QMC for MCMC

Art B. Owen

Stanford University

Based on joint work with:
Seth Tribble, Su Chen, Josef Dick, Makoto Matsumoto, Takuji Nishimura

Simple Monte Carlo

Used in virtually all sciences

$$
\begin{aligned}
\mu & =\mathbb{E}(f(x)), \quad x \sim p \\
\hat{\mu}_{n} & =\frac{1}{n} \sum_{i=1}^{n} f\left(x_{i}\right), \quad x_{i} \quad \text { IID } p
\end{aligned}
$$

Recall

$\mathbb{P}\left(\hat{\mu}_{n} \rightarrow \mu\right)=1$ by Strong Law Large Numbers
If $\mathbb{E}\left(f(x)^{2}\right)<\infty$ then RMSE $=O\left(n^{-1 / 2}\right)$
If $\mathbb{E}\left(f(x)^{2}\right)<\infty$ then Central Limit Theorem

Unfortunately:

MC is SLOW: one more digit accuracy $\equiv 100$ fold more work

MC is HARD: getting $x_{i} \sim p$ is challenging (for Boltzmann, Bayes, \cdots)

But there's hope:

QMC improves accuracy from $O\left(n^{-1 / 2}\right)$ to $O\left(n^{-1+\epsilon}\right)$

MCMC broadens applicability

Talk in one slide

1) We want to combine the benefits of QMC and MCMC.
2) We can, via QMC points that are "completely uniformly distributed" (CUD)
3) Like using up all of your RNG
4) Involves a beautiful coupling argument from Chentsov (1967)
5) Greatest improvements for continuous example (e.g., Gibbs)
6) Sometimes a better rate
7) Interesting software engineering challenge

Markov chain Monte Carlo

Let $\boldsymbol{x}_{i}=\psi\left(\boldsymbol{x}_{i-1}, \boldsymbol{v}_{i}\right) \quad \boldsymbol{v}_{i} \sim \mathbf{U}(0,1)^{d} \quad$ (Markov property)
Design $\psi(\cdot, \cdot)$ so that $\operatorname{distn}\left(\boldsymbol{x}_{i}\right) \rightarrow p$

LLN for reasonable conditions

$$
\hat{\mu}=\frac{1}{n} \sum_{i=1}^{n} f\left(\boldsymbol{x}_{i}\right) \rightarrow \int f(\boldsymbol{x}) p(\boldsymbol{x}) \mathrm{d} \boldsymbol{x} \equiv \mu
$$

What we will do
\boldsymbol{v}_{i} come from $u_{1}, u_{2}, u_{3}, \cdots \in(0,1)$.
We will replace IID u_{i} by balanced ones.

Quasi-Monte Carlo

MC and two QMC methods in the unit square

Monte Carlo

Fibonacci lattice

Hammersley sequence

QMC places the points $x_{i} \in[0,1]^{d}$ more uniformly than Monte Carlo does.

Local discrepancy

The box $[0, a)$ contains $6 / 20$ points and has $.3 \times .7=.21$ of the area.

$$
\delta(a)=\frac{6}{20}-.3 \times .7=.09
$$

Star discrepancy

$$
D_{n}^{*}=\sup _{a \in[0,1)^{d}}|\delta(a)|_{\text {LMS Invited Lecture Series, CRISM Summer School } 2018}
$$

Recine for $\operatorname{\text {ReMBingMOM}}$

1) Each step $\boldsymbol{x}_{i} \leftarrow \psi\left(\boldsymbol{x}_{i-1}, \boldsymbol{v}_{i}\right)$ takes d numbers: in $\boldsymbol{v}_{i} \in(0,1)^{d}$.
2) n steps require $u_{1}, \ldots, u_{n d} \in(0,1)$
3) MCMC uses $u_{i} \sim \mathbf{U}(0,1)$
4) Replace IID by balanced points

Reasons for caution

1) We're using 1 point in $[0,1]^{n d}$ with $n \rightarrow \infty$
2) The \boldsymbol{x}_{i} won't be Markovian

Recipe ctd

We will replace IID u_{i} by 'balanced' inputs.

$\mathrm{MCMC} \approx \mathrm{QMC}^{\top}$

Method	Rows	Columns	
QMC	n points	d variables	$1 \leqslant d \ll n \rightarrow \infty$
MCMC	r replicates	n steps	$1 \leqslant r \ll n \rightarrow \infty$

MCMC

QMC based on equidistribution MCMC based on ergodicity

Severe failure is possible

van der Corput $u_{i} \in[0,1 / 2) \Longleftrightarrow u_{i+1} \in[1 / 2,1)$

$$
u_{i+1} \text { vs } u_{i}
$$

High proposal \Longleftrightarrow low acceptance and vice versa
Morokoff and Caflisch (1993) describe heat particleulleavingreqion

Completely uniformly distributed

$u_{1}, u_{2}, \cdots \in[0,1]$ are CUD if
$D_{n}^{* k}\left(\boldsymbol{z}_{1}, \ldots, \boldsymbol{z}_{n}\right) \rightarrow 0$, where
$\boldsymbol{z}_{i}=\left(u_{i}, \ldots, u_{i+k-1}\right) \quad(k$-tuples $)$
For all $d \geqslant 1$
Overlapping blocks

$$
\begin{aligned}
\boldsymbol{z}_{1} & =\left(u_{1}, \ldots, u_{k}\right) \\
\boldsymbol{z}_{2} & =\left(u_{2}, \ldots, u_{k+1}\right) \\
\vdots & \vdots \\
\boldsymbol{z}_{n} & =\left(u_{n}, \ldots, u_{n+k-1}\right)
\end{aligned}
$$

Chentsov (1967) shows we can use non-overlapping blocks

$$
\boldsymbol{v}_{i}=\left(u_{d(i-1)_{1}}, \ldots, u_{k i}\right) \forall k
$$

CUD ctd

Originates with Korobov (1950)
CUD \equiv one of Knuth's definitions of randomness

Recommendations

1) Use all the d-tuples from your RNG
2) Be sure to pick a small RNG

As considered in
Niederreiter (1986)
Entacher, Hellekalek, and L’Ecuyer (1999)
L'Ecuyer and Lemieux (1999)

Weakly CUD

For random $u_{1}, u_{2}, u_{3}, \cdots \in(0,1)$, let

$$
\boldsymbol{z}_{i}=\left(u_{i}, u_{i+1}, \ldots, u_{i+k-1}\right) \in(0,1)^{k}
$$

They are weakly CUD if

$$
D_{n}^{k *}\left(\boldsymbol{z}_{1}, \ldots, \boldsymbol{z}_{n}\right) \xrightarrow{\mathrm{d}} 0 \quad \text { for all } k
$$

Construction of Liao (1989)

1) Take QMC points $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n} \in(0,1)^{d}$
2) Put in random order $\boldsymbol{x}_{\pi(1)}, \ldots, \boldsymbol{x}_{\pi(n)}$
3) Concatenate to get $u_{1}, \ldots, u_{n \times d}$
4) Let $n \rightarrow \infty$

More constructions

Tribble (2007) wrote some tiny RNGs and used rotation modulo 1

Chen, Matsumoto, Nishimura \& O (2012)
made small linear feedback shift register RNGs
Equidistribution like "small Mersenne twisters"
but not necessarily the same constructions.

They come in sizes $M=2^{m}-1$ for $10 \leqslant m \leqslant 32$.

$$
u_{1}, u_{2}, \ldots, u_{M}
$$

Prepend one or more 0s:

$$
0, \ldots, 0, u_{1}, \ldots, u_{M}
$$

put into a matrix and apply random rotations mod 1

Software

It would be nice to embed CUD into Stan or JAGS or BUGS etc.

Then users can try lots of examples switching between IID and CUD.

For best results, remove acceptance-rejection where possible.

It seems like a big engineering task.

We have done 'hand-tuned' examples.

QMC \cap MCMC

Early references

Chentsov (1967)

Plugs in CUD points.
Samples in finite state space by inversion.
Shows consistency.
Uses very nice coupling argument.

Sobol' (1974)

Has $n \times \infty$ points $x_{i j} \in[0,1]$
Samples from a row until a return to start state
Gets rate $O(1 / n) \cdots$ if transition probabilities are $a / 2^{b}$ for integers a, b

Chentsov's Theorem 1

Law of large numbers via CUD

1) $K<\infty$ states, and,
2) For all $x, y \in \Omega, \quad P(x \rightarrow y)>0$
3) u_{i} are CUD, and,
4) x_{0} is arbitrary
5) $x_{i} \leftarrow \phi\left(x_{i-1}, u_{i}\right)$ by inversion, $u_{i} \in(0,1)$, then

$$
\begin{gathered}
\hat{p}_{n}\left(\omega_{k}\right) \equiv \frac{1}{n} \sum_{i=1}^{n} 1_{x_{i}=\omega_{k}} \longrightarrow p\left(\omega_{k}\right) \\
\text { and so } \hat{\mu}_{n} \rightarrow \mu
\end{gathered}
$$

Remember it was 1967

Chentsov

Chentsov's paper is remarkable and well worth reading after 60+ years. He wrote before Hastings generalized the Metropolis algorithm and before exact sampling methods were developed for MCMC. The impact of his paper was perhaps limited by studying finite state chains whose transitions can be sampled by inversion.

Chentsov's coupling argument has an intriguing feature. He couples the evolving chain to itself in a particularly elegant way that sets up a 3ϵ argument. The details are in his paper, also in Chen, Dick and O (2011) where it is embedded in the 'Rosenblatt-Chentsov' transformation.

Metropolis

O \& Tribble (2004) use $K<\infty$ states and Metropolis-Hastings sampling $d-1$ variables to propose and 1 to accept or reject:

$$
x_{i+1} \leftarrow \phi\left(x_{i}, \boldsymbol{v}_{i+1}\right), \quad \boldsymbol{v}_{i+1} \in(0,1)^{d}
$$

Proposal Ψ, acceptance A

$$
\begin{aligned}
& y_{i+1} \leftarrow \Psi\left(x_{i}, \boldsymbol{v}_{i, 1: d-1}\right) \\
& x_{i+1} \leftarrow \begin{cases}y_{i+1}, & \boldsymbol{v}_{i, d} \leqslant A\left(x_{i} \rightarrow y_{i+1}\right) \\
x_{i}, & \text { else }\end{cases}
\end{aligned}
$$

Regular proposals

Recall
Set $A \subset \mathbb{R}^{d}$ is Jordan measureable if indicator 1_{A} is Riemann integrable Proposals are regular if

$$
S_{\omega_{k} \rightarrow \omega_{\ell}}=\left\{\left(u_{1}, \ldots, u_{d-1}\right) \in[0,1]^{d-1} \mid \Psi\left(\omega_{k}, u_{1}, \ldots, u_{d-1}\right)=\omega_{\ell}\right\}
$$

is Jordan measurable all k, ℓ
Regular proposals in $[0,1]^{d-1}$ give

1) Regular (one step) transition $x_{i} \rightarrow x_{i+1}$ sets in $[0,1]^{d}$
2) Regular path $x_{i} \rightarrow x_{i+1} \rightarrow \cdots \rightarrow x_{i+k}$ sets in $[0,1]^{d k}$
3) Regular multi-step transitions $x_{i} \rightarrow x_{i+k}$ sets in $[0,1]^{d k}$

Home state

A set $\mathcal{B}_{\omega}=\prod_{j=1}^{d}\left(a_{j}, b_{j}\right) \subset(0,1)^{d}$ such that

$$
\boldsymbol{v}_{i} \in \mathcal{B}_{\omega} \Longrightarrow x_{i}=\phi\left(x_{i-1}, \boldsymbol{v}_{i}\right)=\omega
$$

A (very) small set $\{\omega\} . \quad \omega \in\{1,2, \ldots, K\}$.

Coupling

Wherever you are, the chance of going to ω next would be positive, for random $\boldsymbol{v} \sim \mathbf{U}(0,1)^{d}$.
Our \boldsymbol{v}_{i} can be deterministic.

Theorem

For Metropolis-Hastings sampling, if

1) There are $K<\infty$ states,
2) u_{i} are CUD,
3) x_{0} is arbitrary,
4) y_{i+1} is a regular proposal, and
5) there is a home state ω with $\operatorname{vol}\left(\mathcal{B}_{\omega}\right)>0$, then

$$
\hat{p}_{n}\left(\omega_{k}\right) \equiv \frac{1}{n} \sum_{i=1}^{n} 1_{x_{i}=\omega_{k}} \longrightarrow p\left(\omega_{k}\right)
$$

Theorem 2, O \& Tribble (2004)

Idea of proof

Compare x_{i+m} to $x_{i, m, m}$ where $x_{i, m, 0}$ is sampled by inversion of π using $u_{i d}$ and the transitions $x_{i, m, t} \rightarrow x_{i, m, t+1}$ use Metropolis-Hastings with the same rule that x_{i} uses.

For large $m, \widetilde{x}_{i, m, m}$ is usually x_{i+m}. Also $\widetilde{x}_{i, m, m} \sim p$.

Coupling

$$
\begin{aligned}
x_{1} \rightarrow x_{2} \rightarrow \cdots \rightarrow & x_{i} \rightarrow x_{i+1} \rightarrow x_{i+2} \rightarrow \cdots \rightarrow x_{i+m} \\
& \downarrow \text { inversion " } \pi^{-1}\left(u_{i d}\right) \text { " } \\
& x_{i, m, 0} \rightarrow x_{i, m, 1} \rightarrow x_{i, m, 2} \cdots \rightarrow x_{i, m, m}
\end{aligned}
$$

3 epsilon

$$
\begin{aligned}
& \left|\frac{1}{n} \sum_{i=1}^{n} \pi(\omega)-1\left\{x_{i, m, m}=\omega\right\}\right|+\left|\frac{1}{n} \sum_{i=1}^{n} 1\left\{x_{i, m, m}=\omega\right\}-1\left\{x_{i+m}=\omega\right\}\right| \\
& +\left|\frac{1}{n} \sum_{i=1}^{n} 1\left\{x_{i+m}=\omega\right\}-1\left\{x_{i}=\omega\right\}\right| \quad \text { LMS Invited Lecture Series, CRISM Summer School } 2018
\end{aligned}
$$

Weakly CUD

For Metropolis-Hastings sampling, if

1) There are $K<\infty$ states,
2) u_{i} are Weakly CUD,
3) x_{0} is arbitrary,
4) y_{i+1} is a regular proposal, and
5) IID sampling would have worked

$$
\hat{p}_{n}\left(\omega_{k}\right) \equiv \frac{1}{n} \sum_{i=1}^{n} 1_{x_{i}=\omega_{k}} \xrightarrow{\mathrm{~d}} p\left(\omega_{k}\right)
$$

Theorem 3, O \& Tribble (2004)

Some additional ref.s

QMC in multiple-try Metropolis Craiu \& Lemieux (2007)
QMC in exact sampling
Lemieux \& Sidorsky (2006)

Related

Reordering heat particles
MCMC \cap antithetics
MCMC \cap Latin hypercubes
array-RQMC
array-RQMC
Rotor-Router
Quasi-random walks on balls
Rao-Blackwellized MH

Lécot (1989)
Frigessi, Gäsemyr, Rue (2000)
Craiu, Meng (2004)
L'Ecuyer, Lécot, Tuffin (2004)
L'Ecuyer, Lécot, L’Archevêque-Gaudet (2008)
Propp (2004)
Karaivanova, Chi, Gurov (2007)
Douc, Robert (2009)

Results from Tribble

Variance reduction factors from Tribble (2007) for two Gibbs sampling problems.
Pumps: hierarchical Poisson-Gamma model.
Vasorestriction: probit model 3 coefficients, 39 latent variables.

	$n=2^{10}$		$n=2^{12}$		$n=2^{14}$	
Data sets	\min	\max	\min	\max	\min	\max
Pumps $(d=11)$	286	1543	304	5003	1186	16089
Vasorestriction $(d=42)$	14	15	56	76	108	124

Min \& max variance reductions for all pump and all non-latent vaso. parameters.
Randomized CUD sequence versus IID sampling.
See Tribble (2007) for simulation details.
Targets are posterior means of parameters.
Mackey \& Gorham

Continuous state spaces

Tribble's best results were for a smooth setting: continuous state space and the Gibbs sampler, which has no accept-reject component.

This makes sense: QMC wins its biggest improvements on smooth functions

The consistency results in O \& Tribble (2005) for $\hat{\mu}_{n} \rightarrow \mu$ were in discrete state spaces, where only small improvements are seen empirically.

Continuous cases

Chen, Dick \& O (2011) extend consistency to continuous state spaces.
MCMC remains consistent when driven by u_{1}, u_{2}, \ldots, if

1) u_{i} are CUD (or CUD in probability)
2) m-step transitions are Riemann integrable $\forall m \geqslant 1$, and
3) - for Metropolis-Hastings: there is a coupling region (Independence sampler can have one)

- for Gibbs: there is a contraction property (Gibbs for probit model proven to contract)

Convergence rates

Thesis of Su Chen (2011)

Sometimes we see a better convergence rate.

$$
\text { Conditions for error } O\left(n^{1-\delta}\right) \text {, all } \delta>0
$$

1) Strong contracting mapping

$$
\left\|\psi(\boldsymbol{x}, \boldsymbol{v})-\psi\left(\boldsymbol{x}^{\prime}, \boldsymbol{v}\right)\right\| \leqslant \alpha\left\|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right\|, \quad \text { some } 0 \leqslant \alpha<1
$$

2) Bounded set Ω for \boldsymbol{x}
3) $f(\boldsymbol{x})$ Lipschitz continuous
4) ψ infinitely differentiable
5) Irreducible Harris convergent chain
6) Decay conditions

Conditions satisfied for some ARMA models and Sobol' sequence inputs.

Warwick thinker

Gaussian Gibbs sampler

$$
\boldsymbol{X}=\binom{X_{1}}{X_{2}} \sim \mathcal{N}\left(\binom{0}{0},\left(\begin{array}{ll}
1 & \rho \\
\rho & 1
\end{array}\right)\right) \in \mathbb{R}^{2}
$$

Alternate

$$
\begin{aligned}
& X_{1} \sim \operatorname{DIST}\left(X_{1} \mid X_{2}=x_{2}\right)=\mathcal{N}\left(\rho x_{2}, 1-\rho^{2}\right) \\
& X_{2} \sim \operatorname{DIST}\left(X_{2} \mid X_{1}=x_{1}\right)=\mathcal{N}\left(\rho x_{1}, 1-\rho^{2}\right)
\end{aligned}
$$

Gaussian Gibbs sampler

Correlation 0.95
40 steps

Sampling, $i=1, \ldots, n$

$$
\begin{aligned}
& X_{i 1} \leftarrow \rho X_{i-1,2}+\sqrt{1-\rho^{2}} \Phi^{-1}\left(u_{2 i-1}\right) \\
& X_{i 2} \leftarrow \rho X_{i 1}+\sqrt{1-\rho^{2}} \Phi_{\text {ins in in }}\left(u_{2} 2 i\right)_{\text {ecture Series, CRISM Summer School } 2018}
\end{aligned}
$$

Gaussian Gibbs $\rho=0$

Gaussian Gibbs $\rho=0.999$

Estimate $\mathbb{E}(X)$ start at $(1,1)$
\therefore models like $\mathrm{AR}(1)$ are promising

M/M/1 queue initial transient

Exponential arrivals at rate $\rho=0.9$ and service times at rate 1 Customer $i \geqslant 1$ has arrival time A_{i}, the service time S_{i}, and waiting time W_{i}, where

$$
\begin{align*}
A_{0} & =0 \\
A_{i} & =A_{i-1}-\log \left(1-u_{2 i-1}\right) / \rho \\
S_{i} & =-\log \left(1-u_{2 i}\right) \\
W_{1} & =0 \\
W_{i} & =\left(W_{i-1}+S_{i-1}-A_{i}\right)_{+} \tag{Lindley}
\end{align*}
$$

Average wait of first n customers is

$$
\bar{W}_{n}=\frac{1}{n} \sum_{i=1}^{n} W_{i} \text { we simulate for } \mathbb{E}\left(\bar{W}_{n}\right)
$$

Variance of average wait

500 simulations of Lindley's formula Solid=CUD Dotted=IID

Variance reductions

Chen, Matsumoto, Nishimura, O (2012)

$$
\begin{gathered}
\text { Antithetic } \\
u_{1}, u_{2}, \cdots, u_{n}, 1-u_{1}, 1-u_{2}, \cdots, 1-u_{n} \\
\text { Round trip } \\
u_{1}, u_{2}, \cdots, u_{n}, 1-u_{n}, 1-u_{n-1}, \cdots, 1-u_{1}
\end{gathered}
$$

1) Preserves CUD structure (\approx no harm)
2) Sometimes big gains vs plain CUD, sometimes none
3) Can also reverse d-tuples

Summary

Bivariate Gaussian
Bivariate Gaussian
Hit and run, volume estimator
M/M/1 queue, average wait
Garch
Heston stochastic volatility
apparent better convergence rate for mean
not much improvement for discrepancy
no improvement
mixed results
some big improvements
big improvements for in the money case

Synopsis

The smoother the problem, the more CUD points can improve.
Improvements range from modest to powerful.
Same as for finite dimensional QMC.

The latest

Tobias Schwedes \& Ben Calderhead (2018) on arXiv and at MCQMC 2018 in Rennes.

Multi-proposal MCMC. Like Craiu \& Lemieux (2007)
Extend MP-MCMC of Calderhead (2014).

1) Burn in
2) 511 iterations
3) $N \rightarrow \infty$ proposals per iteration
4) Reweight them, and then pick one
5) Using QMC \cap CUD gets empirical error $O\left(N^{-1}\right)$ (Bayesian logistic regression)

It has MCMC, particles, importance sampling, adaptation, QMC, MALA . . .

Thanks

- Lecturers: Nicolas Chopin, Mark Huber, Jeffrey Rosenthal
- Guest speakers: Michael Giles, Gareth Roberts
- The London Mathematical Society: Elizabeth Fisher, lain Stewart
- CRISM \& The University of Warwick, Statistics
- Sponsors: Amazon, Google
- Partners: ISBA, MCQMC, BAYSM
- Poster: Talissa Gasser, Hidamari Design
- NSF: DMS-1407397 \& DMS-1521145
- Planners: Murray Pollock, Christian Robert, Gareth Roberts
- Support: Paula Matthews, Murray Pollock, Shahin Tavakoli

