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{
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CRP = a nice way to sample partitions
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Gaussian Dirichet Process Mixture Model

unknown number of clusters in Rd

data spread ’normally’ within each cluster

θ = (θJ)J∈J | J
iid∼ N (~µ,T )

xJ = (xj)j∈J | J ,θ
iid∼ N (θJ ,Σ) for J ∈ J

The ’true’ partition is not known

Łukasz Rajkowski Analysis of MAP in the DPMM model 3 / 10



Gaussian Dirichet Process Mixture Model

This may be modelled as follows (blue=hyperparameters)

J ∼ CRP(α)n

θ = (θJ)J∈J | J
iid∼ N (~µ,T )

xJ = (xj)j∈J | J ,θ
iid∼ N (θJ ,Σ) for J ∈ J

J =
{
{1, 2, 4, 6}, {3}, {5, 7}

}

The ’true’ partition is not known

Łukasz Rajkowski Analysis of MAP in the DPMM model 3 / 10



Gaussian Dirichet Process Mixture Model

This may be modelled as follows (blue=hyperparameters)

J ∼ CRP(α)n

θ = (θJ)J∈J | J
iid∼ N (~µ,T )

xJ = (xj)j∈J | J ,θ
iid∼ N (θJ ,Σ) for J ∈ J

J =
{
{1, 2, 4, 6}, {3}, {5, 7}

}

The ’true’ partition is not known

Łukasz Rajkowski Analysis of MAP in the DPMM model 3 / 10



Gaussian Dirichet Process Mixture Model

This may be modelled as follows (blue=hyperparameters)

J ∼ CRP(α)n

θ = (θJ)J∈J | J
iid∼ N (~µ,T )

xJ = (xj)j∈J | J ,θ
iid∼ N (θJ ,Σ) for J ∈ J

J =
{
{1, 2, 4, 6}, {3}, {5, 7}

}

The ’true’ partition is not known

Łukasz Rajkowski Analysis of MAP in the DPMM model 3 / 10



Gaussian Dirichet Process Mixture Model

This may be modelled as follows (blue=hyperparameters)

J ∼ CRP(α)n

θ = (θJ)J∈J | J
iid∼ N (~µ,T )

xJ = (xj)j∈J | J ,θ
iid∼ N (θJ ,Σ) for J ∈ J

J =
{
{1, 2, 4, 6}, {3}, {5, 7}

}
The ’true’ partition is not known

Łukasz Rajkowski Analysis of MAP in the DPMM model 3 / 10



Gaussian Dirichet Process Mixture Model

This may be modelled as follows (blue=hyperparameters)

J ∼ CRP(α)n

θ = (θJ)J∈J | J
iid∼ N (~µ,T )

xJ = (xj)j∈J | J ,θ
iid∼ N (θJ ,Σ) for J ∈ J

J =
{
{1, 2, 4, 6}, {3}, {5, 7}

}
The ’true’ partition is not known

Task:
Estimate the
distribution of
J provided
observation x
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The Maximal A Posteriori Partition

The Bayesian approach is to compute the posterior J | x

Easy to compute unnormalised probability Qx(J )

The MAP
The Maximal A Posteriori (MAP) is the partition defined by

ĴMAP(x) = argmaxJP(J | x) = argmaxJQx(J )
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ĴMAP(x) = argmaxJP(J | x) = argmaxJQx(J )

Łukasz Rajkowski Analysis of MAP in the DPMM model 4 / 10



How well it performs?

assume that the data comes from an iid sample from given

distribution P on Rd , X1, . . . ,Xn
iid∼ P. How would my Bayesian

machinery behave as n grows infinitely?

Jeffrey Miller and Matthew Harrison. ”Inconsistency of Pitman-Yor
process mixtures for the number of components.” JMLR (2014).
Corollary: In a very general family of conjugate models with CRP as a
prior on partitions then if P is a mixture of t distributions from the
model, then

lim sup
n→∞

P(Tn = t |X1:n) < 1,

so the posterior is not consistent for the number of clusters.

Goal: Perform similar analysis for the MAP in Gaussian model.

Łukasz Rajkowski Analysis of MAP in the DPMM model 5 / 10



How well it performs?

assume that the data comes from an iid sample from given

distribution P on Rd , X1, . . . ,Xn
iid∼ P. How would my Bayesian

machinery behave as n grows infinitely?

Jeffrey Miller and Matthew Harrison. ”Inconsistency of Pitman-Yor
process mixtures for the number of components.” JMLR (2014).
Corollary: In a very general family of conjugate models with CRP as a
prior on partitions then if P is a mixture of t distributions from the
model, then

lim sup
n→∞

P(Tn = t |X1:n) < 1,

so the posterior is not consistent for the number of clusters.

Goal: Perform similar analysis for the MAP in Gaussian model.

Łukasz Rajkowski Analysis of MAP in the DPMM model 5 / 10



How well it performs?

assume that the data comes from an iid sample from given

distribution P on Rd , X1, . . . ,Xn
iid∼ P. How would my Bayesian

machinery behave as n grows infinitely?

Jeffrey Miller and Matthew Harrison. ”Inconsistency of Pitman-Yor
process mixtures for the number of components.” JMLR (2014).
Corollary: In a very general family of conjugate models with CRP as a
prior on partitions then if P is a mixture of t distributions from the
model, then

lim sup
n→∞

P(Tn = t |X1:n) < 1,

so the posterior is not consistent for the number of clusters.

Goal: Perform similar analysis for the MAP in Gaussian model.

Łukasz Rajkowski Analysis of MAP in the DPMM model 5 / 10



Main results

Result 3 (behaviour in the limit)

If X1,X2, . . . ∼ P then ĴMAP(X 1:n) ’concentrates’ around ’partitions’ of Rd that
maximise some given functional ∆ (P bounded and continous).
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ĴMAP(x) is a convex partition with respect to x .

Convex and lovely

Result 3 (behaviour in the limit)
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If X1,X2, . . . ∼ P then ĴMAP(X 1:n) ’concentrates’ around ’partitions’ of Rd that
maximise some given functional ∆ (P bounded and continous).

Łukasz Rajkowski Analysis of MAP in the DPMM model 6 / 10



Main results

Result 1 (convexity)
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Result 3 (behaviour in the limit)

If X1,X2, . . . ∼ P then ĴMAP(X 1:n) ’concentrates’ around ’partitions’ of Rd that
maximise some given functional ∆ (P bounded and continous).
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Main results

Result 1 (convexity)

ĴMAP(x) is a convex partition with respect to x .

Infinite sequence of observations, the MAP on prefixes (a movie).
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Result 3 (behaviour in the limit)
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Main results

Result 1 (convexity)

ĴMAP(x) is a convex partition with respect to x .

Infinite sequence of observations, the MAP on prefixes (a movie).
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Question:
Can we control
the (relative)
size of the
smallest clus-
ter?

Result 3 (behaviour in the limit)

If X1,X2, . . . ∼ P then ĴMAP(X 1:n) ’concentrates’ around ’partitions’ of Rd that
maximise some given functional ∆ (P bounded and continous).
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Main results

Result 1 (convexity)

ĴMAP(x) is a convex partition with respect to x .

Infinite sequence of observations, the MAP on prefixes (a movie).
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Partly. . .

Result 3 (behaviour in the limit)

If X1,X2, . . . ∼ P then ĴMAP(X 1:n) ’concentrates’ around ’partitions’ of Rd that
maximise some given functional ∆ (P bounded and continous).
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Main results

Result 1 (convexity)

ĴMAP(x) is a convex partition with respect to x .

Infinite sequence of observations, the MAP on prefixes (a movie).
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Main results

Result 1 (convexity)

ĴMAP(x) is a convex partition with respect to x .

Infinite sequence of observations, the MAP on prefixes (a movie).
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Question:
Can we control
the (relative)
size of the
smallest clus-
ter?

Result 3 (behaviour in the limit)

If X1,X2, . . . ∼ P then ĴMAP(X 1:n) ’concentrates’ around ’partitions’ of Rd that
maximise some given functional ∆ (P bounded and continous).
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Main results

Result 1 (convexity)

ĴMAP(x) is a convex partition with respect to x .

Infinite sequence of observations, the MAP on prefixes (a movie).
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n = 1000

Question:
Can we control
the (relative)
size of the
smallest clus-
ter?

Result 3 (behaviour in the limit)

If X1,X2, . . . ∼ P then ĴMAP(X 1:n) ’concentrates’ around ’partitions’ of Rd that
maximise some given functional ∆ (P bounded and continous).
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Result 2 (size of clusters)

If supn
1
n

∑n
i=1 ‖xn‖2 <∞ then for every r > 0

lim inf
n→∞
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If X1,X2, . . . ∼ P then ĴMAP(X 1:n) ’concentrates’ around ’partitions’ of Rd that
maximise some given functional ∆ (P bounded and continous).

Łukasz Rajkowski Analysis of MAP in the DPMM model 6 / 10



Main results

Result 1 (convexity)
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Induced partitions

Let X1,X2, . . .
iid∼ P (e.g. a mixture of three gaussians).

nice interpretation of ∆ (variance of CEV vs entropy)

for P bounded you can do something similar for the MAP and hence
prove Result 3

depends only on within-group covariance Σ2 – ‘inconsistency’ !
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Induced partitions

Let X1,X2, . . .
iid∼ P (e.g. a mixture of three gaussians).

A is a fixed partition of Rd ; JAn =
{
{i ¬ n : Xi ∈ A} : A ∈ A

}
.

JA7 =
{
{1}, {2, 7}, {3, 4, 6}, {5}

}
you may compute QX1:7(JA7 )

nice interpretation of ∆ (variance of CEV vs entropy)
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QX1:10000(JA10000) ≈???
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}
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Proposition

n

√
QX 1:n(JAn )

a.s.≈ n
e exp {∆(A)}, where

∆(A) =
1
2
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∑
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Illustration of the last point

no 0.1 0.01 0.0025

−1 0 1 −1 0 1 −1 0 1 −1 0 1
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Interested in details?

Analysis of the maximal posterior partition in the Dirichlet Process
Gaussian Mixture Model available on arXiv.org and accepted to
Bayesian Analysis

Poster:

LATEX TikZposter

Analysis of the maximal a posteriori partition in
the Gaussian Dirichlet Process Mixture Model

 Lukasz Rajkowski
l.rajkowski@mimuw.edu.pl

University of Warsaw

Analysis of the maximal a posteriori partition in
the Gaussian Dirichlet Process Mixture Model

 Lukasz Rajkowski
l.rajkowski@mimuw.edu.pl

University of Warsaw

The Chinese Restaurant Process

. . .1
2

3 4 5
6

7

P(new table) ∝ α P(join table) ∝ # sitting there

e.g. P
{
{1, 2, 4, 6}, {3}, {5, 7}

}
=
α

α
· 1

1 + α
· α

2 + α
· 2

3 + α
· α

4 + α
· 3

5 + α
· 1

6 + α

The Gaussian DPMM and the MAP

The Gaussian DPMM for n observations may be modelled as follows

J ∼ CRP(α)n (the Chinese Restaurant P.)

θ = (θJ)J∈J | J iid∼ N (~µ, T )

xJ = (xj)j∈J | J ,θ iid∼ N (θJ,Σ) for J ∈ J
The partition that maximises the posterior probability is the MAP partition.
It is denoted by Ĵ (x1, . . . , xn).

Result 1. Convexity of the MAP

For every n ∈ N if J1, J2 ∈ Ĵ (x1, . . . , xn), J1 6= J2 and Ak is the convex hull of the set
{xi : i ∈ Jk} for k = 1, 2 then A1 ∩A2 is an empty set or a singleton {xi} for some i ≤ n.

(a) This is the desired partition
which is also convex.

(b) This is a convex partition
which is not ideal.

(c) This partition is not convex and
it is clearly a bad one.

Result 2. Which clusters are big?

If supn
1
n

∑n
i=1 ‖xn‖2 <∞ then

lim inf
n→∞

min{|J | : J ∈ Ĵ (x1, . . . , xn),∃j∈J‖xj‖ < r}/n > 0

for every r > 0.
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(b) n = 500
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(c) n = 1000

Corollary. If
(

1
n

∑n
i=1 ‖xi‖2

)∞
n=1

is bounded then for every r > 0 the number of clusters
that intersect B(0, r) is bounded.

Commentary

Let X1, X2, . . .
iid∼ P and Ĵn = Ĵ (X1, . . . , Xn).

• If α = T = Σ = 1 and P =
∑∞

m=0 q(1− q)mδ18m, where q = (2 · 18)−1, then EX4 <∞
and almost surely lim infn→∞min{|J | : J ∈ Ĵn} = 1.

• If α = T = 1, Σ < (32 ln 2)−1 and P = Exp(1) then limn→∞ |Ĵn| =∞ almost surely.

This implies that Result 2 is not easily generalised!

The Induced Partition

Let A be a fixed partition of Rd. For n ∈ N
and A ∈ A let JAn = {i ≤ n : Xi ∈ A } and
define a random partition of [n] by

J An =
{
JAn 6= ∅ : A ∈ A

}
.

We say that this partition of [n] is induced
by A.

−→ J A7 =
{
{1}, {2, 7}, {3, 4, 6}, {5}

}

The function ∆

Let ∆ be the function on the space of finite families of measurable sets defined by

∆(A) =
1

2

∑

A∈A
P (A)

∥∥Σ−1/2E (X |X ∈ A)
∥∥2

︸ ︷︷ ︸
variance of CEV

+
∑

A∈A
P (A) lnP (A)

︸ ︷︷ ︸
−entropy of CEV

.

Consider X1, X2, . . .
iid∼ P . Then

n

√
posterior score of J An ≈ n exp{∆(A)}

Let Ân be the family of the convex hulls of clusters in Ĵn = Ĵ (X1, . . . , Xn).

n

√
posterior score of Ĵn ≈ n exp{∆(Ân)}

Result 3. The MAP asymptotic

Assume that P has bounded support and is continuous with respect to Lebesgue measure.
Then the distance between Ân and the set of partitions that maximise the function ∆
converges to 0.

Result 4. The force of Σ

Assume that P has bounded support and is continuous with respect to Lebesgue measure.
Then for every K ∈ N there exists an ε > 0 such that if ‖Σ‖ < ε then |Ĵn| > K for
sufficiently large n.

no 0.1 0.01 0.0025

−1 0 1 −1 0 1 −1 0 1 −1 0 1

−1

0

1

α = 1, T = Id,Σ = σ2Id, where σ2 ∈ {.1, .01, .0025}

What’s next?

1. ‘Limit’ result and unbounded support of P

• the possibility of small probability clusters distant from 0, unbounded # of clusters

• no chance of convergence in Hausdorff metric, perhaps only dP

2.Prior on the covariance structure

•we may put Wishart distribution on covariance parameter

• preliminary computations for induced partitions give

∆′(A) = −1

2

∑
pA ln det

(
Var(X |X ∈ A)

)
−
∑

pA ln pA

•more difficult to relate induced partitions to the MAP

This
construc-

tion
can

be
used

to
define

the

Dirichlet Process

The details available

on arXiv and soon in

Bayesian Analysis
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