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QMC
Estimate µ =

∫
[0,1]d

f(x) dx by µ̂ =
1

n

n∑
i=1

f(xi)

Koksma-Hlawka

|µ̂− µ| 6 D∗n(x1, . . . ,xn)× ‖f‖HK

Discrepancy is with respect to axis-oriented boxes [0,a] or [a, b]

Variation is based on axis-oriented differences of differences.
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Non-cubic domains
µ =

∫
Ω

f(x) dx

Triangle Simplex Cylinder

Disk Sphere Ball Spherical triangle

What axes?

For discrepancy and variation

Cartesian products

Ω =

s∏
j=1

Ωj , Ωj ⊂ Rdj

Disk× Sphere× Sphere× Interval× · · ·× Spherical triangle
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The cube

“You’ll never get out of the cube.”

The Cube (Jim Henson, 1969) is a surreal film about being stuck in a cube.

Image from wikipedia LMS Invited Lecture Series, CRISM Summer School 2018
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General measures
D∗n(·;µ) = D∗n(x1, . . . ,xn;µ) is star discrepancy wrt measure µ

Theorem from ‘Gates of Hell’ paper

Aistleitner, Bilyk & Nikolov (2016), For any normalized measure µ on Rd

there exist points with D∗n(·;µ) 6 log(n)d−1/2/n

Refs from GoH paper

• Aistleitner & Dick (2015)

discrepancy and Koksma-Hlawka for general signed measures.

• Aistleitner & Dick (2014) For any normalized measure µ on [0, 1]d,

D∗n(·;µ) 6 63
√
d
(
2 + log2(n)(3d+1)/2

)
/n.

• Beck (1984) had log(n)2d .

• Götz (2002) first Koksma-Hlawka for general measures.
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QMC sampling
We emphasize constructions

1) Measure preserving maps from [0, 1]d onto Ω, and

2) Direct constructions, e.g., by recursively partitioning Ω.
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Existence proofs
For users, they are frustrating.

• Constructions say how to do something.

Yes! You can do this.

LMS Invited Lecture Series, CRISM Summer School 2018



QMC3: QMC beyond the cube 9

Existence proofs
For users, they are frustrating.

• Constructions say how to do something.

Yes! You can do this.

• Non-existence results show that constructions don’t exist.

No! You can’t do that.
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Existence proofs
For users, they are frustrating.

• Constructions say how to do something.

Yes! You can do this.

• Non-existence results show that constructions don’t exist.

No! You can’t do that.

• Existence proofs show that non-existence proofs don’t exist.

Maybe! Keep looking.

However

They can be interesting, elegant or deep.

(And may hint at constructions.)
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Non-cubic domains
We want

µ =

∫
Ω

f(x) dx, bounded Ω ⊂ Rd, vol(Ω) = 1

Transformations

For measure preserving τ : [0, 1]s → Ω

µ̂ =
1

n

n∑
i=1

(f ◦ τ)(xi), xi ∈ [0, 1]s

But f ◦ τ might not be well behaved. No problem for MC; challenge for QMC.

Choices for τ
Devroye (1986), Fang & Wang (1994), Pillards & Cools (2005)
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The triangle
Brandolini, Colzani, Gigante & Travaglini (2013)

• define a ‘trapezoid discrepancy’ in the simplex and a variation

• prove a Koksma-Hlawka inequality

but gave no constructions of points with vanishing discrepancy.

Pillards & Cools (2005)

• lots of measure preserving mappings

• get variation & discrepancy & Koksma-Hlawka

but gave no conditions for vanishing discrepancy of transformed points.

Chen & Travaglini (2013)

prove existence of point sets with vanishing trapezoid discrepancy for the triangle
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Trapezoid discrepancy
Brandolini et al. (2013,2014)

A C

B

F ELb

La

D

Ta,b,C

a

b

Ω = 4(A,B,C)

Discrepancy for Ta,b,C ∩ Ω

sup over trapezoids

Corresponding variation

Elegant argument · · ·
· · · extends to simplices
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Triangular van der Corput
For i’th point in T = 4(A,B,C), write

i =

Ki∑
k=1

dk,i4
k−1, dk,i ∈ {0, 1, 2, 3}

Split T into 4 congruent sub-triangles, T (0), T (1), T (2), T (3)

Place xi in T (d1,i)

Recurse
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Basu & O (2015)
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Construction continued
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Corners of the subtriangle

T (d) =



4
(
B+C

2 , A+C
2 , A+B

2

)
, d = 0,

4
(
A, A+B

2 , A+C
2

)
, d = 1,

4
(
A+B

2 , B, B+C
2

)
, d = 2,

4
(
A+C

2 , B+C
2 , C

)
, d = 3.
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For n = 4k

Lb

La

Lb

La

Lb

Lb

LaLa

• n subtriangles, 1 point each

• all discrepancy from within shaded

triangles

• enumerate all possibilities

• upright vs inverted are different
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Results
Let DP

n be (anchored) parallelogram discrepancy.

First n = 4k points

DP
n =

 7
9 , n = 1

2
3
√
n
− 1

9n else

Any consecutive n = 4k points

DP
n 6

2√
n
− 1

n

First n points

DP
n 6

12√
n

Basu & O (2015)
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Kronecker lattice in the triangle
Basu & O (2015)
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1) Place a square grid in R2

2) Rotate it α radians

3) Intersect with right triangle

4) Linear map to desired4

Critical: choose good α
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Kronecker continued
θ ∈ R is badly approximable if there exists c > 0 with

dist(nθ,Z) > c/n, ∀n ∈ N

Quadratic irrationals θ = (a+ b
√
c)/d are badly approximable.

Here a, b, c, d ∈ Z, b, d 6= 0, square free c > 1

Chen & Travaglini (2007) There exist points with

Polygon discrepancy = O(log(n)/n)

Basu & O (2015) Here they are for trapezoids: rotate a grid by α radians where

tan(α) is a quadratic irrational.

E.g., for α = 3π/8, tan(α) = 1 +
√

2
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Triangular Kronecker
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Triangular lattice points

X X X X

A grid with a ‘Kronecker rotation’ gets DP
n = O(log(n)/n). Basu & O (2015)

This is the best possible rate. Chen & Travaglini (2013)

Generalization

Hexagon = six triangles, et cetera

Very unlikely to generalize to higher dimensional simplices or Cartesian products

of simplices. (D. Bilyk personal communication)LMS Invited Lecture Series, CRISM Summer School 2018
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Geometric van der Corput
Map i = 1, 2, 3, . . . into xi ∈ Ω.

• replace triangle by more general set Ω

• split Ω into b equal volumes

• recursively
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Splits of a triangle

A B

C

0

a

b c

1 a

b

c

b = 2

A B

C

0
a

b

c

1

a

b c

2
a

b

c

b = 3

A B

C

0

ab

c
1

a b

c

2
a b

c

3
a b

c

b = 4

The triangle can be recursively split 2-fold, 3-fold or 4-fold.

This allows digital constructions in those bases.
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Not all splits work well
26 Decomposition 33 Decomposition 43 Decomposition

The base 3 split leads to very unfavorable aspect ratios.

The regions do not ‘converge nicely’ to a point.

E.g., Stromberg (1994) defines ‘converge nicely’

(Bounded aspect ratios.)
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Splits don’t have to be congruent

• Mix ‘arc splits’ and ‘radial splits’ to keep aspect ratio bounded

• Not a global alternation; different cells get different splits

Basu & O (2015)

See Beckers & Beckers (2012) for non-recursive splits
LMS Invited Lecture Series, CRISM Summer School 2018
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Tetrahedron
• chop off 4 tetrahedral corners

• remaining volume makes 4 more

• but they’re not congruent to first 4

• binary splits may be better (split a longest edge)

Image: By Tomruen - Own work, CC BY-SA 3.0, wikipedia
LMS Invited Lecture Series, CRISM Summer School 2018
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Spherical triangles
• 4 way split at arc midpoints · · · not equal area

• 4 way equal area split of Song, Kimerling, Sahr (2002) uses ‘small circle’

boundaries, not great circles

• binary splits may be better · · · use first step in Arvo (1995)

More about Arvo

Arvo shows how to pick D so

vol(ABD)

vol(ABC)
= u

We can use u = 1/2.

Image by Peter Mercator - Own work, CC BY-SA 3.0, Wikipedia
LMS Invited Lecture Series, CRISM Summer School 2018
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Geometric nets
We want points in Ωs for Ω ⊂ Rd

E.g., light path

camera→4→4→4→ · · · → 4 → light source

Use digital nets

A (t,m, s)-net, b = 4 or b = 2, puts xi ∈ 4s (componentwise)

Use other partitions

Other b-fold equal area recursive partitions can be used for Ω 6= 4

Scramble the nets

Unbiasedness and error cancellation benefits under smoothness.
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More generally

Ω =
s∏
j=1

Ωj , Ωj ⊂ Rdj

τj : [0, 1]→ Ωj digital map, base b

Take ui = (ui1, . . . , uis) ∈ [0, 1]s,

(t,m, s)-net or (t, s)-sequence in base b.

Componentwise map: xi = τ(ui)

xi = (xi1, . . . , xis)

xij = τj(uij)
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Scrambled geometric nets
Take vol(Ωj) = 1 and Ω =

∏s
j=1 Ωj and let

µ =

∫
Ω

f(x) dx, µ̂ =
1

n

n∑
i=1

f(xi)

where xi are scrambled geometric nets.

For f ∈ L2(Ω)

E(µ̂) = µ Var(µ̂) = o
( 1

n

)
Var(µ̂) 6 Γ× σ2

n

where σ2 =
∫

Ω
(f(x)− µ)2 dx, and

Γ is the largest gain coefficient of the (t,m, s)-net

E.g., t = 0 implies Γ 6 exp(1)
.
= 2.718
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Convergence rates
µ =

∫
Ω
f(x) dx, Ω ⊂ RD , D =

∑s
j=1 dj , e.g., D = s× d.

For smooth f , nested uniform scrambled nets and nice partitions

Var(µ̂) = O
( (log n)s−1

n1+2/d

)
Basu & O (2015)

Two kinds of smooth

1) ∂1:Df continuous and all Ωj Sobol’ extensible (defined next)

2) f ∈ CD(Ω) (using the Whitney extension)
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Sobol’ extension
It begins with the fundamental theorem of calculus (FTC)

f(x) = f(c) +

∫ x

c

f ′(y) dy

Dimension D, e.g., D = d× s
f(x) = f(c) plus 2D − 1 integrated partial derivatives along all ’lower faces’

●

●

c

x

f(x) =
∑
u⊆1:D

∫
[cu,xu]

∂uf(c−u:yu) dyu

Hybrid points

For x,y ∈ RD and u ⊂ {1, 2, . . . , D} the point z = xu:y−u has zj = xj
for j ∈ u and xj = yj for j 6∈ u.
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Sobol’ extensible region
For x, c ∈ RD define rect[c,x] =

∏D
j=1[cj ∧ xj , cj ∨ xj ]

●

●

c

x

Rectangular hull, bounding box

Definition

Ω ⊂ Rd is Sobol’ extensible with anchor c ∈ RD if

x ∈ Ω =⇒ rect[c,x] ⊂ Ω
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Sobol’ extensible

c

c
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Non-Sobol’ extensible

ε

No place to put the anchor c

LMS Invited Lecture Series, CRISM Summer School 2018
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Sobol’ extension
Let Ω ⊂ RD be Sobol’ extensible with anchor c and let ∂1:Df be continuous.

Then the Sobol’ extension of f is

f̃(x) =
∑
u⊆1:D

∫
[cu,xu]

∂uf(c−u:yu)1c−u:y∈Ω dyu

vs. f(x) =
∑
u⊆1:D

∫
[cu,xu]

∂uf(c−u:yu) dyu (FTC)

Properties

f̃(x) = f(x) for x ∈ Ω

Low variation

∂1:Df̃ not necessarily continuous

but f̃ satisfies the FTC
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Conditions
1) Ω ⊂ Rd bounded and Sobol’ extensible

2) xi a geometric net, bounded ‘gain’ coefs

3) nice convergent splits

4) f ∈ L2(Ωs)

5) ∂1:sf continuous

Conclusion

Var(µ̂) = O
( (log n)s−1

n1+2/d

)
as n = bm →∞. Basu & O (2015)

Challenge:

showing Haar wavelet coefficients decay

via Sobol’ (or Whitney) extension from Ω to Rd
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Dimension D = ds

Var(µ̂) = O
( (log n)s−1

n1+2/d

)
RMSE = O

( (log n)(s−1)/2

n1/2+1/d

)
Comparisons

1) Better than MC rate for all s, d

2) Rate sensitive to d, not very sensitive to s

3) Better than QMC rate for BVHK on [0, 1]D when d = 2 (just barely)

(log(n))(s−1)/2 vs (log(n))ds−1

Often f ◦ τ 6∈ BVHK

4) (Barely) better than Kronecker4 for d = 2 and s = 1 (was log(n)/n)

Note

g(x) = 1x∈rectΩ × f(x), usually not BVHK
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Followups to geometric nets
• maybe higher order nets would help Dick, Baldeaux

• geometric Halton sequences

• deterministic nets

Central limit theorem

Basu & Mukerjee (2016) building on Loh (2003)
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Transformations
Let τ transform U[0, 1]m into U(Ω).

∫
Ω

f(x) dx =

∫
[0,1]m

(f ◦ τ)(u) du

We want f ◦ τ ∈ BVHK for QMC and mixed partials in L2 for RQMC

BVHK compositions

For f ◦ τ : R→ R→ R:

f ∈ Lipschitz, τ ∈ BV =⇒ f ◦ τ ∈ BV. Josephy (1981)

No such simple rule in higher dimensions.

Variation is bounded via integrated absolute mixed partials.

So we study derivatives of f(τ(u)).
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Faà di Bruno
Derivatives of composite functions, R→ R→ R
Faà di Bruno (1855,1857), Arbogast (1800)

h(x) = f(g(x))

h′(x) = f ′(g(x))g′(x)

h′′(x) = f ′′(g(x))g′(x)2 + f ′(g(x))g′′(x)

h′′′(x) = f ′′′(g(x))g′(x)3 + 3f ′′(g(x))g′(x)g′′(x) + f ′(g(x))g′′′(x)

Our map is

RD → Rd → R
which has many more terms

Constantine & Savits (1996) give a general Faà di Bruno theorem

Basu & O (2016) simplify it for

∂u(f ◦ τ), u ⊆ {1, . . . , D}
i.e., differentiate at most once wrt each xj
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Some mappings
The following mappings work well for MC, but not QMC

Triangle T2 ⊂ R3

u ∈ [0, 1]3, xj = τj(u) =
log(uj)∑3
i=1 log(ui)

x ∼ U(T2)

Even xj(u) 6∈ BVHK([0, 1]3).

Sphere Sd−1 ⊂ Rd

xj = τj(u) =
Φ−1(uj)√∑d
i=1 Φ−1(ui)2

, x ∼ U(Sd−1)

Again, xj(u) 6∈ BVHK([0, 1]d).
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BVHK compositions
For u ∈ [0, 1]D and

f(τ1(u), . . . , τd(u))

If these hold

1) ∂vτj(uv:1−v) ∈ Lpj ([0, 1]|v|), pj ∈ [1,∞] v ⊆ {1, 2, . . . , D}

2)
∑d
j=1 1/pj 6 1

3) f ∈ C(d)(Rd)

Then

f ◦ τ ∈ BVHK
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RQMC smooth
1) ∂vτj ∈ Lpj ([0, 1]D), pj ∈ [2,∞], and

2)
∑d
j=1 1/pj 6 1/2

3) f ∈ C(d)(Rd)

make f ◦ τ smooth enough for RMSE= O(n−3/2+ε) under RQMC.

f ∈ C(d) can be weakened if pj are increased
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Fang & Wang (1993)
Three mappings to a simplex, one to the sphere, and one to a ball.

Example

Ad = {(x1, . . . , xd) | 0 6 x1 6 x2 6 · · · 6 xd 6 1}

Transformation

x1 = τ1(u) = u1

x2 = τ2(u) = u1 × u1/2
2

x3 = τ3(u) = u1 × u1/2
2 × u1/3

3

...

xd = τd(u) = u1 × u1/2
2 × u1/3

3 × · · · × u1/d
d
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Results

All five Fang & Wang mappings τ are in BVHK.

So composing with f has a chance.

None of them yield τ with mixed partials in L2.
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Smoother mappings
Importance sampling from [0, 1]d to Td (simplex) can yield RQMC smoothness.

The Jacobian exhibits a ‘dimension’ effect.

Effective sample size decays like (8/9)d.

Basu & O (2016)

Conclusion

The unit cube seems to be a relatively easy space to sample.

Despite GoH conjecture that it is the hardest.
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