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Simple Monte Carlo

Used in virtually all sciences

µ = E(f(x)), x ∼ p

µ̂n =
1

n

n∑
i=1

f(xi), xi IID p

Recall

P(µ̂n → µ) = 1 by Strong Law Large Numbers

If E(f(x)2) <∞ then RMSE = O(n−1/2)

If E(f(x)2) <∞ then Central Limit Theorem
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Unfortunately:

MC is SLOW: one more digit accuracy≡ 100 fold more work

MC is HARD: getting xi ∼ p is challenging (for Boltzmann, Bayes, · · · )

But there’s hope:

QMC improves accuracy from O(n−1/2) to O(n−1+ε)

MCMC broadens applicability
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Talk in one slide

1) We want to combine the benefits of QMC and MCMC.

2) We can, via QMC points that are “completely uniformly distributed” (CUD)

3) Like using up all of your RNG

4) Involves a beautiful coupling argument from Chentsov (1967)

5) Greatest improvements for continuous example (e.g., Gibbs)

6) Sometimes a better rate

7) Interesting software engineering challenge
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Markov chain Monte Carlo

Let xi = ψ(xi−1,vi) vi ∼ U(0, 1)d (Markov property)

Design ψ(·, ·) so that distn(xi)→ p

LLN for reasonable conditions

µ̂ =
1

n

n∑
i=1

f(xi)→
∫
f(x)p(x) dx ≡ µ

What we will do

vi come from u1, u2, u3, · · · ∈ (0, 1).

We will replace IID ui by balanced ones.
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Quasi-Monte Carlo
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Fibonacci lattice

MC and two QMC methods in the unit square
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Hammersley sequence

QMC places the points xi ∈ [0, 1]d more uniformly than Monte Carlo does.
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Local discrepancy
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0.7

The box [0, a) contains 6/20 points and has .3× .7 = .21 of the area.

δ(a) =
6

20
− .3× .7 = .09

Star discrepancy

D∗n = sup
a∈[0,1)d

|δ(a)|
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Recipe for QMC in MCMC

1) Each step xi ← ψ(xi−1,vi) takes d numbers: in vi ∈ (0, 1)d.

2) n steps require u1, . . . , und ∈ (0, 1)

3) MCMC uses ui ∼ U(0, 1)

4) Replace IID by balanced points

Reasons for caution

1) We’re using 1 point in [0, 1]nd with n→∞

2) The xi won’t be Markovian
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Recipe ctd

u1, u2, . . . , ud︸ ︷︷ ︸
v1

ud+1, ud+2, . . . , u2d︸ ︷︷ ︸
v2

· · ·u(n−1)d+1, u(n−1)d+2, . . . , und︸ ︷︷ ︸
vn

We will replace IID ui by ‘balanced’ inputs.
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MCMC≈ QMCT

Method Rows Columns

QMC n points d variables 1 6 d� n→∞
MCMC r replicates n steps 1 6 r � n→∞

QMC MCMC

QMC based on equidistribution MCMC based on ergodicity
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Severe failure is possible
van der Corput ui ∈ [0, 1/2) ⇐⇒ ui+1 ∈ [1/2, 1)

ui+1 vs ui
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High proposal ⇐⇒ low acceptance and vice versa

Morokoff and Caflisch (1993) describe heat particle leaving regionLMS Invited Lecture Series, CRISM Summer School 2018
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Completely uniformly distributed
u1, u2, · · · ∈ [0, 1] are CUD if

D∗kn (z1, . . . ,zn)→ 0, where

zi = (ui, . . . , ui+k−1) (k-tuples)

For all d > 1

Overlapping blocks

z1 = (u1, . . . , uk)

z2 = (u2, . . . , uk+1)

...
...

zn = (un, . . . , un+k−1)

Chentsov (1967) shows we can use non-overlapping blocks

vi = (ud(i−1)1 , . . . , uki) ∀k
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CUD ctd

Originates with Korobov (1950)

CUD≡ one of Knuth’s definitions of randomness

Recommendations

1) Use all the d-tuples from your RNG

2) Be sure to pick a small RNG

As considered in

Niederreiter (1986)

Entacher, Hellekalek, and L’Ecuyer (1999)

L’Ecuyer and Lemieux (1999)
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Weakly CUD
For random u1, u2, u3, · · · ∈ (0, 1), let

zi = (ui, ui+1, . . . , ui+k−1) ∈ (0, 1)k

They are weakly CUD if

Dk∗
n (z1, . . . ,zn)

d→ 0 for all k

Construction of Liao (1989)

1) Take QMC points x1, . . . ,xn ∈ (0, 1)d

2) Put in random order xπ(1), . . . ,xπ(n)

3) Concatenate to get u1, . . . , un×d

4) Let n→∞
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More constructions
Tribble (2007) wrote some tiny RNGs and used rotation modulo 1

Chen, Matsumoto, Nishimura & O (2012)

made small linear feedback shift register RNGs

Equidistribution like “small Mersenne twisters”

but not necessarily the same constructions.

They come in sizes M = 2m − 1 for 10 6 m 6 32.

u1, u2, . . . , uM

Prepend one or more 0s:

0, . . . , 0, u1, . . . , uM

put into a matrix and apply random rotations mod 1
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Software

It would be nice to embed CUD into Stan or JAGS or BUGS etc.

Then users can try lots of examples switching between IID and CUD.

For best results, remove acceptance-rejection where possible.

It seems like a big engineering task.

We have done ‘hand-tuned’ examples.
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QMC ∩ MCMC
Early references

Chentsov (1967)

Plugs in CUD points.

Samples in finite state space by inversion.

Shows consistency.

Uses very nice coupling argument.

Sobol’ (1974)

Has n×∞ points xij ∈ [0, 1]

Samples from a row until a return to start state

Gets rate O(1/n) · · · if transition probabilities are a/2b for integers a, b

LMS Invited Lecture Series, CRISM Summer School 2018



QMC2: QMC for MCMC 18

Chentsov’s Theorem 1
Law of large numbers via CUD

1) K <∞ states, and,

2) For all x, y ∈ Ω, P (x→ y) > 0

3) ui are CUD, and,

4) x0 is arbitrary

5) xi ← φ(xi−1, ui) by inversion, ui ∈ (0, 1), then

p̂n(ωk) ≡ 1

n

n∑
i=1

1xi=ωk
−→ p(ωk)

and so µ̂n → µ

Remember it was 1967
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Chentsov
Chentsov’s paper is remarkable and well worth reading after 60+

years. He wrote before Hastings generalized the Metropolis algorithm

and before exact sampling methods were developed for MCMC. The

impact of his paper was perhaps limited by studying finite state chains

whose transitions can be sampled by inversion.

Chentsov’s coupling argument has an intriguing feature. He couples

the evolving chain to itself in a particularly elegant way that sets up a 3ε

argument. The details are in his paper, also in Chen, Dick and O (2011)

where it is embedded in the ’Rosenblatt-Chentsov’ transformation.
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Metropolis
O & Tribble (2004) use K <∞ states and Metropolis-Hastings sampling

d− 1 variables to propose and 1 to accept or reject:

xi+1 ← φ(xi,vi+1), vi+1 ∈ (0, 1)d

Proposal Ψ, acceptance A

yi+1 ← Ψ(xi,vi,1:d−1)

xi+1 ←

yi+1, vi,d 6 A(xi → yi+1)

xi, else.
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Regular proposals
Recall

Set A ⊂ Rd is Jordan measureable if indicator 1A is Riemann integrable

Proposals are regular if

Sωk→ω`
=
{

(u1, . . . , ud−1) ∈ [0, 1]d−1 | Ψ(ωk, u1, . . . , ud−1) = ω`
}

is Jordan measurable all k, `

Regular proposals in [0, 1]d−1 give

1) Regular (one step) transition xi → xi+1 sets in [0, 1]d

2) Regular path xi → xi+1 → · · · → xi+k sets in [0, 1]dk

3) Regular multi-step transitions xi → xi+k sets in [0, 1]dk
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Home state

A set Bω =
∏d
j=1(aj , bj) ⊂ (0, 1)d such that

vi ∈ Bω =⇒ xi = φ(xi−1,vi) = ω

A (very) small set {ω}. ω ∈ {1, 2, . . . ,K}.

Coupling

Wherever you are, the chance of going to ω next would be positive,

for random v ∼ U(0, 1)d.

Our vi can be deterministic.
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Theorem
For Metropolis-Hastings sampling, if

1) There are K <∞ states,

2) ui are CUD,

3) x0 is arbitrary,

4) yi+1 is a regular proposal, and

5) there is a home state ω with vol(Bω) > 0, then

p̂n(ωk) ≡ 1

n

n∑
i=1

1xi=ωk
−→ p(ωk)

Theorem 2, O & Tribble (2004)
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Idea of proof
Compare xi+m to xi,m,m where xi,m,0 is sampled by inversion of π using uid
and the transitions xi,m,t → xi,m,t+1 use Metropolis-Hastings with the same

rule that xi uses.

For large m, x̃i,m,m is usually xi+m. Also x̃i,m,m ∼ p.

Coupling

x1 → x2 → · · · → xi → xi+1 → xi+2 → · · · → xi+m

↓ inversion “π−1(uid)”

xi,m,0 → xi,m,1 → xi,m,2 · · · → xi,m,m

3 epsilon∣∣∣∣ 1n
n∑
i=1

π(ω)− 1{xi,m,m = ω}
∣∣∣∣+

∣∣∣∣ 1n
n∑
i=1

1{xi,m,m = ω} − 1{xi+m = ω}
∣∣∣∣

+

∣∣∣∣ 1n
n∑
i=1

1{xi+m = ω} − 1{xi = ω}
∣∣∣∣ LMS Invited Lecture Series, CRISM Summer School 2018
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Weakly CUD
For Metropolis-Hastings sampling, if

1) There are K <∞ states,

2) ui are Weakly CUD,

3) x0 is arbitrary,

4) yi+1 is a regular proposal, and

5) IID sampling would have worked

p̂n(ωk) ≡ 1

n

n∑
i=1

1xi=ωk

d→ p(ωk)

Theorem 3, O & Tribble (2004)
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Some additional ref.s
QMC in multiple-try Metropolis Craiu & Lemieux (2007)

QMC in exact sampling Lemieux & Sidorsky (2006)

Related

Reordering heat particles Lécot (1989)

MCMC ∩ antithetics Frigessi, Gäsemyr, Rue (2000)

MCMC ∩ Latin hypercubes Craiu, Meng (2004)

array-RQMC L’Ecuyer, Lécot, Tuffin (2004)

array-RQMC L’Ecuyer, Lécot, L’Archevêque-Gaudet (2008)

Rotor-Router Propp (2004)

Quasi-random walks on balls Karaivanova, Chi, Gurov (2007)

Rao-Blackwellized MH Douc, Robert (2009)
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Results from Tribble
Variance reduction factors from Tribble (2007) for two Gibbs sampling problems.

Pumps: hierarchical Poisson-Gamma model.

Vasorestriction: probit model 3 coefficients, 39 latent variables.

n = 210 n = 212 n = 214

Data sets min max min max min max

Pumps (d = 11) 286 1543 304 5003 1186 16089

Vasorestriction (d = 42) 14 15 56 76 108 124

Min & max variance reductions for all pump and all non-latent vaso. parameters.

Randomized CUD sequence versus IID sampling.

See Tribble (2007) for simulation details.

Targets are posterior means of parameters.

Mackey & Gorham
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Continuous state spaces

Tribble’s best results were for a smooth setting: continuous state space and the

Gibbs sampler, which has no accept-reject component.

This makes sense: QMC wins its biggest improvements on smooth functions

The consistency results in O & Tribble (2005) for µ̂n → µ were in discrete state

spaces, where only small improvements are seen empirically.
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Continuous cases
Chen, Dick & O (2011) extend consistency to continuous state spaces.

MCMC remains consistent when driven by u1, u2, . . . , if

1) ui are CUD (or CUD in probability)

2) m-step transitions are Riemann integrable ∀m > 1, and

3) • for Metropolis-Hastings: there is a coupling region

(Independence sampler can have one)

• for Gibbs: there is a contraction property

(Gibbs for probit model proven to contract)
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Convergence rates
Thesis of Su Chen (2011)

Sometimes we see a better convergence rate.

Conditions for error O(n1−δ), all δ > 0

1) Strong contracting mapping

‖ψ(x,v)− ψ(x′,v)‖ 6 α‖x− x′‖, some 0 6 α < 1

2) Bounded set Ω for x

3) f(x) Lipschitz continuous

4) ψ infinitely differentiable

5) Irreducible Harris convergent chain

6) Decay conditions

Conditions satisfied for some ARMA models and Sobol’ sequence inputs.
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Warwick thinker
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Gaussian Gibbs sampler

X =

X1

X2

 ∼ N
0

0

 ,

1 ρ

ρ 1

 ∈ R2

Alternate

X1 ∼ DIST(X1 | X2 = x2) = N (ρx2, 1− ρ2)

X2 ∼ DIST(X2 | X1 = x1) = N (ρx1, 1− ρ2)
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Gaussian Gibbs sampler
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Sampling, i = 1, . . . , n

Xi1 ← ρXi−1,2 +
√

1− ρ2 Φ−1(u2i−1)

Xi2 ← ρXi1 +
√
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Gaussian Gibbs ρ = 0
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Simulations of Gaussian Gibbs Sampling. ρ = 0
Solid = CUD, Dotted = IID
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Gaussian Gibbs ρ = 0.999
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Estimate E(X) start at (1, 1)

∴ models like AR(1) are promising
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M/M/1 queue initial transient
Exponential arrivals at rate ρ = 0.9 and service times at rate 1

Customer i > 1 has arrival time Ai, the service time Si, and waiting time Wi,

where

A0 = 0

Ai = Ai−1 − log(1− u2i−1)/ρ

Si = − log(1− u2i)
W1 = 0

Wi =
(
Wi−1 + Si−1 −Ai

)
+

(Lindley)

Average wait of first n customers is

Wn =
1

n

n∑
i=1

Wi we simulate for E(Wn)
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Variance of average wait
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500 simulations of Lindley's formula
Solid=CUD   Dotted=IID
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Variance reductions
Chen, Matsumoto, Nishimura, O (2012)

Antithetic

u1, u2, · · · , un, 1− u1, 1− u2, · · · , 1− un

Round trip

u1, u2, · · · , un, 1− un, 1− un−1, · · · , 1− u1

1) Preserves CUD structure (≈ no harm)

2) Sometimes big gains vs plain CUD, sometimes none

3) Can also reverse d-tuples
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Summary
Bivariate Gaussian apparent better convergence rate for mean

Bivariate Gaussian not much improvement for discrepancy

Hit and run, volume estimator no improvement

M/M/1 queue, average wait mixed results

Garch some big improvements

Heston stochastic volatility big improvements for in the money case

Synopsis

The smoother the problem, the more CUD points can improve.

Improvements range from modest to powerful.

Same as for finite dimensional QMC.

LMS Invited Lecture Series, CRISM Summer School 2018



QMC2: QMC for MCMC 40

The latest
Tobias Schwedes & Ben Calderhead (2018) on arXiv

and at MCQMC 2018 in Rennes.

Multi-proposal MCMC. Like Craiu & Lemieux (2007)

Extend MP-MCMC of Calderhead (2014).

1) Burn in

2) 511 iterations

3) N →∞ proposals per iteration

4) Reweight them, and then pick one

5) Using QMC ∩ CUD gets empirical error O(N−1) (Bayesian logistic

regression)

It has MCMC, particles, importance sampling, adaptation, QMC, MALA . . .
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