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(Brief) Background / Context / Motivation

Often have complicated, high-dimensional density functions
⇡ : X ! [0,1), for some X ✓ Rd with d large.

(e.g. Bayesian posterior distribution)

Want to compute probabilities like:

⇧(A) :=

Z

A
⇡(x) dx ,

and/or expected values of functionals like:

E⇡(h) :=

Z

X
h(x)⇡(x) dx .

Or, if ⇡ is unnormalised:

E⇡(h) :=

Z

X
h(x)⇡(x) dx

. Z

X
⇡(x) dx .

Calculus? Numerical integration?

Impossible, if ⇡ is something like . . .
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Typical ⇡: Variance Components Model

State space X = (0,1)2 ⇥ RK+1, so d = K + 3, with

⇡(V ,W , µ, ✓1, . . . , ✓K )

= C e�b1/VV�a1�1e�b2/WW�a2�1

⇥ e�(µ�a3)2/2b3V�K/2W� 1
2

PK
i=1 Ji

⇥ exp
h
�

KX

i=1

(✓i � µ)2/2V �
KX

i=1

JiX

j=1

(Yij � ✓i )
2/2W

i
,

where ai and bi are fixed constants (prior), and {Yij} are the data.

In the application: K = 19, so d = 22.

Integrate? Well, no problems mathematically, but . . .

High-dimensional! Complicated! How to compute?

Try Monte Carlo!
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Monte Carlo, Monaco
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Nice Place for a Conference!
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Estimation from sampling: Monte Carlo

Suppose we can sample from ⇡, i.e. generate on a computer

X1,X2, . . . ,XM ⇠ ⇡ (i .i .d .)

(i.e., P(Xi 2 A) =
R

A

⇡(x) dx for each i , and independent).

Then can estimate by e.g.

E⇡(h) ⇡ 1

M

MX

i=1

h(Xi ) .

As M ! 1, the estimate converges to E⇡(h) (by the Law of Large
Numbers), which good error bounds / confidence intervals (by the
Central Limit Theorem).

Good. But how to sample from ⇡?

Often infeasible! (e.g. above example!)

Instead . . .
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Markov Chain Monte Carlo (MCMC)

Given a complicated, high-dimensional target distribution ⇡(·):

Find an ergodic Markov chain (random process) X0,X1,X2, . . .,
which is easy to run on a computer, and which converges in
distribution to ⇡ as n ! 1.

Then for “large enough” B , L(XB) ⇡ ⇡, so XB , XB+1, . . . are
approximate samples from ⇡, and e.g.

E⇡(h) ⇡ 1

M

B+MX

i=B+1

h(Xi ) , etc.

Extremely popular: Bayesian inference, computer science,
statistical genetics, statistical physics, finance, insurance, . . .

But how to create such a Markov chain?
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Random-Walk Metropolis Algorithm (1953)

This algorithm defines the chain X0,X1,X2, . . . as follows.

Given Xn�1:

• Propose a new state Yn ⇠ Q(Xn�1, ·), e.g. Yn ⇠ N(Xn�1, ⌃p).

• Let ↵ = min
h
1, ⇡(Yn)

⇡(Xn�1)

i
. (Assuming Q is symmetric.)

• With probability ↵, accept the proposal (set Xn = Yn).

• Else, with prob. 1� ↵, reject the proposal (set Xn = Xn�1).

Try it: [APPLET] Converges to ⇡!

Why? ↵ is chosen just right so this Markov chain is reversible with
respect to ⇡, i.e. ⇡(dx)P(x , dy) = ⇡(dy)P(y , dx). Hence, ⇡ is a
stationary distribution. Also, chain will be aperiodic and (usually)
irreducible. So, by general Markov chain theory, it converges to ⇡
in total variation distance: limn!1 supA |P(Xn 2 A)� ⇡(A)| = 0.

More complicated example?
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Example: Particle Systems

Suppose have n independent particles, each uniform on a region.

What is, say, the average “diameter” (maximal distance)?

Sample and see! [pointproc.java] Works! Monte Carlo!

Now suppose instead that the particles are not independent, but
rather interact with each other, with the configuration probability
proportional to e�H , where H is an energy function, e.g.

H =
X

i<j

A
���(xi , yi )� (xj , yj)

���+
X

i<j

B���(xi , yi )� (xj , yj)
���
+
X

i

C xi

A large: particles like to be close together.
B large: particles like to be far apart.
C large: particles like to be towards the left.

Can’t directly sample, but can use Metropolis! [pointproc.java]
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Okay, but Where’s the Math?

MCMC’s greatest successes have been in . . . applications!

• Medical Statistics / Statistical Genetics / Bayesian Inference /
Chemical Physics / Computer Science / Mathematical Finance

So, what is MCMC mathematical theory good for?

• Informs and justifies the basic algorithms.
(** Above Introduction)

• Quantifies how well the algorithms work.
(** Quantitative Bounds)

• Suggests new modifications of the algorithms.

• Determines which algorithm choices are best.
(** Optimal Scaling)

• Investigates high-dimensional behaviour. (** Complexity)

• Develops new MCMC directions. (** Adaptive MCMC)
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First Topic: Quantitative Convergence Bounds

MCMC works eventually, i.e. L(Xn) ) ⇡. Good!

But what about quantitative bounds, i.e. a specific number n⇤
such that, say, |P(Xn⇤ 2 A)� ⇡(A)| < 0.01 8 A?

(Not just “as n ! 1”.)

One method: coupling. (Many other methods: spectral, . . . )

Consider two copies of the chain, {Xn} and {X 0
n}.

Assume that X 0
0 ⇠ ⇡ (so X 0

n ⇠ ⇡ 8n).
If we can “make” the two copies become equal for n � T , while
respecting their marginal update probabilities, then Xn ⇡ ⇡ too.

Specifically, the coupling inequality says:

|P(Xn 2 A)� ⇡(A)| ⌘ |P(Xn 2 A)� P(X 0
n 2 A)|  P(T > n) .

But how to apply this to a complicated MCMC algorithm?
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Quantitative Bounds: Minorisation

Suppose there is ✏ > 0, and a probability measure ⌫, such that
P(x , y) � ✏ ⌫(y) for all x , y 2 X .

This “minorisation condition” gives an ✏-sized “overlap” between
the transition distributions P(x , ·) and P(x 0, ·).
That means at each iteration, we can make the two copies become
equal with probability at least ✏. Hence, P(T > n)  (1� ✏)n.

Therefore, |P(Xn 2 A)� ⇡(A)|  (1� ✏)n, 8A.

e.g. [APPLET], with that ⇡, and � = 3: find that P(x , y) � ✏ ⌫(y)
for all x , y , where ✏ = 0.2, and ⌫(3) = ⌫(4) = 1/2.

• So |Pn(x ,A)� ⇡(A)|  (1� ✏)n = (1� 0.2)n = (0.8)n.

• Hence, |Pn(x ,A)� ⇡(A)| < 0.01 whenever n � 21.

• So n⇤ = 21. “The chain converges in 21 iterations.” Good!

But what about a harder example??
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Example: Baseball Data Model

Hierarchical model for baseball hitting percentages (J. Liu):
observed hitting percentages satisfy Yi ⇠ N(✓i , c) for 1  i  K ,
where ✓1, . . . , ✓k ⇠ N(µ,V ), c is a given constant, with
V , µ, ✓1, . . . , ✓K to be estimated. Priors: µ ⇠ flat, V ⇠ IG (a, b).

Diagram:

µ
. # &

✓1 . . . . . . ✓K ✓i ⇠ N(µ,V )
# #
Y1 . . . . . . YK Yi ⇠ N(✓i , c)

For our data, K = 18, so dimension = 20.

High dimensional! How to estimate?
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Baseball Data Model (cont’d)

MCMC solution: Run a Gibbs sampler for ⇡.

Markov chain is Xk = (V (k), µ(k), ✓(k)1 , . . . ✓(k)K ), updated by:

V (n) ⇠ IG

✓
a+

K � 1

2
, b +

1

2

X
(✓(n�1)

i � ✓
(n�1)

)2
◆

;

µ(n) ⇠ N

 
✓
(n�1)

,
V (n)

K

!
;

✓(n)i ⇠ N

 
µ(n)c + YiV (n)

c + V (n)
,

V (n)c

c + V (n)

!
(1  i  K ) ;

where ✓
(n)

= 1
K

P
✓(n)i .

Recall that K = 18, so dimension = 20.

Complicated! How to analyze convergence?
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Example: Baseball Data Model (cont’d)

Here we can find a minorisation P(x , y) � ✏ ⌫(y), but only when
x 2 C for a subset C ✓ X . (“small set”)

But also find a “drift condition” E[f (X1) |X0 = x ]  �f (x) + ⇤,
for some � < 1 and ⇤ < 1, where f (x) =

PK
i=1(✓i � Y )2; this

“forces” returns to C ⇥ C .

Can compute (R., Stat & Comput. 1996):

• a drift condition towards C =
�P

i (✓i � Y )2  1
 
, with

� = 0.000289 and ⇤ = 0.161;

• a minorisation with ✏ = 0.0656, at least for x 2 C ✓ X .

Then can use coupling to prove (R., JASA 1995) that

|P(Xn 2 A)� ⇡(A)|  (0.967)n + (1.17)(0.935)n , n 2 N ,

so e.g. |P(Xn 2 A)� ⇡(A)| < 0.01 if n � 140.

• So n⇤ = 140. “The chain converges in 140 iterations.” Good!

Realistic bounds for complicated statistical models!
(See also Jones & Hobert, Stat Sci 2001, . . . ) (15/54)

Does it Matter? Case Study: Independence Sampler

Consider Metropolis-Hastings where ⇡(x) = e�x , and proposals are
chosen i.i.d. ⇠ Exp(k) with density ke�ky , for some k > 0.

• k = 1 (i.i.d. sampling)

E(X ) = 1; estimate = 1.001. Excellent! Other k? (16/54)



Independence Sampler (cont’d)

• k = 0.01

E(X ) = 1; estimate = 0.993. Quite good.
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Independence Sampler (cont’d)

• k = 5

E(X ) = 1; estimate = 0.687. Terrible: way too small!

What happened? Maybe we just got unlucky? Try again!
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• Another try with k = 5:

E(X ) = 1; estimate = 1.696. Terrible: way too big!

So, not just bad luck: k = 5 is really bad. But why??
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Independence Sampler: Theory

Why is k = 0.01 pretty good, and k = 5 so terrible?

Well, if k  1, then 8x , q(x) = ke�kx � ke�x = k⇡(x). Then

↵(x , y) = min(1,
⇡(y) q(x)

⇡(x) q(y)
) = min(1,

⇡(y)/q(y)

⇡(x)/q(x)
)

� min(1,
⇡(y)/q(y)

(1/k)
) = k (⇡(y)/q(y)) .

Then P(x , y) � q(y)↵(x , y) � k ⇡(y). Minorisation with ✏ = k!

So, |Pn(x ,A)� ⇡(A)|  (1� k)n.

• k = 1: yes, ✏ = 1; converges immediately (of course). n⇤ = 1.

• k = 0.01: yes, ✏ = 0.01; and (1� 0.01)459 < 0.01, so
n⇤ = 459; “chain converges within 459 iterations”. (Pretty good.)

• k = 5: no such ✏. Not geometrically ergodic. In fact, we can
prove (Roberts and R., MCAP, 2011) that with k = 5, have
4, 000, 000  n⇤  14, 000, 000, i.e. takes millions of iterations! (20/54)



Main Topic: How to Optimise MCMC Choices?

In theory, MCMC works with essentially any update rules, as long
as they leave ⇡ stationary.

• Any symmetric proposal distribution Q. (Choices!)

• Non-symmetric proposals, with a suitably modified acceptance
probability. (“Metropolis-Hastings”) (e.g. Independent, Langevin)

• Update one coordinate at a time. (“Componentwise”)

• Update from full conditional distributions. (“Gibbs Sampler”)

But what choice works best? e.g. What � in [APPLET]?

• If � too small (say, � = 1), then usually accept, but move very
slowly. (Bad.)

• If � too large (say, � = 50), then usually ⇡(Yn+1) = 0, i.e.
hardly ever accept. (Bad.)

• Best � is between the two extremes, i.e. acceptance rate
should be far from 0 and far from 1. (“Goldilocks Principle”)
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Example: Metropolis for N(0,1)

Target ⇡ = N(0, 1). Proposal Q(x , ·) = N(x ,�2).

How to choose �? Big? Small? What acceptance rate (A.R.)?

� = 0.1? � = 25? � = 2.38?
too small! too big! just right!

A.R. = 0.962 A.R. = 0.052 A.R. = 0.441

The Goldilocks Principle in action!

What about higher-dimensional examples? If d increases, then �
should: decrease. But how quickly? On what scale? Theory?
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