
iid∼ F , i = 1, . . . , n, j = 1, . . . , k

Sort Xi(1) 6 Xi(2) 6 · · · 6 Xi(k)

Average the Xi(r)

Via inversion

If u1, . . . , uk
iid∼ U(0, 1)

then u(r) ∼ Beta(r, k − r + 1)

Generate vi
iid∼ Beta(r, k − r + 1)

Average F−1(vi).
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Control variates plus
Plus antithetics

Antithetic sampling for f with a control variate h.

It helps if fE is correlated with hE

Correlation from the ‘odd parts’ does no good.

Plus stratification

It helps if f and h are correlated ‘within strata’.

Plus LHS

It helps if the “nonadditive parts” of f and h are correlated.

You can’t subtract the same source of variance twice.
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