QMC beyond the cube

Art B. Owen, Stanford University
based on joint work with
Kinjal Basu, Linkedln

Kinjal Basu

PhD 2016, Stanford Statistics

$Q M \mathrm{~B}$

$$
\text { Estimate } \quad \mu=\int_{[0,1]^{d}} f(\boldsymbol{x}) \mathrm{d} \boldsymbol{x} \quad \text { by } \quad \hat{\mu}=\frac{1}{n} \sum_{i=1}^{n} f\left(\boldsymbol{x}_{i}\right)
$$

Koksma-Hlawka

$$
|\hat{\mu}-\mu| \leqslant D_{n}^{*}\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n}\right) \times\|f\|_{\text {НK }}
$$

Discrepancy is with respect to axis-oriented boxes $[\mathbf{0}, \boldsymbol{a}]$ or $[\boldsymbol{a}, \boldsymbol{b}]$
Variation is based on axis-oriented differences of differences.

Non-cubic domains

$$
\mu=\int_{\Omega} f(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}
$$

Triangle	Simplex	Cylinder	
Disk	Sphere	Ball	Spherical triangle

What axes?

For discrepancy and variation
Cartesian products

$$
\Omega=\prod_{j=1}^{s} \Omega_{j}, \quad \Omega_{j} \subset \mathbb{R}^{d_{j}}
$$

Disk \times Sphere \times Sphere \times Interval $\times \cdots \times$ Spherical triangle

The cube

"You'll never get out of the cube."
The Cube (Jim Henson, 1969) is a surreal film about being stuck in a cube.
Image from wikipedia

General measures

$D_{n}^{*}(\cdot ; \mu)=D_{n}^{*}\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n} ; \mu\right)$ is star discrepancy wrt measure μ
Theorem from ‘Gates of Hell’ paper
Aistleitner, Bilyk \& Nikolov (2016), For any normalized measure μ on \mathbb{R}^{d}
there exist points with $D_{n}^{*}(\cdot ; \mu) \leqslant \log (n)^{d-1 / 2} / n$

Refs from GoH paper

- Aistleitner \& Dick (2015) discrepancy and Koksma-Hlawka for general signed measures.
- Aistleitner \& Dick (2014) For any normalized measure μ on $[0,1]^{d}$,

$$
D_{n}^{*}(\cdot ; \mu) \leqslant 63 \sqrt{d}\left(2+\log _{2}(n)^{(3 d+1) / 2}\right) / n .
$$

- Beck (1984) had $\log (n)^{2 d}$.
- Götz (2002) first Koksma-Hlawka for general measures.

QMC sampling

We emphasize constructions

1) Measure preserving maps from $[0,1]^{d}$ onto Ω, and
2) Direct constructions, e.g., by recursively partitioning Ω.

Existence proofs

For users, they are frustrating.

- Constructions say how to do something.

Yes! You can do this.

Existence proofs

For users, they are frustrating.

- Constructions say how to do something.

Yes! You can do this.

- Non-existence results show that constructions don't exist.

No! You can't do that.

Existence proofs

For users, they are frustrating.

- Constructions say how to do something.

Yes! You can do this.

- Non-existence results show that constructions don't exist.

No! You can't do that.

- Existence proofs show that non-existence proofs don't exist.

Maybe! Keep looking.
However
They can be interesting, elegant or deep.
(And may hint at constructions.)

Non-cubic domains

We want

$$
\mu=\int_{\Omega} f(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}, \quad \text { bounded } \Omega \subset \mathbb{R}^{d}, \quad \operatorname{vol}(\Omega)=1
$$

Transformations
For measure preserving $\tau:[0,1]^{s} \rightarrow \Omega$

$$
\hat{\mu}=\frac{1}{n} \sum_{i=1}^{n}(f \circ \tau)\left(\boldsymbol{x}_{i}\right), \quad \boldsymbol{x}_{i} \in[0,1]^{s}
$$

But $f \circ \tau$ might not be well behaved. No problem for MC; challenge for QMC.
Choices for τ
Devroye (1986), Fang \& Wang (1994), Pillards \& Cools (2005)

The triangle

Brandolini, Colzani, Gigante \& Travaglini (2013)

- define a 'trapezoid discrepancy' in the simplex and a variation
- prove a Koksma-Hlawka inequality
but gave no constructions of points with vanishing discrepancy.

Pillards \& Cools (2005)

- lots of measure preserving mappings
- get variation \& discrepancy \& Koksma-Hlawka
but gave no conditions for vanishing discrepancy of transformed points.
Chen \& Travaglini (2013)
prove existence of point sets with vanishing trapezoid discrepancy for the triangle

Trapezoid discrepancy

Brandolini et al. $(2013,2014)$

$\Omega=\triangle(A, B, C)$
Discrepancy for $\mathcal{T}_{a, b, C} \cap \Omega$
sup over trapezoids
Corresponding variation
Elegant argument...
. . . extends to simplices

Triangular van der Corput

For i 'th point in $T=\triangle(A, B, C)$, write

$$
i=\sum_{k=1}^{K_{i}} d_{k, i} 4^{k-1}, \quad d_{k, i} \in\{0,1,2,3\}
$$

Split T into 4 congruent sub-triangles, $T(0), T(1), T(2), T(3)$
Place \boldsymbol{x}_{i} in $T\left(d_{1, i}\right)$
Recurse

Basu \& O (2015)

Construction continued

Corners of the subtriangle

$$
T(d)= \begin{cases}\triangle\left(\frac{B+C}{2}, \frac{A+C}{2}, \frac{A+B}{2}\right), & d=0 \\ \triangle\left(A, \frac{A+B}{2}, \frac{A+C}{2}\right), & d=1 \\ \triangle\left(\frac{A+B}{2}, B, \frac{B+C}{2}\right), & d=2 \\ \triangle\left(\frac{A+C}{2}, \frac{B+C}{2}, C\right), & d=3\end{cases}
$$

For $n=4^{k}$

- n subtriangles, 1 point each
- all discrepancy from within shaded triangles
- enumerate all possibilities

- upright vs inverted are different

Results

Let D_{n}^{P} be (anchored) parallelogram discrepancy.
First $n=4^{k}$ points

$$
D_{n}^{P}= \begin{cases}\frac{7}{9}, & n=1 \\ \frac{2}{3 \sqrt{n}}-\frac{1}{9 n} & \text { else }\end{cases}
$$

Any consecutive $n=4^{k}$ points

$$
D_{n}^{P} \leqslant \frac{2}{\sqrt{n}}-\frac{1}{n}
$$

First n points

$$
D_{n}^{P} \leqslant \frac{12}{\sqrt{n}}
$$

Basu \& O (2015)

Kronecker lattice in the triangle

Basu \& O (2015)

Critical: choose good α

Kronecker continued

$\theta \in \mathbb{R}$ is badly approximable if there exists $c>0$ with

$$
\operatorname{dist}(n \theta, \mathbb{Z})>c / n, \quad \forall n \in \mathbb{N}
$$

Quadratic irrationals $\theta=(a+b \sqrt{c}) / d$ are badly approximable.
Here $a, b, c, d \in \mathbb{Z}, \quad b, d \neq 0, \quad$ square free $c>1$

Chen \& Travaglini (2007) There exist points with
Polygon discrepancy $=O(\log (n) / n)$

Basu \& O (2015) Here they are for trapezoids: rotate a grid by α radians where $\tan (\alpha)$ is a quadratic irrational.
E.g., for $\alpha=3 \pi / 8, \quad \tan (\alpha)=1+\sqrt{2}$

Triangular Kronecker

Triangular lattice points

Angle 3pi/8

Angle 5pi/8

Angle pi/4
X

Angle pi/2 X

A grid with a 'Kronecker rotation' gets $D_{n}^{P}=O(\log (n) / n)$. Basu \& O (2015)
This is the best possible rate. Chen \& Travaglini (2013)

Generalization

Hexagon $=$ six triangles, et cetera
Very unlikely to generalize to higher dimensional simplices or Cartesian products of simplices. (D. Bilyk personal communication)

Geometric van der Corput

Map $i=1,2,3, \ldots$ into $\boldsymbol{x}_{i} \in \Omega$.

- replace triangle by more general set Ω
- split Ω into b equal volumes
- recursively

Splits of a triangle

$$
b=2
$$

$b=3$

$$
b=4
$$

The triangle can be recursively split 2 -fold, 3 -fold or 4 -fold.
This allows digital constructions in those bases.

Not all splits work well

3^{3} Decomposition
4^{3} Decomposition

The base 3 split leads to very unfavorable aspect ratios.
The regions do not 'converge nicely' to a point.
E.g., Stromberg (1994) defines 'converge nicely'
(Bounded aspect ratios.)

Splits don't have to be congruent

- Mix 'arc splits' and 'radial splits' to keep aspect ratio bounded
- Not a global alternation; different cells get different splits

Basu \& O (2015)

See Beckers \& Beckers (2012) for non-recursive splits

Tetrahedron

- chop off 4 tetrahedral corners
- remaining volume makes 4 more

- but they're not congruent to first 4
- binary splits may be better (split a longest edge)

Image: By Tomruen - Own work, CC BY-SA 3.0, wikipedia

Spherical triangles

- 4 way split at arc midpoints ... not equal area
- 4 way equal area split of Song, Kimerling, Sahr (2002) uses 'small circle’ boundaries, not great circles
- binary splits may be better • . . use first step in Arvo (1995)

More about Arvo

Arvo shows how to pick D so

$$
\frac{\operatorname{vol}(A B D)}{\operatorname{vol}(A B C)}=u
$$

We can use $u=1 / 2$.

Image by Peter Mercator - Own work, CC BY-SA 3.0, Wikipedia

Geometric nets

We want points in Ω^{s} for $\Omega \subset \mathbb{R}^{d}$
E.g., light path

$$
\text { camera } \rightarrow \triangle \rightarrow \triangle \rightarrow \triangle \rightarrow \cdots \rightarrow \triangle \rightarrow \text { light source }
$$

Use digital nets
A (t, m, s)-net, $b=4$ or $b=2$, puts $\boldsymbol{x}_{i} \in \triangle^{s} \quad$ (componentwise)
Use other partitions
Other b-fold equal area recursive partitions can be used for $\Omega \neq \triangle$
Scramble the nets
Unbiasedness and error cancellation benefits under smoothness.

More generally

$$
\begin{aligned}
& \Omega=\prod_{j=1}^{s} \Omega_{j}, \quad \Omega_{j} \subset \mathbb{R}^{d_{j}} \\
& \tau_{j}:[0,1] \rightarrow \Omega_{j} \quad \text { digital map, base } b
\end{aligned}
$$

Take $\boldsymbol{u}_{i}=\left(u_{i 1}, \ldots, u_{i s}\right) \in[0,1]^{s}$, (t, m, s)-net or (t, s)-sequence in base b.

Componentwise map: $\boldsymbol{x}_{i}=\tau\left(\boldsymbol{u}_{i}\right)$

$$
\begin{aligned}
\boldsymbol{x}_{i} & =\left(x_{i 1}, \ldots, x_{i s}\right) \\
x_{i j} & =\tau_{j}\left(u_{i j}\right)
\end{aligned}
$$

Scrambled geometric nets

Take $\operatorname{vol}\left(\Omega_{j}\right)=1$ and $\Omega=\prod_{j=1}^{s} \Omega_{j}$ and let

$$
\mu=\int_{\Omega} f(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}, \quad \hat{\mu}=\frac{1}{n} \sum_{i=1}^{n} f\left(\boldsymbol{x}_{i}\right)
$$

where \boldsymbol{x}_{i} are scrambled geometric nets.

$$
\begin{gathered}
\text { For } f \in L^{2}(\Omega) \\
\mathbb{E}(\hat{\mu})=\mu \quad \operatorname{Var}(\hat{\mu})=o\left(\frac{1}{n}\right) \quad \operatorname{Var}(\hat{\mu}) \leqslant \Gamma \times \frac{\sigma^{2}}{n}
\end{gathered}
$$

where $\sigma^{2}=\int_{\Omega}(f(\boldsymbol{x})-\mu)^{2} \mathrm{~d} \boldsymbol{x}$, and
Γ is the largest gain coefficient of the (t, m, s)-net
E.g., $t=0$ implies $\Gamma \leqslant \exp (1) \doteq 2.718$

Convergence rates

$$
\mu=\int_{\Omega} f(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}, \quad \Omega \subset \mathbb{R}^{D}, \quad D=\sum_{j=1}^{s} d_{j}, \quad \text { e.g., } D=s \times d
$$

For smooth f, nested uniform scrambled nets and nice partitions

$$
\operatorname{Var}(\hat{\mu})=O\left(\frac{(\log n)^{s-1}}{n^{1+2 / d}}\right)
$$

Basu \& O (2015)
Two kinds of smooth

1) $\partial^{1: D} f$ continuous and all Ω_{j} Sobol' extensible (defined next)
2) $f \in C^{D}(\Omega)$ (using the Whitney extension)

Sobol' extension

It begins with the fundamental theorem of calculus (FTC)

$$
f(x)=f(c)+\int_{c}^{x} f^{\prime}(y) \mathrm{d} y
$$

Dimension D, e.g., $D=d \times s$
$f(\boldsymbol{x})=f(\boldsymbol{c})$ plus $2^{D}-1$ integrated partial derivatives along all 'lower faces'

Hybrid points
For $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^{D}$ and $u \subset\{1,2, \ldots, D\}$ the point $\boldsymbol{z}=\boldsymbol{x}_{u}: \boldsymbol{y}_{-u}$ has $z_{j}=x_{j}$ for $j \in u$ and $x_{j}=y_{j}$ for $j \notin u$.

Sobol' extensible region

For $\boldsymbol{x}, \boldsymbol{c} \in \mathbb{R}^{D}$ define $\operatorname{rect}[\boldsymbol{c}, \boldsymbol{x}]=\prod_{j=1}^{D}\left[c_{j} \wedge x_{j}, c_{j} \vee x_{j}\right]$

Rectangular hull, bounding box

Definition

$\Omega \subset \mathbb{R}^{d}$ is Sobol' extensible with anchor $\boldsymbol{c} \in \mathbb{R}^{D}$ if

$$
\boldsymbol{x} \in \Omega \Longrightarrow \operatorname{rect}[\boldsymbol{c}, \boldsymbol{x}] \subset \Omega
$$

Sobol' extensible

Non-Sobol' extensible

No place to put the anchor \boldsymbol{c}

Sobol' extension

Let $\Omega \subset \mathbb{R}^{D}$ be Sobol' extensible with anchor \boldsymbol{c} and let $\partial^{1: D} f$ be continuous.
Then the Sobol' extension of f is

$$
\begin{align*}
\tilde{f}(\boldsymbol{x}) & =\sum_{u \subseteq 1: D} \int_{\left[\boldsymbol{c}_{u}, \boldsymbol{x}_{u}\right]} \partial^{u} f\left(\boldsymbol{c}_{-u}: \boldsymbol{y}_{u}\right) 1_{c_{-u}: \boldsymbol{y} \in \Omega} \mathrm{d} \boldsymbol{y}_{u} \\
\text { vs. } \quad f(\boldsymbol{x}) & =\sum_{u \subseteq 1: D} \int_{\left[\boldsymbol{c}_{u}, \boldsymbol{x}_{u}\right]} \partial^{u} f\left(\boldsymbol{c}_{-u}: \boldsymbol{y}_{u}\right) \mathrm{d} \boldsymbol{y}_{u} \tag{FTC}
\end{align*}
$$

Properties

$\widetilde{f}(\boldsymbol{x})=f(\boldsymbol{x})$ for $\boldsymbol{x} \in \Omega$
Low variation
$\partial^{1: D} \tilde{f}$ not necessarily continuous
but \tilde{f} satisfies the FTC

Conditions

1) $\Omega \subset \mathbb{R}^{d}$ bounded and Sobol' extensible
2) \boldsymbol{x}_{i} a geometric net, bounded 'gain' coefs
3) nice convergent splits
4) $f \in L^{2}\left(\Omega^{s}\right)$
5) $\partial^{1: s} f$ continuous

Conclusion

$$
\operatorname{Var}(\hat{\mu})=O\left(\frac{(\log n)^{s-1}}{n^{1+2 / d}}\right)
$$

as $n=b^{m} \rightarrow \infty$. Basu \& O (2015)

Challenge:

showing Haar wavelet coefficients decay
via Sobol' (or Whitney) extension from Ω to \mathbb{R}^{d}

Dimension $D=d s$

$$
\operatorname{Var}(\hat{\mu})=O\left(\frac{(\log n)^{s-1}}{n^{1+2 / d}}\right) \quad \text { RMSE }=O\left(\frac{(\log n)^{(s-1) / 2}}{n^{1 / 2+1 / d}}\right)
$$

1) Better than MC rate for all s, d
2) Rate sensitive to d, not very sensitive to s
3) Better than QMC rate for BVHK on $[0,1]^{D}$ when $d=2$ (just barely) $(\log (n))^{(s-1) / 2}$ vs $(\log (n))^{d s-1}$
Often $f \circ \tau \notin$ BVHK
4) (Barely) better than Kronecker \triangle for $d=2$ and $s=1$ (was $\log (n) / n)$

Note

$$
g(\boldsymbol{x})=1_{\boldsymbol{x} \in \operatorname{rect} \Omega} \times f(\boldsymbol{x}), \quad \text { usually not BVHK }
$$

Followups to geometric nets

- maybe higher order nets would help Dick, Baldeaux
- geometric Halton sequences
- deterministic nets

Central limit theorem

Basu \& Mukerjee (2016) building on Loh (2003)

Transformations

Let τ transform $\mathbf{U}[0,1]^{m}$ into $\mathbf{U}(\Omega)$.

$$
\int_{\Omega} f(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}=\int_{[0,1]^{m}}(f \circ \tau)(\boldsymbol{u}) \mathrm{d} \boldsymbol{u}
$$

We want $f \circ \tau \in$ BVHK for QMC and mixed partials in L^{2} for RQMC
BVHK compositions
For $f \circ \tau: \mathbb{R} \rightarrow \mathbb{R} \rightarrow \mathbb{R}$:

$$
f \in \text { Lipschitz, } \tau \in \mathrm{BV} \Longrightarrow f \circ \tau \in \mathrm{BV} \text {. Josephy (1981) }
$$

No such simple rule in higher dimensions.

Variation is bounded via integrated absolute mixed partials.
So we study derivatives of $f(\tau(\boldsymbol{u}))$.

Faà di Bruno

Derivatives of composite functions, $\mathbb{R} \rightarrow \mathbb{R} \rightarrow \mathbb{R}$
Faà di Bruno $(1855,1857)$, Arbogast (1800)

$$
\begin{aligned}
h(x) & =f(g(x)) \\
h^{\prime}(x) & =f^{\prime}(g(x)) g^{\prime}(x) \\
h^{\prime \prime}(x) & =f^{\prime \prime}(g(x)) g^{\prime}(x)^{2}+f^{\prime}(g(x)) g^{\prime \prime}(x) \\
h^{\prime \prime \prime}(x) & =f^{\prime \prime \prime}(g(x)) g^{\prime}(x)^{3}+3 f^{\prime \prime}(g(x)) g^{\prime}(x) g^{\prime \prime}(x)+f^{\prime}(g(x)) g^{\prime \prime \prime}(x)
\end{aligned}
$$

Our map is

$$
\mathbb{R}^{D} \rightarrow \mathbb{R}^{d} \rightarrow \mathbb{R}
$$

which has many more terms
Constantine \& Savits (1996) give a general Faà di Bruno theorem
Basu \& O (2016) simplify it for

$$
\partial^{u}(f \circ \tau), u \subseteq\{1, \ldots, D\}
$$

i.e., differentiate at most once wrt each x_{j}

Allows tests of BVHK.

Some mappings

The following mappings work well for MC, but not QMC

$$
\begin{gathered}
\text { Triangle } \mathbb{T}^{2} \subset \mathbb{R}^{3} \\
\boldsymbol{u} \in[0,1]^{3}, \quad x_{j}=\tau_{j}(\boldsymbol{u})=\frac{\log \left(u_{j}\right)}{\sum_{i=1}^{3} \log \left(u_{i}\right)} \quad \boldsymbol{x} \sim \mathbf{U}\left(\mathbb{T}^{2}\right)
\end{gathered}
$$

Even $x_{j}(\boldsymbol{u}) \notin \operatorname{BVHK}\left([0,1]^{3}\right)$.

Sphere $\mathbb{S}^{d-1} \subset \mathbb{R}^{d}$

$$
x_{j}=\tau_{j}(\boldsymbol{u})=\frac{\Phi^{-1}\left(u_{j}\right)}{\sqrt{\sum_{i=1}^{d} \Phi^{-1}\left(u_{i}\right)^{2}}}, \quad \boldsymbol{x} \sim \mathbf{U}\left(\mathbb{S}^{d-1}\right)
$$

Again, $x_{j}(\boldsymbol{u}) \notin \operatorname{BVHK}\left([0,1]^{d}\right)$.

BVHK compositions

For $\boldsymbol{u} \in[0,1]^{D}$ and

$$
f\left(\tau_{1}(\boldsymbol{u}), \ldots, \tau_{d}(\boldsymbol{u})\right)
$$

If these hold

1) $\partial^{v} \tau_{j}\left(\boldsymbol{u}_{v}: \boldsymbol{1}_{-v}\right) \in L^{p_{j}}\left([0,1]^{|v|}\right), \quad p_{j} \in[1, \infty] \quad v \subseteq\{1,2, \ldots, D\}$
2) $\sum_{j=1}^{d} 1 / p_{j} \leqslant 1$
3) $f \in C^{(d)}\left(\mathbb{R}^{d}\right)$

Then
$f \circ \tau \in \mathrm{BVHK}$

RQMC smooth

1) $\partial^{v} \tau_{j} \in L^{p_{j}}\left([0,1]^{D}\right), p_{j} \in[2, \infty]$, and
2) $\sum_{j=1}^{d} 1 / p_{j} \leqslant 1 / 2$
3) $f \in C^{(d)}\left(\mathbb{R}^{d}\right)$
make $f \circ \tau$ smooth enough for $\mathrm{RMSE}=O\left(n^{-3 / 2+\epsilon}\right)$ under RQMC.
$f \in C^{(d)}$ can be weakened if p_{j} are increased

Fang \& Wang (1993)

Three mappings to a simplex, one to the sphere, and one to a ball.

Example

$$
A_{d}=\left\{\left(x_{1}, \ldots, x_{d}\right) \mid 0 \leqslant x_{1} \leqslant x_{2} \leqslant \cdots \leqslant x_{d} \leqslant 1\right\}
$$

Transformation

$$
\begin{aligned}
x_{1} & =\tau_{1}(\boldsymbol{u})=u_{1} \\
x_{2} & =\tau_{2}(\boldsymbol{u})=u_{1} \times u_{2}^{1 / 2} \\
x_{3} & =\tau_{3}(\boldsymbol{u})=u_{1} \times u_{2}^{1 / 2} \times u_{3}^{1 / 3} \\
& \vdots \\
x_{d} & =\tau_{d}(\boldsymbol{u})=u_{1} \times u_{2}^{1 / 2} \times u_{3}^{1 / 3} \times \cdots \times u_{d}^{1 / d}
\end{aligned}
$$

Results

All five Fang \& Wang mappings τ are in BVHK.
So composing with f has a chance.
None of them yield τ with mixed partials in L^{2}.

Smoother mappings

Importance sampling from $[0,1]^{d}$ to \mathbb{T}^{d} (simplex) can yield RQMC smoothness.
The Jacobian exhibits a 'dimension’ effect.
Effective sample size decays like $(8 / 9)^{d}$.
Basu \& O (2016)

Conclusion

The unit cube seems to be a relatively easy space to sample.
Despite GoH conjecture that it is the hardest.

Thanks

- Lecturers: Nicolas Chopin, Mark Huber, Jeffrey Rosenthal
- Guest speakers: Michael Giles, Gareth Roberts
- The London Mathematical Society: Elizabeth Fisher, lain Stewart
- CRISM \& The University of Warwick, Statistics
- Sponsors: Amazon, Google
- Partners: ISBA, MCQMC, BAYSM
- Poster: Talissa Gasser, Hidamari Design
- NSF: DMS-1407397 \& DMS-1521145
- Planners: Murray Pollock, Christian Robert, Gareth Roberts
- Support: Paula Matthews, Murray Pollock, Shahin Tavakoli

