QMC beyond the cube

Art B. Owen, Stanford University based on joint work with Kinjal Basu, LinkedIn **Kinjal Basu**

PhD 2016, Stanford Statistics

QMCEstimate
$$\mu = \int_{[0,1]^d} f(\boldsymbol{x}) \, \mathrm{d} \boldsymbol{x}$$
by $\hat{\mu} = \frac{1}{n} \sum_{i=1}^n f(\boldsymbol{x}_i)$ Koksma-Hlawka $|\hat{\mu} - \mu| \leqslant D_n^*(\boldsymbol{x}_1, \dots, \boldsymbol{x}_n) imes \|f\|_{\mathrm{HK}}$

Discrepancy is with respect to **axis-oriented** boxes $[\mathbf{0}, \boldsymbol{a}]$ or $[\boldsymbol{a}, \boldsymbol{b}]$

Variation is based on **axis-oriented** differences of differences.

Non-cubic domains
$$\mu = \int_{\Omega} f(\boldsymbol{x}) \, \mathrm{d}\boldsymbol{x}$$

Triangle	Simplex	Cylinder	
Disk	Sphere	Ball	Spherical triangle

What axes?

For discrepancy and variation

Cartesian products

$$\Omega = \prod_{j=1}^{s} \Omega_j, \quad \Omega_j \subset \mathbb{R}^{d_j}$$

 $\mathsf{Disk} \times \mathsf{Sphere} \times \mathsf{Sphere} \times \mathsf{Interval} \times \cdots \times \mathsf{Spherical}$ triangle

The cube

"You'll never get out of the cube."

The Cube (Jim Henson, 1969) is a surreal film about being stuck in a cube.

Image from wikipedia

General measures

 $D_n^*(\cdot;\mu) = D_n^*({m x}_1,\ldots,{m x}_n;\mu)$ is star discrepancy wrt measure μ

Theorem from 'Gates of Hell' paper

Aistleitner, Bilyk & Nikolov (2016), For any normalized measure μ on \mathbb{R}^d there exist points with $D_n^*(\cdot;\mu) \leq \log(n)^{d-1/2}/n$

Refs from GoH paper

• Aistleitner & Dick (2015)

discrepancy and Koksma-Hlawka for general signed measures.

- Aistleitner & Dick (2014) For any normalized measure μ on $[0, 1]^d$, $D_n^*(\cdot; \mu) \leqslant 63\sqrt{d} (2 + \log_2(n)^{(3d+1)/2})/n.$
- Beck (1984) had $\log(n)^{2d}$.
- Götz (2002) first Koksma-Hlawka for general measures.

QMC sampling

We emphasize constructions

- 1) Measure preserving maps from $[0,1]^d$ onto Ω , and
- 2) Direct constructions, e.g., by recursively partitioning Ω .

For users, they are frustrating.

• Constructions say how to do something.

Yes! You can do this.

For users, they are frustrating.

• Constructions say how to do something.

Yes! You can do this.

- Non-existence results show that constructions don't exist.
 - No! You can't do that.

Existence proofs

For users, they are frustrating.

• Constructions say how to do something.

Yes! You can do this.

• Non-existence results show that constructions don't exist.

No! You can't do that.

• Existence proofs show that non-existence proofs don't exist.

Maybe! Keep looking.

However

They can be interesting, elegant or deep.

(And may hint at constructions.)

Non-cubic domains

We want

$$\mu = \int_{\Omega} f(\boldsymbol{x}) \, \mathrm{d}\boldsymbol{x}, \quad \text{bounded } \Omega \subset \mathbb{R}^d, \quad \mathbf{vol}(\Omega) = 1$$

Transformations

For measure preserving $\tau:[0,1]^s\to \Omega$

$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} (f \circ \tau)(\boldsymbol{x}_i), \quad \boldsymbol{x}_i \in [0, 1]^s$$

But $f \circ \tau$ might not be well behaved. No problem for MC; challenge for QMC.

Choices for τ

Devroye (1986), Fang & Wang (1994), Pillards & Cools (2005)

The triangle

Brandolini, Colzani, Gigante & Travaglini (2013)

- define a 'trapezoid discrepancy' in the simplex and a variation
- prove a Koksma-Hlawka inequality

but gave no constructions of points with vanishing discrepancy.

Pillards & Cools (2005)

- lots of measure preserving mappings
- get variation & discrepancy & Koksma-Hlawka

but gave no conditions for vanishing discrepancy of transformed points.

Chen & Travaglini (2013)

prove existence of point sets with vanishing trapezoid discrepancy for the triangle

Trapezoid discrepancy

Brandolini et al. (2013,2014)

 $\Omega = \triangle(A, B, C)$

Discrepancy for $\mathcal{T}_{a,b,C} \cap \Omega$

 \sup over trapezoids

Corresponding variation

Elegant argument · · ·

 \cdots extends to simplices

Triangular van der Corput

For i 'th point in $T=\bigtriangleup(A,B,C)$, write

$$i = \sum_{k=1}^{K_i} d_{k,i} 4^{k-1}, \quad d_{k,i} \in \{0, 1, 2, 3\}$$

Split T into 4 congruent sub-triangles, T(0), T(1), T(2), T(3)Place \boldsymbol{x}_i in $T(d_{1,i})$

Recurse

Basu & O (2015)

Construction continued

Corners of the subtriangle

$$T(d) = \begin{cases} \bigtriangleup\left(\frac{B+C}{2}, \frac{A+C}{2}, \frac{A+B}{2}\right), & d = 0, \\ \bigtriangleup\left(A, \frac{A+B}{2}, \frac{A+C}{2}\right), & d = 1, \\ \bigtriangleup\left(\frac{A+B}{2}, B, \frac{B+C}{2}\right), & d = 2, \\ \bigtriangleup\left(\frac{A+C}{2}, \frac{B+C}{2}, C\right), & d = 3. \end{cases} \end{cases}$$

LMS Invited Lecture Series, CRISM Summer School 2018

For $n = 4^k$

- n subtriangles, 1 point each
- all discrepancy from within shaded triangles
- enumerate all possibilities
- upright vs inverted are different

Results

Let D_n^P be (anchored) parallelogram discrepancy.

First $n = 4^k$ points $D_n^P = \begin{cases} \frac{7}{9}, & n = 1\\ \frac{2}{3\sqrt{n}} - \frac{1}{9n} & \text{else} \end{cases}$ Any consecutive $n = 4^k$ points $D_n^P \leqslant \frac{2}{\sqrt{n}} - \frac{1}{n}$ First *n* points $D_n^P \leqslant \frac{12}{\sqrt{n}}$

Basu & O (2015)

Kronecker lattice in the triangle

Basu & O (2015)

- 1) Place a square grid in \mathbb{R}^2
- 2) Rotate it α radians
- 3) Intersect with right triangle
- 4) Linear map to desired \triangle

Critical: choose good α

Kronecker continued

 $\theta \in \mathbb{R}$ is **badly approximable** if there exists c > 0 with

 $\mathbf{dist}(n\theta,\mathbb{Z}) > c/n, \quad \forall n \in \mathbb{N}$

Quadratic irrationals $\theta = (a + b\sqrt{c})/d$ are badly approximable. Here $a, b, c, d \in \mathbb{Z}$, $b, d \neq 0$, square free c > 1

Chen & Travaglini (2007) There exist points with Polygon discrepancy = $O(\log(n)/n)$

Basu & O (2015) Here they are for trapezoids: rotate a grid by α radians where $\tan(\alpha)$ is a quadratic irrational.

E.g., for
$$\alpha = 3\pi/8$$
, $\tan(\alpha) = 1 + \sqrt{2}$

Triangular Kronecker

Triangular lattice points

A grid with a 'Kronecker rotation' gets $D_n^P = O(\log(n)/n)$. Basu & O (2015) This is the best possible rate. Chen & Travaglini (2013)

Generalization

Hexagon = six triangles, et cetera

Very unlikely to generalize to higher dimensional simplices or Cartesian products of simplices. (D. Bilyk personal communication)_{MS Invited Lecture Series, CRISM Summer School 2018}

Geometric van der Corput

Map $i = 1, 2, 3, \ldots$ into $\boldsymbol{x}_i \in \Omega$.

- replace triangle by more general set Ω
- split Ω into b equal volumes
- recursively

Splits of a triangle

The triangle can be recursively split 2-fold, 3-fold or 4-fold.

This allows digital constructions in those bases.

Not all splits work well

The base 3 split leads to very unfavorable aspect ratios.

The regions do not 'converge nicely' to a point.

E.g., Stromberg (1994) defines 'converge nicely' (Bounded aspect ratios.)

Splits don't have to be congruent

- Mix 'arc splits' and 'radial splits' to keep aspect ratio bounded
- Not a global alternation; different cells get different splits

Basu & O (2015)

See Beckers & Beckers (2012) for non-recursive splits LMS Invited Lecture Series, CRISM Summer School 2018

Tetrahedron

- chop off 4 tetrahedral corners
- remaining volume makes 4 more

- but they're not congruent to first 4
- binary splits may be better (split a longest edge)

Image: By Tomruen - Own work, CC BY-SA 3.0, wikipedia LMS Invited Lecture Series, CRISM Summer School 2018

Spherical triangles

- 4 way split at arc midpoints \cdots not equal area
- 4 way equal area split of Song, Kimerling, Sahr (2002) uses 'small circle' boundaries, not great circles
- binary splits may be better · · · use first step in Arvo (1995)

More about Arvo

Arvo shows how to pick D so

$$\frac{\mathbf{vol}(ABD)}{\mathbf{vol}(ABC)} = u$$

We can use u = 1/2.

Image by Peter Mercator - Own work, CC BY-SA 3.0, Wikipedia

Geometric nets

We want points in Ω^s for $\Omega \subset \mathbb{R}^d$

E.g., light path

camera $\rightarrow \bigtriangleup \rightarrow \bigtriangleup \rightarrow \bigtriangleup \rightarrow \dotsm \rightarrow \bigtriangleup \rightarrow$ light source

Use digital nets

A (t, m, s)-net, b = 4 or b = 2, puts $\boldsymbol{x}_i \in \triangle^s$ (componentwise)

Use other partitions

Other b-fold equal area recursive partitions can be used for $\Omega\neq \bigtriangleup$

Scramble the nets

Unbiasedness and error cancellation benefits under smoothness.

More generally

$$egin{aligned} \Omega &= \prod_{j=1}^s \Omega_j, \quad \Omega_j \subset \mathbb{R}^{d_j} \ & au_j : [0,1] o \Omega_j \quad ext{digital map, base } b \end{aligned}$$

Take
$$\boldsymbol{u}_i = (u_{i1}, \dots, u_{is}) \in [0, 1]^s$$
,
 (t, m, s) -net or (t, s) -sequence in base b .

Componentwise map: $\boldsymbol{x}_i = \tau(\boldsymbol{u}_i)$

$$\boldsymbol{x}_i = (x_{i1}, \dots, x_{is})$$
$$x_{ij} = \tau_j(u_{ij})$$

Scrambled geometric nets

Take $\mathbf{vol}(\Omega_j) = 1$ and $\Omega = \prod_{j=1}^s \Omega_j$ and let

$$\mu = \int_{\Omega} f(\boldsymbol{x}) \, \mathrm{d}\boldsymbol{x}, \qquad \hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} f(\boldsymbol{x}_i)$$

where x_i are scrambled geometric nets.

$$\begin{split} & \operatorname{For}\, f \in L^2(\Omega) \\ & \mathbb{E}(\hat{\mu}) = \mu \quad \operatorname{Var}(\hat{\mu}) = o\Big(\frac{1}{n}\Big) \quad \operatorname{Var}(\hat{\mu}) \leqslant \Gamma \times \frac{\sigma^2}{n} \\ & \text{where } \sigma^2 = \int_{\Omega} (f(\boldsymbol{x}) - \mu)^2 \, \mathrm{d}\boldsymbol{x} \text{, and} \\ & \Gamma \text{ is the largest gain coefficient of the } (t, m, s) \text{-net} \end{split}$$

E.g.,
$$t = 0$$
 implies $\Gamma \leq \exp(1) \doteq 2.718$

Convergence rates

 $\boldsymbol{\mu} = \int_{\Omega} f(\boldsymbol{x}) \, \mathrm{d}\boldsymbol{x}, \qquad \Omega \subset \mathbb{R}^{D}, \qquad D = \sum_{j=1}^{s} d_{j}, \quad \text{e.g., } D = s \times d.$

For smooth f, nested uniform scrambled nets and nice partitions

$$\operatorname{Var}(\hat{\mu}) = O\left(\frac{(\log n)^{s-1}}{n^{1+2/d}}\right)$$

Basu & O (2015)

Two kinds of smooth

1) $\partial^{1:D} f$ continuous and all Ω_j Sobol' extensible (defined next) 2) $f \in C^D(\Omega)$ (using the Whitney extension)

Sobol' extension

It begins with the fundamental theorem of calculus (FTC)

$$f(x) = f(c) + \int_c^x f'(y) \,\mathrm{d}y$$

Dimension D, e.g., $D = d \times s$

 $f({\pmb x}) = f({\pmb c})$ plus 2^D-1 integrated partial derivatives along all 'lower faces'

Hybrid points

For $x, y \in \mathbb{R}^D$ and $u \in \{1, 2, ..., D\}$ the point $z = x_u : y_{-u}$ has $z_j = x_j$ for $j \in u$ and $x_j = y_j$ for $j \notin u$.

Rectangular hull, bounding box

Definition

 $\Omega \subset \mathbb{R}^d$ is Sobol' extensible with anchor $oldsymbol{c} \in \mathbb{R}^D$ if

 $oldsymbol{x} \in \Omega \implies \operatorname{rect}[oldsymbol{c}, oldsymbol{x}] \subset \Omega$

Sobol' extensible

Non-Sobol' extensible

No place to put the anchor $oldsymbol{c}$

Sobol' extension

Let $\Omega \subset \mathbb{R}^D$ be Sobol' extensible with anchor c and let $\partial^{1:D} f$ be continuous. Then the Sobol' extension of f is

$$\widetilde{f}(\boldsymbol{x}) = \sum_{u \subseteq 1:D} \int_{[\boldsymbol{c}_u, \boldsymbol{x}_u]} \partial^u f(\boldsymbol{c}_{-u} : \boldsymbol{y}_u) \mathbf{1}_{\boldsymbol{c}_{-u}} : \boldsymbol{y} \in \Omega} \, \mathrm{d}\boldsymbol{y}_u$$

vs.
$$f(\boldsymbol{x}) = \sum_{u \subseteq 1:D} \int_{[\boldsymbol{c}_u, \boldsymbol{x}_u]} \partial^u f(\boldsymbol{c}_{-u} : \boldsymbol{y}_u) \, \mathrm{d}\boldsymbol{y}_u$$
 (FTC)

Properties

$$\widetilde{f}(oldsymbol{x}) = f(oldsymbol{x})$$
 for $oldsymbol{x} \in \Omega$

Low variation

 $\partial^{1:D}\widetilde{f}$ not necessarily continuous but \widetilde{f} satisfies the FTC

Conditions

- 1) $\Omega \subset \mathbb{R}^d$ bounded and Sobol' extensible
- 2) x_i a geometric net, bounded 'gain' coefs
- 3) nice convergent splits
- 4) $f \in L^2(\Omega^s)$
- 5) $\partial^{1:s} f$ continuous

Conclusion

$$\operatorname{Var}(\hat{\mu}) = O\left(\frac{(\log n)^{s-1}}{n^{1+2/d}}\right)$$

as $n = b^m \to \infty$. Basu & O (2015)

Challenge:

showing Haar wavelet coefficients decay via Sobol' (or Whitney) extension from Ω to \mathbb{R}^d

Dimension
$$D = ds$$

$$\operatorname{Var}(\hat{\mu}) = O\left(\frac{(\log n)^{s-1}}{n^{1+2/d}}\right) \qquad \operatorname{RMSE} = O\left(\frac{(\log n)^{(s-1)/2}}{n^{1/2+1/d}}\right)$$

Comparisons

- 1) Better than MC rate for all s, d
- 2) Rate sensitive to d, not very sensitive to s
- 3) Better than QMC rate for BVHK on $[0,1]^D$ when d = 2 (just barely) $(\log(n))^{(s-1)/2} \operatorname{vs} (\log(n))^{ds-1}$ Often $f \circ \tau \notin \operatorname{BVHK}$
- 4) (Barely) better than Kronecker riangle for d=2 and s=1 (was $\log(n)/n$)

Note

$$g(\boldsymbol{x}) = 1_{\boldsymbol{x} \in \mathbf{rect}\Omega} \times f(\boldsymbol{x}), \quad \text{usually not BVHK}$$

Followups to geometric nets

- maybe higher order nets would help Dick, Baldeaux
- geometric Halton sequences
- deterministic nets

Central limit theorem

Basu & Mukerjee (2016) building on Loh (2003)

Transformations

Let τ transform $\mathbf{U}[0,1]^m$ into $\mathbf{U}(\Omega)$.

$$\int_{\Omega} f(\boldsymbol{x}) \, \mathrm{d}\boldsymbol{x} = \int_{[0,1]^m} (f \circ \tau)(\boldsymbol{u}) \, \mathrm{d}\boldsymbol{u}$$

We want $f \circ \tau \in \mathsf{BVHK}$ for QMC and mixed partials in L^2 for RQMC

BVHK compositions

For $f \circ \tau : \mathbb{R} \to \mathbb{R} \to \mathbb{R}$:

 $f \in \text{Lipschitz}, \tau \in \mathsf{BV} \implies f \circ \tau \in \mathsf{BV}.$ Josephy (1981)

No such simple rule in higher dimensions.

Variation is bounded via integrated absolute mixed partials.

So we study derivatives of $f(\tau(\boldsymbol{u})).$

Faà di Bruno

Derivatives of composite functions, $\mathbb{R} \to \mathbb{R} \to \mathbb{R}$ Faà di Bruno (1855,1857), Arbogast (1800)

$$\begin{split} h(x) &= f(g(x)) \\ h'(x) &= f'(g(x))g'(x) \\ h''(x) &= f''(g(x))g'(x)^2 + f'(g(x))g''(x) \\ h'''(x) &= f'''(g(x))g'(x)^3 + 3f''(g(x))g'(x)g''(x) + f'(g(x))g'''(x) \end{split}$$

Our map is

$$\mathbb{R}^D \to \mathbb{R}^d \to \mathbb{R}$$

which has many more terms

Constantine & Savits (1996) give a general Faà di Bruno theorem

Basu & O (2016) simplify it for

 $\partial^u (f\circ au)$, $u\subseteq \{1,\ldots,D\}$

i.e., differentiate at most once wrt each x_j

Allows tests of BVHK.

Some mappings

The following mappings work well for MC, but not QMC

Triangle $\mathbb{T}^2 \subset \mathbb{R}^3$

$$\boldsymbol{u} \in [0,1]^3, \quad x_j = \tau_j(\boldsymbol{u}) = \frac{\log(u_j)}{\sum_{i=1}^3 \log(u_i)} \quad \boldsymbol{x} \sim \mathbf{U}(\mathbb{T}^2)$$

Even $x_j(\boldsymbol{u}) \notin \mathrm{BVHK}([0,1]^3)$.

Sphere
$$\mathbb{S}^{d-1} \subset \mathbb{R}^d$$

 $x_j = \tau_j(\boldsymbol{u}) = \frac{\Phi^{-1}(u_j)}{\sqrt{\sum_{i=1}^d \Phi^{-1}(u_i)^2}}, \quad \boldsymbol{x} \sim \mathbf{U}(\mathbb{S}^{d-1})$

Again, $x_j(\boldsymbol{u}) \notin \mathrm{BVHK}([0,1]^d)$.

BVHK compositions

For $oldsymbol{u} \in [0,1]^D$ and

 $f(\tau_1(\boldsymbol{u}),\ldots,\tau_d(\boldsymbol{u}))$

If these hold

1) $\partial^{v} \tau_{j}(\boldsymbol{u}_{v}: \mathbf{1}_{-v}) \in L^{p_{j}}([0, 1]^{|v|}), \quad p_{j} \in [1, \infty] \quad v \subseteq \{1, 2, \dots, D\}$ 2) $\sum_{j=1}^{d} 1/p_{j} \leq 1$ 3) $f \in C^{(d)}(\mathbb{R}^{d})$

Then

 $f \circ \tau \in \mathrm{BVHK}$

RQMC smooth

- 1) $\partial^v \tau_j \in L^{p_j}([0,1]^D)$, $p_j \in [2,\infty]$, and
- 2) $\sum_{j=1}^{d} 1/p_j \leqslant 1/2$
- 3) $f \in C^{(d)}(\mathbb{R}^d)$

make $f \circ \tau$ smooth enough for RMSE= $O(n^{-3/2+\epsilon})$ under RQMC.

 $f \in C^{(d)}$ can be weakened if p_j are increased

Fang & Wang (1993)

Three mappings to a simplex, one to the sphere, and one to a ball.

Example

$$A_d = \{ (x_1, \dots, x_d) \mid 0 \leqslant x_1 \leqslant x_2 \leqslant \dots \leqslant x_d \leqslant 1 \}$$

Transformation

$$x_{1} = \tau_{1}(\boldsymbol{u}) = u_{1}$$

$$x_{2} = \tau_{2}(\boldsymbol{u}) = u_{1} \times u_{2}^{1/2}$$

$$x_{3} = \tau_{3}(\boldsymbol{u}) = u_{1} \times u_{2}^{1/2} \times u_{3}^{1/3}$$

$$\vdots$$

$$x_{d} = \tau_{d}(\boldsymbol{u}) = u_{1} \times u_{2}^{1/2} \times u_{3}^{1/3} \times \cdots \times u_{d}^{1/d}$$

Results

All five Fang & Wang mappings τ are in BVHK.

So composing with f has a chance.

None of them yield τ with mixed partials in L^2 .

Smoother mappings

Importance sampling from $[0,1]^d$ to \mathbb{T}^d (simplex) can yield RQMC smoothness.

The Jacobian exhibits a 'dimension' effect.

Effective sample size decays like $(8/9)^d$.

Basu & O (2016)

Conclusion

The unit cube seems to be a relatively easy space to sample.

Despite GoH conjecture that it is the hardest.

Thanks

- Lecturers: Nicolas Chopin, Mark Huber, Jeffrey Rosenthal
- Guest speakers: Michael Giles, Gareth Roberts
- The London Mathematical Society: Elizabeth Fisher, Iain Stewart
- CRISM & The University of Warwick, Statistics
- Sponsors: Amazon, Google
- Partners: ISBA, MCQMC, BAYSM
- Poster: Talissa Gasser, Hidamari Design
- NSF: DMS-1407397 & DMS-1521145
- Planners: Murray Pollock, Christian Robert, Gareth Roberts
- Support: Paula Matthews, Murray Pollock, Shahin Tavakoli