Optimising and Adapting Metropolis Algorithms

Jeffrey S. Rosenthal
University of Toronto
jeff@math.toronto.edu
http://probability.ca/jeff/

(LMS/CRiSM Summer School, Warwick, July 2018)

(Brief) Background / Context / Motivation

Often have complicated, high-dimensional density functions $\pi: \mathcal{X} \rightarrow[0, \infty)$, for some $\mathcal{X} \subseteq \mathbf{R}^{d}$ with d large.
(e.g. Bayesian posterior distribution)

Want to compute probabilities like:

$$
\Pi(A):=\int_{A} \pi(x) d x
$$

and/or expected values of functionals like:

$$
\mathbf{E}_{\pi}(h):=\int_{\mathcal{X}} h(x) \pi(x) d x
$$

Or, if π is unnormalised:

$$
\mathbf{E}_{\pi}(h):=\int_{\mathcal{X}} h(x) \pi(x) d x / \int_{\mathcal{X}} \pi(x) d x
$$

Calculus? Numerical integration?
Impossible, if π is something like ...

Typical π : Variance Components Model

State space $\mathcal{X}=(0, \infty)^{2} \times \mathbf{R}^{K+1}$, so $d=K+3$, with

$$
\begin{aligned}
& \pi\left(V, W, \mu, \theta_{1}, \ldots, \theta_{K}\right) \\
= & C e^{-b_{1} / V} V^{-a_{1}-1} e^{-b_{2} / W} W^{-a_{2}-1} \\
& \times e^{-\left(\mu-a_{3}\right)^{2} / 2 b_{3}} V^{-K / 2} W^{-\frac{1}{2} \sum_{i=1}^{K} J_{i}} \\
\times & \exp \left[-\sum_{i=1}^{K}\left(\theta_{i}-\mu\right)^{2} / 2 V-\sum_{i=1}^{K} \sum_{j=1}^{J_{i}}\left(Y_{i j}-\theta_{i}\right)^{2} / 2 W\right],
\end{aligned}
$$

where a_{i} and b_{i} are fixed constants (prior), and $\left\{Y_{i j}\right\}$ are the data.
In the application: $K=19$, so $d=22$.
Integrate? Well, no problems mathematically, but ...
High-dimensional! Complicated! How to compute?
Try Monte Carlo!

Monte Carlo, Monaco

Estimation from sampling: Monte Carlo

Suppose we can sample from π, i.e. generate on a computer

$$
X_{1}, X_{2}, \ldots, X_{M} \sim \pi \quad \text { (i.i.d.) }
$$

(i.e., $\mathbf{P}\left(X_{i} \in A\right)=\int_{A} \pi(x) d x$ for each i, and independent).

Then can estimate by e.g.

$$
\mathbf{E}_{\pi}(h) \approx \frac{1}{M} \sum_{i=1}^{M} h\left(X_{i}\right)
$$

As $M \rightarrow \infty$, the estimate converges to $\mathbf{E}_{\pi}(h)$ (by the Law of Large Numbers), which good error bounds / confidence intervals (by the Central Limit Theorem).

Good. But how to sample from π ?
Often infeasible! (e.g. above example!)
Instead . . .

Markov Chain Monte Carlo (MCMC)

Given a complicated, high-dimensional target distribution $\pi(\cdot)$:
Find an ergodic Markov chain (random process) $X_{0}, X_{1}, X_{2}, \ldots$, which is easy to run on a computer, and which converges in distribution to π as $n \rightarrow \infty$.

Then for "large enough" $B, \mathcal{L}\left(X_{B}\right) \approx \pi$, so X_{B}, X_{B+1}, \ldots are approximate samples from π, and e.g.

$$
\mathbf{E}_{\pi}(h) \approx \frac{1}{M} \sum_{i=B+1}^{B+M} h\left(X_{i}\right), \text { etc. }
$$

Extremely popular: Bayesian inference, computer science, statistical genetics, statistical physics, finance, insurance, ...

But how to create such a Markov chain?

Random-Walk Metropolis Algorithm (1953)

This algorithm defines the chain $X_{0}, X_{1}, X_{2}, \ldots$ as follows.
Given X_{n-1} :

- Propose a new state $Y_{n} \sim Q\left(X_{n-1}, \cdot\right)$, e.g. $Y_{n} \sim N\left(X_{n-1}, \Sigma_{p}\right)$.
- Let $\alpha=\min \left[1, \frac{\pi\left(Y_{n}\right)}{\pi\left(X_{n-1}\right)}\right]$. (Assuming Q is symmetric.)
- With probability α, accept the proposal ($\operatorname{set} X_{n}=Y_{n}$).
- Else, with prob. $1-\alpha$, reject the proposal ($\operatorname{set} X_{n}=X_{n-1}$).

Try it: [APPLET] Converges to π !
Why? α is chosen just right so this Markov chain is reversible with respect to π, i.e. $\pi(d x) P(x, d y)=\pi(d y) P(y, d x)$. Hence, π is a stationary distribution. Also, chain will be aperiodic and (usually) irreducible. So, by general Markov chain theory, it converges to π in total variation distance: $\lim _{n \rightarrow \infty} \sup _{A}\left|\mathbf{P}\left(X_{n} \in A\right)-\pi(A)\right|=0$.

More complicated example?

Example: Particle Systems

Suppose have n independent particles, each uniform on a region.
What is, say, the average "diameter" (maximal distance)?
Sample and see! [pointproc.java] Works! Monte Carlo!
Now suppose instead that the particles are not independent, but rather interact with each other, with the configuration probability proportional to e^{-H}, where H is an energy function, e.g.

$$
H=\sum_{i<j} A\left|\left(x_{i}, y_{i}\right)-\left(x_{j}, y_{j}\right)\right|+\sum_{i<j} \frac{B}{\left|\left(x_{i}, y_{i}\right)-\left(x_{j}, y_{j}\right)\right|}+\sum_{i} C x_{i}
$$

A large: particles like to be close together.
B large: particles like to be far apart.
C large: particles like to be towards the left.
Can't directly sample, but can use Metropolis! [pointproc.java]

Okay, but Where's the Math?

MCMC's greatest successes have been in ... applications!

- Medical Statistics / Statistical Genetics / Bayesian Inference / Chemical Physics / Computer Science / Mathematical Finance

So, what is MCMC mathematical theory good for?

- Informs and justifies the basic algorithms.
(** Above Introduction)
- Quantifies how well the algorithms work.
(** Quantitative Bounds)
- Suggests new modifications of the algorithms.
- Determines which algorithm choices are best.
(** Optimal Scaling)
- Investigates high-dimensional behaviour. (** Complexity)
- Develops new MCMC directions. (** Adaptive MCMC)

First Topic: Quantitative Convergence Bounds

MCMC works eventually, i.e. $\mathcal{L}\left(X_{n}\right) \Rightarrow \pi$. Good!
But what about quantitative bounds, i.e. a specific number n_{*} such that, say, $\left|\mathbf{P}\left(X_{n_{*}} \in A\right)-\pi(A)\right|<0.01 \quad \forall A$?
(Not just "as $n \rightarrow \infty$ ".)
One method: coupling. (Many other methods: spectral, ...)
Consider two copies of the chain, $\left\{X_{n}\right\}$ and $\left\{X_{n}^{\prime}\right\}$.
Assume that $X_{0}^{\prime} \sim \pi$ (so $X_{n}^{\prime} \sim \pi \forall n$).
If we can "make" the two copies become equal for $n \geq T$, while respecting their marginal update probabilities, then $X_{n} \approx \pi$ too.

Specifically, the coupling inequality says:

$$
\left|\mathbf{P}\left(X_{n} \in A\right)-\pi(A)\right| \equiv\left|\mathbf{P}\left(X_{n} \in A\right)-\mathbf{P}\left(X_{n}^{\prime} \in A\right)\right| \leq \mathbf{P}(T>n)
$$

But how to apply this to a complicated MCMC algorithm?

Quantitative Bounds: Minorisation

Suppose there is $\epsilon>0$, and a probability measure ν, such that $P(x, y) \geq \epsilon \nu(y)$ for all $x, y \in \mathcal{X}$.
This "minorisation condition" gives an ϵ-sized "overlap" between the transition distributions $P(x, \cdot)$ and $P\left(x^{\prime}, \cdot\right)$.

That means at each iteration, we can make the two copies become equal with probability at least ϵ. Hence, $\mathbf{P}(T>n) \leq(1-\epsilon)^{n}$.

Therefore, $\left|\mathbf{P}\left(X_{n} \in A\right)-\pi(A)\right| \leq(1-\epsilon)^{n}, \quad \forall A$.
e.g. [APPLET], with that π, and $\gamma=3$: find that $P(x, y) \geq \epsilon \nu(y)$ for all x, y, where $\epsilon=0.2$, and $\nu(3)=\nu(4)=1 / 2$.

- So $\left|P^{n}(x, A)-\pi(A)\right| \leq(1-\epsilon)^{n}=(1-0.2)^{n}=(0.8)^{n}$.
- Hence, $\left|P^{n}(x, A)-\pi(A)\right|<0.01$ whenever $n \geq 21$.
- So $n_{*}=21$. "The chain converges in 21 iterations." Good!

But what about a harder example??

Example: Baseball Data Model

Hierarchical model for baseball hitting percentages (J. Liu): observed hitting percentages satisfy $Y_{i} \sim N\left(\theta_{i}, c\right)$ for $1 \leq i \leq K$, where $\theta_{1}, \ldots, \theta_{k} \sim N(\mu, V), c$ is a given constant, with $V, \mu, \theta_{1}, \ldots, \theta_{K}$ to be estimated. Priors: $\mu \sim$ flat, $V \sim I G(a, b)$.

Diagram:

For our data, $K=18$, so dimension $=20$.
High dimensional! How to estimate?

Baseball Data Model (cont'd)

MCMC solution: Run a Gibbs sampler for π.
Markov chain is $X_{k}=\left(V^{(k)}, \mu^{(k)}, \theta_{1}^{(k)}, \ldots \theta_{K}^{(k)}\right)$, updated by:

$$
\begin{aligned}
& V^{(n)} \sim I G\left(a+\frac{K-1}{2}, b+\frac{1}{2} \sum\left(\theta_{i}^{(n-1)}-\bar{\theta}^{(n-1)}\right)^{2}\right) ; \\
& \mu^{(n)} \sim N\left(\bar{\theta}^{(n-1)}, \frac{V^{(n)}}{K}\right) ; \\
& \theta_{i}^{(n)} \sim N\left(\frac{\mu^{(n)} c+Y_{i} V^{(n)}}{c+V^{(n)}}, \frac{V^{(n)} c}{c+V^{(n)}}\right) \quad(1 \leq i \leq K) ;
\end{aligned}
$$

where $\bar{\theta}^{(n)}=\frac{1}{K} \sum \theta_{i}^{(n)}$.
Recall that $K=18$, so dimension $=20$.
Complicated! How to analyze convergence?

Example: Baseball Data Model (cont'd)

Here we can find a minorisation $P(x, y) \geq \epsilon \nu(y)$, but only when $x \in C$ for a subset $C \subseteq \mathcal{X}$. ("small set")
But also find a "drift condition" $\mathbf{E}\left[f\left(X_{1}\right) \mid X_{0}=x\right] \leq \lambda f(x)+\Lambda$, for some $\lambda<1$ and $\Lambda<\infty$, where $f(x)=\sum_{i=1}^{K}\left(\theta_{i}-\bar{Y}\right)^{2}$; this "forces" returns to $C \times C$.

Can compute (R., Stat \& Comput. 1996):

- a drift condition towards $C=\left\{\sum_{i}\left(\theta_{i}-\bar{Y}\right)^{2} \leq 1\right\}$, with $\lambda=0.000289$ and $\Lambda=0.161$;
- a minorisation with $\epsilon=0.0656$, at least for $x \in C \subseteq \mathcal{X}$.

Then can use coupling to prove (R., JASA 1995) that

$$
\left|\mathbf{P}\left(X_{n} \in A\right)-\pi(A)\right| \leq(0.967)^{n}+(1.17)(0.935)^{n}, \quad n \in \mathbf{N}
$$

so e.g. $\left|\mathbf{P}\left(X_{n} \in A\right)-\pi(A)\right|<0.01$ if $n \geq 140$.

- So $n_{*}=140$. "The chain converges in 140 iterations." Good!

Realistic bounds for complicated statistical models!
(See also Jones \& Hobert, Stat Sci 2001, ...)

Does it Matter? Case Study: Independence Sampler

Consider Metropolis-Hastings where $\pi(x)=e^{-x}$, and proposals are chosen i.i.d. $\sim \operatorname{Exp}(k)$ with density $k e^{-k y}$, for some $k>0$.

- $k=1$
(i.i.d. sampling)

$\mathbf{E}(X)=1$; estimate $=1.001$. Excellent! Other k ?

Independence Sampler (cont'd)

- $k=0.01$

$\mathbf{E}(X)=1$; estimate $=0.993$. Quite good.

Independence Sampler (cont'd)

- $k=5$

$\mathbf{E}(X)=1$; estimate $=0.687$. Terrible: way too small!
What happened? Maybe we just got unlucky? Try again!
- Another try with $k=5$:

$\mathbf{E}(X)=1$; estimate $=1.696$. Terrible: way too big!
So, not just bad luck: $k=5$ is really bad. But why??

Independence Sampler: Theory

Why is $k=0.01$ pretty good, and $k=5$ so terrible?
Well, if $k \leq 1$, then $\forall x, q(x)=k e^{-k x} \geq k e^{-x}=k \pi(x)$. Then

$$
\begin{aligned}
& \alpha(x, y)=\min \left(1, \frac{\pi(y) q(x)}{\pi(x) q(y)}\right)=\min \left(1, \frac{\pi(y) / q(y)}{\pi(x) / q(x)}\right) \\
& \geq \min \left(1, \frac{\pi(y) / q(y)}{(1 / k)}\right)=k(\pi(y) / q(y))
\end{aligned}
$$

Then $P(x, y) \geq q(y) \alpha(x, y) \geq k \pi(y)$. Minorisation with $\epsilon=k!$
So, $\left|P^{n}(x, A)-\pi(A)\right| \leq(1-k)^{n}$.

- $k=1$: yes, $\epsilon=1$; converges immediately (of course). $n_{*}=1$.
- $k=0.01$: yes, $\epsilon=0.01$; and $(1-0.01)^{459}<0.01$, so
$n_{*}=459$; "chain converges within 459 iterations". (Pretty good.)
- $k=5$: no such ϵ. Not geometrically ergodic. In fact, we can prove (Roberts and R., MCAP, 2011) that with $k=5$, have $4,000,000 \leq n_{*} \leq 14,000,000$, i.e. takes millions of iterations!

Main Topic: How to Optimise MCMC Choices?

In theory, MCMC works with essentially any update rules, as long as they leave π stationary.

- Any symmetric proposal distribution Q. (Choices!)
- Non-symmetric proposals, with a suitably modified acceptance probability. ("Metropolis-Hastings") (e.g. Independent, Langevin)
- Update one coordinate at a time. ("Componentwise")
- Update from full conditional distributions. ("Gibbs Sampler")

But what choice works best? e.g. What γ in [APPLET]?

- If γ too small (say, $\gamma=1$), then usually accept, but move very slowly. (Bad.)
- If γ too large (say, $\gamma=50$), then usually $\pi\left(Y_{n+1}\right)=0$, i.e. hardly ever accept. (Bad.)
- Best γ is between the two extremes, i.e. acceptance rate should be far from 0 and far from 1. ("Goldilocks Principle")

Example: Metropolis for $\mathrm{N}(0,1)$

Target $\pi=N(0,1)$. Proposal $Q(x, \cdot)=N\left(x, \sigma^{2}\right)$.
How to choose σ ? Big? Small? What acceptance rate (A.R.)?

$$
\sigma=0.1 ?
$$

too small!

$$
\text { A.R. }=0.962
$$

$\sigma=25 ?$
too big!
A.R. $=0.052$

$\sigma=2.38$?
just right!
A.R. $=0.441$

The Goldilocks Principle in action!
What about higher-dimensional examples? If d increases, then σ should: decrease. But how quickly? On what scale? Theory?

