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Outline
1) We want a permutation test.

2) We don’t want to do any permutations.

3) Reverse QMC: our answer is a proportion, the approximation is an integral.

Contributions

1) Test method.

2) New understanding of Stolarsky’s invariance principle.

3) Additional connections.
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Permutation tests
We have (Xi, Yi) for i = 1, . . . , n and wonder if X and Y have an association.

Let X = (X1, . . . , Xn)T and Y = (Y1, . . . , Yn)T.

Let π be a permutation of {1, 2, . . . , n} and Xπ have elements Xπ(i).

p-value

T obs ≡ T (X,Y ) measures X,Y dependence

• p =
1

n!

∑
π

1T (Xπ,Y )>T obs

• This p value is exact (vs independence).

• Based on group theory Lehmann & Romano (2005)

• Power depends on T (·, ·).

• Expensive to compute.
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Are tests still a thing?

It seems they are, despite criticism and potential misuse.

The p-value measures the sample size, et cetera.

Why isn’t everyone a Bayesian by now?

Brad Efron wrote about that.

George Box advocated Bayes for estimation and frequentism for tests.
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Permutation issues
It is very expensive to enumerate all N = n! permutations.

For binary X there are only N =
(
m0+m1

m0

)
distinct ones. Still expensive.

Parkinson’s studies

Data for the paper.

Xi = 1 for Parkinsons’s, 0 otherwise.

First author n m1 m0 N =
(
m1+m0

m1

)
Zhang 29 11 18 3.5× 107

Moran 43 29 14 7.9× 1010

Scherzer 72 50 22 1.8× 1018
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Monte Carlo sampling
πi ∼ unif random permutation

p̂ =

1 +
M∑
i=1

1{T (Xπi ,Y ) > T obs}

M + 1

Adding 1 to numerator keeps p̂ > 0. 0’th permutation is original data.

Nearly exact

p̂
�∼ U

{
1

M
,

2

M
,

3

M
, . . . , 1

}
for M � N

Barnard (1963)
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Granularity
True p always > 1/N , where

N = n! or

(
m0 +m1

m0

)

Sample granularity

Monte Carlo p̂ > 1/M .

Maybe p� p̂.

Also

We really want p̂ > 1/N and never p̂ = 0.
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It is still expensive
If we need p̂ 6 ε to reject H0.

Then we need M > 1/ε.

Knijnenberg et al.’s (2009) rule of thumb:

M > 10/ε

Why small ε?

Adjust for making many tests.

Genome wide association studies (GWAS) use ε = 5× 10−8:

M > 2× 108
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Gene association tests
Expression Ygi for gene g subject i.

Relate to Xi ∈ {0, 1}
E.g., Xi = 1 if subject i has Parkinson’s disease, 0 else.

An association might be causal.

Two cases

• Xi is disease status; maybe Yg → X

• Xi is a treatment; maybe X → Yg

Commonly measure association via correlation.
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Single gene tests
Center and scale:

XT1 = 0, XTX = 1, Y T
g 1 = 0, Y T

g Yg = 1, g ∈ G

Correlation

ρ̂g = XTYg

t statistic

tg =
√
n− 2

ρ̂g√
1− ρ̂2g
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Gene set tests
Set of G of G related genes: G = {g1, g2, . . . , gG}
E.g., GO groups, KEGG

Benefits of gene set tests

1) Interpretation: the genes have similar function.

2) Power: combined evidence of individually small effects.

Plethorae

Ackermann & Strimmer (2009):

Compare 261 gene set testing proposals.

Extensive simulations.

They find two clear (families of) winners.

The winners are very simple.
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The winners
Linear winners∑

g∈G
tg &

∑
g∈G

XTYg

Quadratic winners∑
g∈G

t2g &
∑
g∈G

(XTYg)
2

Some other winners tied these.

p-values came from permutations of X wrt Y .∑
tg used by Tian et al. (2005)∑
tg is the JG score of Jiang & Gentleman (2007).
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Why so similar?
The main use case is for many small ρg .

Taylor expansion

tg
.
=
√
n− 2

(
ρ̂g +

1

2
ρ̂3g

)
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Permutations for linear statistics
∑
g∈G

XTYg = XTY for Yi ≡
∑
g∈G

Ygi

So we will approximate the permutation distribution of a linear test statistic.

Quadratic case

Dissertation of Hera He (2016) addresses the quadratic case.

Importance sampling and sequential Monte Carlo

Larson & O (2015) fit gamma distributions.

There is no (known) saddlepoint approximation.
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Approximate permutation tests
In addition to plain Monte Carlo tests there are

Saddlepoint approximations

Survey in Reid (1988).

For permutations of linear statistics: Robinson (1982)

Moment and extreme value approximations

Eden & Yates (1933)

Zhou, Wang & Wang (2009)

Larson & O (2015)

Knijnenberg, Wessels, Reinders, Shmulevich (2009)

Not accurate enough, or lacking theory, or numerically problematic.
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The sphere
Let X ∈ {0, 1}n with m0 > 0 0s and m1 > 0 1s.

Let Y ∈ Rn (not constant).

Center and scale

x ≡ X − X̄
sX
√
n

y ≡ Y − Ȳ
sY
√
n

x,y ∈ Sd ≡ {z ∈ Rd+1 | zTz = 1} d = n− 1

Subsphere

x,y ∈{z ∈ Rn−1 | zTz = 1 & zT1 = 0}

≡ Sn−2

So d = n− 2 for the ‘equator’ of Sn−1.
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Permutation p-value
Original data x0 and y0, ρ̂ = xT

0y0.

N permutations

N =

(
n

m0

)
=

(
n

m1

)
=

(
m0 +m1

m1

)

p =
1

N

N−1∑
i=0

1{xT
i y0 > ρ̂}.

For permutations x0,x1, . . . ,xN−1 of x0.
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Spherical caps
Cap with center y ∈ Sd and “height” t,−1 6 t 6 1:

C(y; t) = {z ∈ Sd | yTz > t}

Source: http://hubpages.com/education/Volume-of-a-Spherical-Cap-Formula-and-Examples
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Geometry of p-values

p̂ =
1

N

N−1∑
i=0

1{xT
i y0 > ρ̂} =

1

N

N−1∑
i=0

1{xi ∈ C(y; ρ̂)}

First approximation

The p-value is the fraction of permuted points in C(y0; ρ̂).

We could approximate it by

p̂1 =
vol(C(y0; ρ̂))

vol(Sd)

This first approximation is not so good. (It is actually the t-test.)

It leads us to better ones:

p̂2 and p̂3 (below).
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Data in Sd

Sd

●●

x0

●●

y0

Binary x0

Real y0
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Data in Sd
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x0

●●

y0

Binary x0

Real y0

Permutations:

x0,x1, . . . ,xN−1
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Data in Sd

Sd
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Binary x0

Real y0

Permutations:

x0,x1, . . . ,xN−1

Spherical cap C(y0; ρ̂)

p = 1
N#{xi in cap}

p̂1(y; ρ̂) =
vol(C(y0; ρ̂))

vol(Sd)
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Mean square discrepancy
Is p̂1 close to p?

∫ 1

−1

∫
Sd

(p̂1(y, t)− p(y, t))2 dσd(y) dt

=

∫ 1

−1

∫
Sd

(
σd(C(y; t))− 1

N

N−1∑
k=0

1{xk ∈ C(y; t)}
)2

dσd(y) dt

Notes

σd is the uniform (Haar) measure on Sd.

This compares p̂1 to p for all centers y ∈ Sd all heights t.

We are more interested in accuracy of small caps: p, p̂� 1.
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Stolarsky’s invariance principle
For any x0,x1, . . . ,xN−1 ∈ Sd∫ 1

−1

∫
Sd

(p̂1(y, t)− p(y, t))2 dσd(y) dt

= Cd

[ ∫
Sd

∫
Sd
‖x− y‖ dσd(x) dσd(y)− 1

N2

N−1∑
k=0

N−1∑
`=0

‖xk − x`‖
]

Cd = ωd+1/(dωd) where ωd is surface measure of Sd

Notes
L2 left side and L1 right side.

Like Székely & Rizzo (2013) energy distance

Lowest discrepancy from widest spaced points.

Stolarsky (1973)
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Weighted Stolarsky
Brauchart & Dick (2013)∫ 1

−1
v(t)

∫
Sd

∣∣∣∣σd(C(y; t))− 1

N

N−1∑
k=0

1C(y;t)(xk)

∣∣∣∣2 dσd(y) dt

=
1

N2

N−1∑
k=0

N−1∑
`=0

Kv(xk,x`)−
∫
Sd

∫
Sd
Kv(x,y) dσd(x) dσd(y)

Reproducing kernel

Kv(x,y) =

∫ 1

−1
v(t)

∫
Sd

1C(z;t)(x)1C(z;t)(y) dσd(z) dt

Setting v(t) = 1

Yields Kv(x,y) = 1− Cd‖x− y‖.

Recovers the original Stolarsky identity.
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Size focussed Stolarsky
∫ 1

−1
v(t)

∫
Sd

∣∣∣∣σd(C(y; t))− 1

N

N−1∑
k=0

1C(y;t)(xk)

∣∣∣∣2 dσd(y) dt

Choose v(t) to zoom in on, e.g., ρ̂ = 0.4

0.0 0.2 0.4 0.6 0.8 1.0

0
10

20
30

40

Spike weight function

t

v(
t)

width ε1

height ε2

NB: ρ̂ = 0.4 is pretty large. So p would be tiny for reasonable n.LMS Invited Lecture Series, CRISM Summer School 2018
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Limiting argument
Let vε(t) = 1

ε1
1{ρ̂ 6 t 6 ρ̂+ ε1}+ ε2

Take limε1→0 limε2→0 both sides of weighted Stolarsky identity

What we get

RMSE of p̂1 = vol(C(y; ρ̂)) vs p over spherical caps of exactly the desired volume.

The volume p̂1 of the spherical cap C(y; ρ̂) does not depend on y.
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Result
He, Basu, Zhao & O (2016)∫

Sd
|p̂1(y, t)− p(y, t)|2 dσd(y) =

N−1∑
k=0

N−1∑
`=0

σd
(
C2(xk,x`; t)

)
− p̂1(t)2

C2(xk,x`; t) ≡ C(xk; t) ∩ C(x`; t)

Intersection of caps

LMS Invited Lecture Series, CRISM Summer School 2018



QMC4: Permutations and Stolarsky 30

Probabilistic interpretation
We get a short probabilistic derivation of the Stolarsky invariance principle, using events

xk ∈ C(y; t) i.e. y ∈ C(xk; t)

and

xk,x` ∈ C(y; t) i.e. y ∈ C(xk; t) ∩ C(x`; t)

See He, Basu, Zhao, O. (2016)

p(y0; ρ̂) =
1

N

N−1∑
k=0

1{xk ∈ C(y0; ρ̂)} =
1

N

N−1∑
k=0

Zk

Zk = Zk(ρ̂) = 1{y0 ∈ C(xk; ρ̂)}

Accuracy
p̂1 = E(p(y; ρ̂)) under y ∼ U(Sd). (Reference distribution 1) He, Basu, Zhao, O (2016)

RMSE = VarRef 1(p̂1) ≡ Var1(p̂1)

LMS Invited Lecture Series, CRISM Summer School 2018



QMC4: Permutations and Stolarsky 31

Geometry and calculus
σd is volume element of unit sphere.

σd(C(xj ; ρ̂)) = calculus

Intersection of two caps

σd(C2(xj ,xk; ρ̂)) ≡ σd
(
C(xj ; ρ̂) ∩ C(xk; ρ̂)

)
= even more calculus

See He, Basu, Zhao, O (2018).

Incomplete Beta function.
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Computation of Var1(p)
We need N2 values of σd

(
C2(xk,x`; t)

)
.

It depends on t and xT
kx`

There are only m = min(m0,m1) distinct xT
kx` values.

Recall x0 is binary

X = ( 0, 0, . . . , 0︸ ︷︷ ︸
m0

, 1, 1, . . . , 1︸ ︷︷ ︸
m1

)

x0 = (α, α, . . . , α︸ ︷︷ ︸
m0

, β, β, . . . , β︸ ︷︷ ︸
m1

)

α = −
√
m1/nm0, β =

√
m0/nm1

Swap distance

swap(xk,x`) = #{i | xki > 0 > x`i}
LMS Invited Lecture Series, CRISM Summer School 2018
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Swap distance
If swap(xk,x`) = r then

xT
kx` ≡ u(r) = 1− r

( 1

m0
+

1

m1

)
Now

Var1(p(y; t)) =
1

N

min(m0,m1)∑
r=0

(
m0

r

)(
m1

r

)
V2(u(r); t, d)− p̂1(t)2

V2(u; t, d) = σd
(
C2(x,y; t)

)
for xTy = u

Upshot

p̂1 = E1(p(y; ρ̂)).

From m = min(m0,m1) integrals we get Var1(p).
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Reference distribution 1
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● ●
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●

●

●

●

● y ∼ U(Sd)

Move red circle over Sd

Get p̂1 = E(#pts inside)

and Var(#pts inside)

What we would prefer

• Letting F approach singleton on {y0}

• Replacing RMSE by sup norm
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Finer aproximation
Ref. distn 1 gives accuracy of caps of size exactly p̂1 when y ∼ U(Sd).

Reference distribution 2

Constrain cap centers too: yTx′ = yT
0x
′ for a special point x′.

Our favorite x′ is x0, then:

y ∼ U
{
z ∈ Sd | zTx0 = yT

0x0

}
Projection

y = ρ̂x0 +
√

1− ρ̂2y∗

y∗ ∼ U
{
y ∈ Sd | yTx0 = 0

}
≡ Sd−1

Geometrical analysis proceeds via this projection.
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Reference distribution 2
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yTx0 = yT
0x0
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Ref distn 2 ctd
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y uniform on blue circle

yTx0 = yT
0x0

Red caps have same volume as orig.

And are at same distance from x0

We will get E2(p) and Var2(p)

Every red circle contains x0

So E2(p) > 1/N (granularity)
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Using ref distn 2
We will find p̂2(y0; t) = E2(p(y; t))

Average true p value for y on the circle

and given cap volume

We really want sup{p(y, t) | yTx0 = yT
0x0}

We will get Var2(p(y, t)).

Alternative constraint
Let c = arg maxk x

T
ky0 = arg mink ‖xk − y0‖

Closest permutation to y0

p̂3 = E(p(y, t) | yTxc = yT
0xc)

Even more conditioning
If we could constrain (condition on) all yTxi we would have the exact p.

If we could constrain ‖y − y0‖ = ε→ 0 we could approach the exact p.
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Two ways to do it
Find all the single and double point inclusion probabilities under distn 2.

Handle all swap distances r = 0, 1, . . . ,min(m0,m1) ≡ m among x0, xk, x`.

It takes O(m3) low dimensional integrals.

See He, Basu, Zhao, O (2016)

Stolarsky

Instead of above probabilistic approach, we can also get there via Stolarsky, further generalizing

Brauchart & Dick (2013).
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Doubly generalized Stolarsky∫ 1

−1
v(t)

∫
Sd
h(yTx0)

∣∣σd(C(y; t))− p(y, t)
∣∣2 dσd(y) dt

= fairly long expression

with a new reproducing kernel

Take limits

h→ point mass at yTx0 = yT
0x0

v → point mass at ρ̂

Get the same answer as by probability/geometry.

He, Basu, Zhao, O (2016).
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Numerical comparisons
We have estimators

• p̂1: average of p over caps C(y; ρ̂)

• p̂2: average of p over caps C(y; ρ̂) with yTx0 = yT
0x0

• p̂3: like p̂2 but using closest xk to y0

We can also compute E((p− p̂j)2) under ref distns 1 and 2.
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RMSE of p̂1 under ref 1
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Recall p̂1 = σd(C(· ; ρ̂))

m0 = m1 from 5 to 200

m0 6= m1 was similar

RMSE1(p̂1)→ 0 as p̂1 → 0

RMSE1(p̂1)/p̂1 grows

Granularity problem
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RMSE of p̂2 under ref 2
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Recall p̂2 = E2(p(y; ρ̂))

Note 45 degree line

Relative error proportional to mean

p̂2 → 1/N

RMSE = 0 for 1/N 6 p̂2 < 2/N
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Coefficient of variaton of p̂2
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Supremum grows with n

But does not get very large

p̂2 = 10−30 RMSE = 5× 10−30

For m0 = m1 = 70

p̂2 = 10−50 RMSE = 10−49

For m0 = m1 = 100

LMS Invited Lecture Series, CRISM Summer School 2018



QMC4: Permutations and Stolarsky 45

Comparison
phat1 phat2
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Findings for normal data
1) p̂1 (t test) not very accurate

2) Saddlepoint accurate, but usually underestimates

3) p̂2 better than p̂1 and underestimates less

4) p̂3 more conservative than p̂2

Similar results for Exponential, t(5) and U(0, 1)

Dissertation of Hera He (2016): p̂2 comes out best on some real gene sets on Parkinson’s

disease.
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Computation time

Data Set Saddle p̂1 p̂2 p̂3

Zhang 0.0631 0.0024 0.0031 0.0032

Moran 0.0894 0.0029 0.0037 0.0038

Scherzer 0.1394 0.0034 0.0045 0.0047

Averaged over 6180 gene sets.
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p̂ vs true p
6180 gene sets, 5 6 |G| 6 2131, avg size 93.08

True p from big Monte Carlo.

No small p values in Zhang data

Data Condition Corr. # sets p̂1 p̂2 p̂3 p̂saddle

Moran p < 0.05 Pearson 3594 0.9997 0.9997 0.9997 0.9934

Moran p < 0.05 Kendall 3594 0.9857 0.9857 0.9866 0.9397

Moran p < 10−4 Pearson 253 0.9684 0.9688 0.9787 0.7930

Moran p < 10−4 Kendall 253 0.8820 0.8820 0.9033 0.6863

Scherzer p < 0.05 Pearson 504 0.9997 0.9997 0.9997 0.9836

Scherzer p < 0.05 Kendall 504 0.9871 0.9871 0.9871 0.8965

Scherzer p < 10−3 Pearson 16 0.9950 0.9950 0.9956 0.8794

Scherzer p < 10−3 Kendall 16 0.9500 0.9500 0.9500 0.7833
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Choices
Method Strength Weakness

All permutations Exact Too expensive

Monte Carlo Near exact Cannot attain small p

Saddlepoint Relative error often too small, no error estimate

p̂1 Simple. RMS error Inaccurate near granularity

p̂2 Relative error, RMS error No prob. statement

p̂3 Relative error, biased up, RMS error No prob. statement

Last 4 methods estimate p. But have no all-encompasing probability statement.
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Connection and directions
• Quadratic statistics: dissertation of Hera He (2016)

• Ref 1 is similar to rotation tests

Langsrud (2005), Wu, Lim, Vaillant, Asselin-Labat, Visvader, Smyth (2010)

• There are often covariates

• GWAS needs p 6 5× 10−8 for single SNPs

permutations not popular

approximations may facilitate SNP set analysis
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Challenges
1) We really want an L∞ analog of Stolarsky.

2) Stolarsky matches energy distance on the sphere. Does the connection go deeper?

3) The quadratic case involves ‘quadratic caps’; some geometric challenges.

{x ∈ Sd | xTQx > q}
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Co-authors and other help
• Hera He & Kinjal Basu & Qingyuan Zhao

• John Robinson, comments on saddlepoints

• Neil J. A. Sloane, comments on geometry of numbers

• Jessica Larson and Genentech folks
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