Optimising and Adapting Metropolis Algorithms

Jeffrey S. Rosenthal University of Toronto

jeff@math.toronto.edu http://probability.ca/jeff/

(LMS/CRiSM Summer School, Warwick, July 2018)

(1/54)

(Brief) Background / Context / Motivation

Often have complicated, high-dimensional density functions $\pi : \mathcal{X} \to [0, \infty)$, for some $\mathcal{X} \subseteq \mathbf{R}^d$ with d large.

(e.g. Bayesian posterior distribution)

Want to compute probabilities like:

$$\Pi(A) := \int_A \pi(x) \, dx \, ,$$

and/or expected values of functionals like:

$$\mathbf{E}_{\pi}(h) := \int_{\mathcal{X}} h(x) \, \pi(x) \, dx \, .$$

Or, if π is unnormalised:

$$\mathbf{E}_{\pi}(h) := \int_{\mathcal{X}} h(x) \, \pi(x) \, dx \, \Big/ \, \int_{\mathcal{X}} \pi(x) \, dx \, .$$

Calculus? Numerical integration? Impossible, if π is something like ...

(2/54)

Typical π : Variance Components Model

State space $\mathcal{X} = (0,\infty)^2 imes \mathbf{R}^{K+1}$, so d = K+3, with

$$\pi(V, W, \mu, \theta_1, \dots, \theta_K)$$

$$= C e^{-b_1/V} V^{-a_1-1} e^{-b_2/W} W^{-a_2-1}$$

$$\times e^{-(\mu-a_3)^2/2b_3} V^{-K/2} W^{-\frac{1}{2}\sum_{i=1}^K J_i}$$

$$\times \exp\left[-\sum_{i=1}^K (\theta_i - \mu)^2/2V - \sum_{i=1}^K \sum_{j=1}^{J_i} (Y_{ij} - \theta_i)^2/2W\right],$$

where a_i and b_i are fixed constants (prior), and $\{Y_{ij}\}$ are the data. In the application: K = 19, so d = 22.

Integrate? Well, no problems *mathematically*, but ...

High-dimensional! Complicated! How to compute?

Try Monte Carlo!

(3/54)

Monte Carlo, Monaco

Nice Place for a Conference!

(5/54)

Estimation from sampling: Monte Carlo

Suppose we can <u>sample</u> from π , i.e. generate on a computer

$$X_1, X_2, \ldots, X_M \sim \pi$$
 (i.i.d.)

(i.e., $\mathbf{P}(X_i \in A) = \int_A \pi(x) dx$ for each *i*, and independent).

Then can estimate by e.g.

$$\mathbf{E}_{\pi}(h) \approx \frac{1}{M} \sum_{i=1}^{M} h(X_i).$$

As $M \to \infty$, the estimate converges to $\mathbf{E}_{\pi}(h)$ (by the Law of Large Numbers), which good error bounds / confidence intervals (by the Central Limit Theorem).

Good. But how to sample from π ? Often infeasible! (e.g. above example!) Instead . . .

(6/54)

Markov Chain Monte Carlo (MCMC)

Given a complicated, high-dimensional <u>target distribution</u> $\pi(\cdot)$:

Find an ergodic <u>Markov chain</u> (random process) X_0, X_1, X_2, \ldots , which is <u>easy</u> to run on a computer, and which <u>converges</u> in distribution to π as $n \to \infty$.

Then for "large enough" B, $\mathcal{L}(X_B) \approx \pi$, so X_B , X_{B+1} , ... are approximate samples from π , and e.g.

$$\mathbf{E}_{\pi}(h) ~pprox ~rac{1}{M} \sum_{i=B+1}^{B+M} h(X_i), ~~ ext{etc.}$$

Extremely popular: Bayesian inference, computer science, statistical genetics, statistical physics, finance, insurance,

But how to create such a Markov chain?

(7/54)

Random-Walk Metropolis Algorithm (1953)

This algorithm defines the chain X_0, X_1, X_2, \ldots as follows.

Given X_{n-1} :

- <u>Propose</u> a new state $Y_n \sim Q(X_{n-1}, \cdot)$, e.g. $Y_n \sim N(X_{n-1}, \Sigma_p)$.
- Let $\alpha = \min \left[1, \frac{\pi(Y_n)}{\pi(X_{n-1})} \right]$. (Assuming Q is symmetric.)
- With probability α , <u>accept</u> the proposal (set $X_n = Y_n$).
- Else, with prob. 1α , <u>reject</u> the proposal (set $X_n = X_{n-1}$).

Try it: [APPLET] Converges to π !

Why? α is chosen just right so this Markov chain is reversible with respect to π , i.e. $\pi(dx) P(x, dy) = \pi(dy) P(y, dx)$. Hence, π is a stationary distribution. Also, chain will be aperiodic and (usually) irreducible. So, by general Markov chain theory, it converges to π in total variation distance: $\lim_{n\to\infty} \sup_A |\mathbf{P}(X_n \in A) - \pi(A)| = 0$.

More complicated example?

Example: Particle Systems

Suppose have *n* independent particles, each uniform on a region. What is, say, the average "diameter" (maximal distance)? Sample and see! [pointproc.java] Works! Monte Carlo!

Now suppose instead that the particles are <u>not</u> independent, but rather <u>interact</u> with each other, with the configuration probability proportional to e^{-H} , where H is an <u>energy function</u>, e.g.

$$H = \sum_{i < j} A |(x_i, y_i) - (x_j, y_j)| + \sum_{i < j} \frac{B}{|(x_i, y_i) - (x_j, y_j)|} + \sum_i C x_i$$

A large: particles like to be <u>close together</u>.

B large: particles like to be <u>far apart</u>.

C large: particles like to be <u>towards the left</u>.

Can't directly sample, but can use Metropolis! [pointproc.java]

(9/54)

Okay, but Where's the Math?

MCMC's greatest successes have been in ... applications!

• Medical Statistics / Statistical Genetics / Bayesian Inference / Chemical Physics / Computer Science / Mathematical Finance

So, what is MCMC mathematical theory good for?

- Informs and justifies the basic algorithms. (** Above Introduction)
- Quantifies how well the algorithms work.
 (** Quantitative Bounds)
- Suggests new modifications of the algorithms.
- Determines which algorithm choices are best. (** Optimal Scaling)
- Investigates high-dimensional behaviour. (** Complexity)
- Develops new MCMC directions. (** Adaptive MCMC)

First Topic: Quantitative Convergence Bounds

MCMC works eventually, i.e. $\mathcal{L}(X_n) \Rightarrow \pi$. Good!

But what about <u>quantitative</u> bounds, i.e. a specific number n_* such that, say, $|\mathbf{P}(X_{n_*} \in A) - \pi(A)| < 0.01 \quad \forall A$? (Not just "as $n \to \infty$ ".)

One method: <u>coupling</u>. (Many other methods: spectral, ...)

Consider <u>two</u> copies of the chain, $\{X_n\}$ and $\{X'_n\}$.

Assume that $X'_0 \sim \pi$ (so $X'_n \sim \pi \forall n$).

If we can "make" the two copies become equal for $n \ge T$, while respecting their marginal update probabilities, then $X_n \approx \pi$ too.

Specifically, the <u>coupling inequality</u> says:

$$|\mathbf{P}(X_n \in A) - \pi(A)| \equiv |\mathbf{P}(X_n \in A) - \mathbf{P}(X'_n \in A)| \leq |\mathbf{P}(T > n)|.$$

But how to apply this to a complicated MCMC algorithm?

(11/54)

Quantitative Bounds: Minorisation

Suppose there is $\epsilon > 0$, and a probability measure ν , such that $P(x, y) \ge \epsilon \nu(y)$ for all $x, y \in \mathcal{X}$.

This "minorisation condition" gives an ϵ -sized "overlap" between the transition distributions $P(x, \cdot)$ and $P(x', \cdot)$.

That means at each iteration, we can make the two copies become equal with probability at least ϵ . Hence, $\mathbf{P}(T > n) \leq (1 - \epsilon)^n$.

Therefore, $|\mathbf{P}(X_n \in A) - \pi(A)| \leq (1 - \epsilon)^n$, $\forall A$.

e.g. [APPLET], with that π , and $\gamma = 3$: find that $P(x, y) \ge \epsilon \nu(y)$ for all x, y, where $\epsilon = 0.2$, and $\nu(3) = \nu(4) = 1/2$.

- So $|P^n(x,A) \pi(A)| \le (1-\epsilon)^n = (1-0.2)^n = (0.8)^n$.
- Hence, $|P^n(x, A) \pi(A)| < 0.01$ whenever $n \ge 21$.
- So $n_* = 21$. "The chain converges in 21 iterations." Good!

But what about a harder example??

Example: Baseball Data Model

Hierarchical model for baseball hitting percentages (J. Liu): observed hitting percentages satisfy $Y_i \sim N(\theta_i, c)$ for $1 \le i \le K$, where $\theta_1, \ldots, \theta_k \sim N(\mu, V)$, c is a given constant, with $V, \mu, \theta_1, \ldots, \theta_K$ to be estimated. Priors: $\mu \sim \text{flat}, V \sim IG(a, b)$.

Diagram:

For our data, K = 18, so dimension = 20.

High dimensional! How to estimate?

(13/54)

Baseball Data Model (cont'd)

MCMC solution: Run a <u>Gibbs sampler</u> for π . Markov chain is $X_k = (V^{(k)}, \mu^{(k)}, \theta_1^{(k)}, \dots, \theta_K^{(k)})$, updated by:

$$V^{(n)} \sim IG\left(a + \frac{K-1}{2}, b + \frac{1}{2}\sum_{i}(\theta_{i}^{(n-1)} - \overline{\theta}^{(n-1)})^{2}\right);$$

$$\mu^{(n)} \sim N\left(\overline{\theta}^{(n-1)}, \frac{V^{(n)}}{K}\right);$$

$$\theta_{i}^{(n)} \sim N\left(\frac{\mu^{(n)}c + Y_{i}V^{(n)}}{c + V^{(n)}}, \frac{V^{(n)}c}{c + V^{(n)}}\right) \quad (1 \le i \le K);$$

$$\cos \overline{\theta}^{(n)} = 1 \sum_{i} \theta^{(n)}$$

where $\overline{\theta}^{(n)} = \frac{1}{K} \sum \theta_i^{(n)}$.

Recall that K = 18, so dimension = 20.

Complicated! How to analyze convergence?

(14/54)

Example: Baseball Data Model (cont'd)

Here we can find a minorisation $P(x, y) \ge \epsilon \nu(y)$, but only when $x \in C$ for a subset $C \subseteq \mathcal{X}$. ("small set")

But also find a "drift condition" $\mathbf{E}[f(X_1) | X_0 = x] \le \lambda f(x) + \Lambda$, for some $\lambda < 1$ and $\Lambda < \infty$, where $f(x) = \sum_{i=1}^{K} (\theta_i - \overline{Y})^2$; this "forces" returns to $C \times C$.

Can compute (R., Stat & Comput. 1996):

• a drift condition towards $C = \left\{ \sum_{i} (\theta_i - \overline{Y})^2 \leq 1 \right\}$, with $\lambda = 0.000289$ and $\Lambda = 0.161$;

• a minorisation with $\epsilon = 0.0656$, at least for $x \in C \subseteq \mathcal{X}$.

Then can use coupling to prove (R., JASA 1995) that

$$|\mathbf{P}(X_n \in A) - \pi(A)| \leq (0.967)^n + (1.17)(0.935)^n, n \in \mathbf{N},$$

so e.g. $|\mathbf{P}(X_n \in A) - \pi(A)| < 0.01$ if $n \ge 140$.

• So $n_* = 140$. "The chain converges in 140 iterations." Good! Realistic bounds for complicated statistical models! (See also Jones & Hobert, Stat Sci 2001, ...) (15/54)

Does it Matter? Case Study: Independence Sampler

Consider Metropolis-Hastings where $\pi(x) = e^{-x}$, and proposals are chosen i.i.d. $\sim \text{Exp}(k)$ with density ke^{-ky} , for some k > 0.

• k = 1 (i.i.d. sampling)

 $\mathbf{E}(X) = 1$; estimate = 1.001. Excellent! Other k?

(16/54)

Independence Sampler (cont'd)

• *k* = 0.01

 $\mathbf{E}(X) = 1$; estimate = 0.993. Quite good.

(17/54)

Independence Sampler (cont'd)

 $\mathbf{E}(X) = 1$; estimate = 0.687. Terrible: way too small! What happened? Maybe we just got unlucky? Try again!

(18/54)

• Another try with k = 5:

 $\mathbf{E}(X) = 1$; estimate = 1.696. Terrible: way too big!

So, not just bad luck: k = 5 is really bad. But why??

(19/54)

Independence Sampler: Theory

Why is k = 0.01 pretty good, and k = 5 so terrible? Well, if $k \le 1$, then $\forall x$, $q(x) = ke^{-kx} \ge ke^{-x} = k\pi(x)$. Then $\alpha(x, y) = \min(1, \frac{\pi(y) q(x)}{\pi(x) q(y)}) = \min(1, \frac{\pi(y)/q(y)}{\pi(x)/q(x)})$ $\ge \min(1, \frac{\pi(y)/q(y)}{(1/k)}) = k(\pi(y)/q(y)).$

Then $P(x, y) \ge q(y) \alpha(x, y) \ge k \pi(y)$. Minorisation with $\epsilon = k!$ So, $|P^n(x, A) - \pi(A)| \le (1 - k)^n$.

• k = 1: yes, $\epsilon = 1$; converges immediately (of course). $n_* = 1$.

• k = 0.01: yes, $\epsilon = 0.01$; and $(1 - 0.01)^{459} < 0.01$, so $n_* = 459$; "chain converges within 459 iterations". (Pretty good.)

• k = 5: no such ϵ . <u>Not</u> geometrically ergodic. In fact, we can prove (Roberts and R., MCAP, 2011) that with k = 5, have 4,000,000 $\leq n_* \leq 14,000,000$, i.e. takes <u>millions</u> of iterations! (20/54)

Main Topic: How to Optimise MCMC Choices?

In theory, MCMC works with essentially any update rules, as long as they leave π stationary.

• <u>Any</u> symmetric proposal distribution *Q*. (Choices!)

• <u>Non</u>-symmetric proposals, with a suitably modified acceptance probability. ("Metropolis-Hastings") (e.g. Independent, Langevin)

- Update one coordinate at a time. ("Componentwise")
- Update from full conditional distributions. ("Gibbs Sampler")

But what choice works <u>best</u>? e.g. What γ in [APPLET]?

• If γ too small (say, $\gamma = 1$), then usually accept, but move very slowly. (Bad.)

• If γ too large (say, $\gamma = 50$), then usually $\pi(Y_{n+1}) = 0$, i.e. hardly ever accept. (Bad.)

• Best γ is <u>between</u> the two extremes, i.e. acceptance rate should be far from 0 and far from 1. ("Goldilocks Principle")

(21/54)

Example: Metropolis for N(0,1)

Target $\pi = N(0, 1)$. Proposal $Q(x, \cdot) = N(x, \sigma^2)$. How to choose σ ? Big? Small? What acceptance rate (A.R.)?

The Goldilocks Principle in action!

What about higher-dimensional examples? If d increases, then σ should: decrease. But how quickly? On what scale? Theory?

(22/54)