Analysis of the maximal a posteriori partition in the Gaussian Dirichlet Process Mixture Model

Łukasz Rajkowski
University of Warsaw

CRISM Summer School, Warwick University July, 2018

Chinese Restaurant Process

7654321

$\mathbb{P}($ new table $) \propto \alpha$
$\mathbb{P}($ join table $) \propto \#$ sitting there

Chinese Restaurant Process

765432

$\mathbb{P}($ new table $) \propto \alpha$
$\mathbb{P}($ join table $) \propto \#$ sitting there

$$
\mathbb{P}=\frac{\alpha}{\alpha}
$$

Chinese Restaurant Process

76543

$\mathbb{P}($ new table $) \propto \alpha$
$\mathbb{P}($ join table $) \propto \#$ sitting there

$$
\mathbb{P}=\frac{\alpha}{\alpha} \cdot \frac{1}{1+\alpha}
$$

Chinese Restaurant Process

7654

$\mathbb{P}($ new table $) \propto \alpha \quad \mathbb{P}($ join table $) \propto \#$ sitting there $\mathbb{P}=\frac{\alpha}{\alpha} \cdot \frac{1}{1+\alpha} \cdot \frac{\alpha}{2+\alpha}$

Chinese Restaurant Process

765

$\mathbb{P}($ new table $) \propto \alpha \quad \mathbb{P}($ join table $) \propto \#$ sitting there
$\mathbb{P}=\frac{\alpha}{\alpha} \cdot \frac{1}{1+\alpha} \cdot \frac{\alpha}{2+\alpha} \cdot \frac{2}{3+\alpha}$

Chinese Restaurant Process

76

$\mathbb{P}($ new table $) \propto \alpha \quad \mathbb{P}($ join table $) \propto \#$ sitting there
$\mathbb{P}=\frac{\alpha}{\alpha} \cdot \frac{1}{1+\alpha} \cdot \frac{\alpha}{2+\alpha} \cdot \frac{2}{3+\alpha} \cdot \frac{\alpha}{4+\alpha}$

Chinese Restaurant Process

$\mathbb{P}($ new table $) \propto \alpha \quad \mathbb{P}($ join table $) \propto \#$ sitting there
$\mathbb{P}=\frac{\alpha}{\alpha} \cdot \frac{1}{1+\alpha} \cdot \frac{\alpha}{2+\alpha} \cdot \frac{2}{3+\alpha} \cdot \frac{\alpha}{4+\alpha} \cdot \frac{3}{5+\alpha}$

Chinese Restaurant Process

$\mathbb{P}($ new table $) \propto \alpha \quad \mathbb{P}($ join table $) \propto \#$ sitting there

$$
\mathbb{P}=\frac{\alpha}{\alpha} \cdot \frac{1}{1+\alpha} \cdot \frac{\alpha}{2+\alpha} \cdot \frac{2}{3+\alpha} \cdot \frac{\alpha}{4+\alpha} \cdot \frac{3}{5+\alpha} \cdot \frac{1}{6+\alpha}
$$

Chinese Restaurant Process

$\mathbb{P}($ new table $) \propto \alpha \quad \mathbb{P}($ join table $) \propto \#$ sitting there

$$
\mathbb{P}=\frac{\alpha}{\alpha} \cdot \frac{1}{1+\alpha} \cdot \frac{\alpha}{2+\alpha} \cdot \frac{2}{3+\alpha} \cdot \frac{\alpha}{4+\alpha} \cdot \frac{3}{5+\alpha} \cdot \frac{1}{6+\alpha}
$$

This is the probability of $\{\{1,2,4,6\},\{3\},\{5,7\}\}$

Chinese Restaurant Process

$\mathbb{P}($ new table $) \propto \alpha \quad \mathbb{P}($ join table $) \propto \#$ sitting there

$$
\mathbb{P}=\frac{\alpha}{\alpha} \cdot \frac{1}{1+\alpha} \cdot \frac{\alpha}{2+\alpha} \cdot \frac{2}{3+\alpha} \cdot \frac{\alpha}{4+\alpha} \cdot \frac{3}{5+\alpha} \cdot \frac{1}{6+\alpha}
$$

This is the probability of $\{\{1,2,4,6\},\{3\},\{5,7\}\}$

Chinese Restaurant Process

$\mathbb{P}($ new table $) \propto \alpha \quad \mathbb{P}($ join table $) \propto \#$ sitting there

$$
\mathbb{P}=\frac{\alpha}{\alpha} \cdot \frac{1}{1+\alpha} \cdot \frac{\alpha}{2+\alpha} \cdot \frac{2}{3+\alpha} \cdot \frac{\alpha}{4+\alpha} \cdot \frac{3}{5+\alpha} \cdot \frac{1}{6+\alpha}
$$

This is the probability of $\{\{1,2,4,6\},\{3\},\{5,7\}\}$

CRP $=$ A NICE WAY TO SAMPLE PARTITIONS

Gaussian Dirichet Process Mixture Model

unknown number of clusters in \mathbb{R}^{d} data spread 'normally' within each cluster

Gaussian Dirichet Process Mixture Model

This may be modelled as follows (blue=hyperparameters)

$$
\mathcal{J} \sim \operatorname{CRP}(\alpha)_{n}
$$

$\mathcal{J}=\{\{1,2,4,6\},\{3\},\{5,7\}\}$

Gaussian Dirichet Process Mixture Model

This may be modelled as follows (blue=hyperparameters)

$$
\begin{aligned}
& \mathcal{J} \sim \operatorname{CRP}(\alpha)_{n} \\
& \boldsymbol{\theta}=\left(\theta_{J}\right)_{J \in \mathcal{J}} \mid \mathcal{J} \stackrel{\text { iid }}{\sim} \\
& \mathcal{N}(\vec{\mu}, T)
\end{aligned}
$$

$\mathcal{J}=\{\{1,2,4,6\},\{3\},\{5,7\}\}$

Gaussian Dirichet Process Mixture Model

This may be modelled as follows (blue=hyperparameters)

$$
\begin{aligned}
\mathcal{J} & \sim \operatorname{CRP}(\alpha)_{n} \\
\boldsymbol{\theta}=\left(\theta_{J}\right)_{J \in \mathcal{J}} \mid \mathcal{J} & \stackrel{\text { iid }}{\sim} \mathcal{N}(\vec{\mu}, T) \\
\boldsymbol{x}_{J}=\left(x_{j}\right)_{j \in J} \mid \mathcal{J}, \boldsymbol{\theta} & \stackrel{\text { id }}{\sim} \mathcal{N}\left(\theta_{J}, \Sigma\right) \text { for } J \in \mathcal{J}
\end{aligned}
$$

$\mathcal{J}=\{\{1,2,4,6\},\{3\},\{5,7\}\}$

Gaussian Dirichet Process Mixture Model

This may be modelled as follows (blue=hyperparameters)

$$
\begin{aligned}
\mathcal{J} & \sim \operatorname{CRP}(\alpha)_{n} \\
\boldsymbol{\theta}=\left(\theta_{J}\right)_{J \in \mathcal{J}} \mid \mathcal{J} & \stackrel{\mathrm{iid}}{\sim} \mathcal{N}(\vec{\mu}, T) \\
\boldsymbol{x}_{J}=\left(x_{j}\right)_{j \in J} \mid \mathcal{J}, \boldsymbol{\theta} & \stackrel{\text { iid }}{\sim} \mathcal{N}\left(\theta_{J}, \Sigma\right) \quad \text { for } J \in \mathcal{J}
\end{aligned}
$$

The 'true' partition is not known

Gaussian Dirichet Process Mixture Model

This may be modelled as follows (blue=hyperparameters)

$$
\begin{aligned}
\mathcal{J} & \sim \operatorname{CRP}(\alpha)_{n} \\
\boldsymbol{\theta}=\left(\theta_{J}\right)_{J \in \mathcal{J}} \mid \mathcal{J} & \stackrel{\text { iid }}{\sim} \\
\boldsymbol{x}_{J}=\left(x_{j}\right)_{j \in J} \mid \mathcal{J}(\vec{\mu}, \boldsymbol{\theta}, T) & \stackrel{\text { iid }}{\sim} \mathcal{N}\left(\theta_{J}, \Sigma\right) \text { for } J \in \mathcal{J}
\end{aligned}
$$

$\mathcal{J}=\{\{1,2,4,6\},\{3\},\{5,7\}\}$
The 'true' partition is not known

The Maximal A Posteriori Partition

- The Bayesian approach is to compute the posterior $\mathcal{J} \mid \mathbf{x}$

The Maximal A Posteriori Partition

- The Bayesian approach is to compute the posterior $\mathcal{J} \mid \mathbf{x}$
- Easy to compute unnormalised probability $Q_{x}(\mathcal{J})$

The Maximal A Posteriori Partition

- The Bayesian approach is to compute the posterior $\mathcal{J} \mid \mathbf{x}$
- Easy to compute unnormalised probability $Q_{x}(\mathcal{J})$

The MAP

The Maximal A Posteriori (MAP) is the partition defined by

$$
\hat{\mathcal{J}}_{M A P}(\boldsymbol{x})=\operatorname{argmax}_{\mathcal{J}} \mathbb{P}(\mathcal{J} \mid \boldsymbol{x})=\operatorname{argmax}_{\mathcal{J}} Q_{\boldsymbol{x}}(\mathcal{J})
$$

How well it performs?

- assume that the data comes from an iid sample from given distribution P on $\mathbb{R}^{d}, X_{1}, \ldots, X_{n} \stackrel{\text { iid }}{\sim} P$. How would my Bayesian machinery behave as n grows infinitely?

How well it performs?

- assume that the data comes from an iid sample from given distribution P on $\mathbb{R}^{d}, X_{1}, \ldots, X_{n} \stackrel{\mathrm{iid}}{\sim} P$. How would my Bayesian machinery behave as n grows infinitely?
- Jeffrey Miller and Matthew Harrison. "Inconsistency of Pitman-Yor process mixtures for the number of components." JMLR (2014). Corollary: In a very general family of conjugate models with CRP as a prior on partitions then if P is a mixture of t distributions from the model, then

$$
\limsup _{n \rightarrow \infty} \mathbb{P}\left(T_{n}=t \mid X_{1: n}\right)<1
$$

so the posterior is not consistent for the number of clusters.

How well it performs?

- assume that the data comes from an iid sample from given distribution P on $\mathbb{R}^{d}, X_{1}, \ldots, X_{n} \stackrel{\mathrm{iid}}{\sim} P$. How would my Bayesian machinery behave as n grows infinitely?
- Jeffrey Miller and Matthew Harrison. "Inconsistency of Pitman-Yor process mixtures for the number of components." JMLR (2014). Corollary: In a very general family of conjugate models with CRP as a prior on partitions then if P is a mixture of t distributions from the model, then

$$
\limsup _{n \rightarrow \infty} \mathbb{P}\left(T_{n}=t \mid X_{1: n}\right)<1
$$

so the posterior is not consistent for the number of clusters.

- Goal: Perform similar analysis for the MAP in Gaussian model.

Main results

Main results

Result 1 (convexity)

$\hat{\mathcal{J}}_{\text {MAP }}(\boldsymbol{x})$ is a convex partition with respect to \boldsymbol{x}.

Convex and lovely

Main results

Result 1 (convexity)

$\hat{\mathcal{J}}_{\text {MAP }}(\boldsymbol{x})$ is a convex partition with respect to \boldsymbol{x}.

Convex but not lovely

Main results

Result 1 (convexity)

$\hat{\mathcal{J}}_{\text {MAP }}(\boldsymbol{x})$ is a convex partition with respect to \boldsymbol{x}.

Not convex and disastrous

Main results

Result 1 (convexity)

$\hat{\mathcal{J}}_{\text {MAP }}(\boldsymbol{x})$ is a convex partition with respect to \boldsymbol{x}.

Infinite sequence of observations, the MAP on prefixes (a movie).

Main results

Result 1 (convexity)

$\hat{\mathcal{J}}_{\text {MAP }}(\boldsymbol{x})$ is a convex partition with respect to \boldsymbol{x}.
Infinite sequence of observations, the MAP on prefixes (a movie).

$$
n=100
$$

Main results

Result 1 (convexity)

$\hat{\mathcal{J}}_{\text {MAP }}(\boldsymbol{x})$ is a convex partition with respect to \boldsymbol{x}.
Infinite sequence of observations, the MAP on prefixes (a movie).

$$
n=500
$$

Main results

Result 1 (convexity)

$\hat{\mathcal{J}}_{M A P}(\boldsymbol{x})$ is a convex partition with respect to \boldsymbol{x}.
Infinite sequence of observations, the MAP on prefixes (a movie).

$$
n=1000
$$

Main results

Result 1 (convexity)

$\hat{\mathcal{J}}_{M A P}(\boldsymbol{x})$ is a convex partition with respect to \boldsymbol{x}.
Infinite sequence of observations, the MAP on prefixes (a movie).

Question:

Can we control the (relative) size of the smallest cluster?

$$
n=1000
$$

Main results

Result 1 (convexity)

$\hat{\mathcal{J}}_{M A P}(\boldsymbol{x})$ is a convex partition with respect to \boldsymbol{x}.
Infinite sequence of observations, the MAP on prefixes (a movie).

$$
n=1000
$$

Question:

Can we control the (relative) size of the smallest cluster?
Partly...

Main results

Result 1 (convexity)

$\hat{\mathcal{J}}_{\text {MAP }}(\boldsymbol{x})$ is a convex partition with respect to \boldsymbol{x}.
Infinite sequence of observations, the MAP on prefixes (a movie).

Question:
Can we control the (relative) size of the smallest cluster?

$$
n=100
$$

Main results

Result 1 (convexity)

$\hat{\mathcal{J}}_{M A P}(\boldsymbol{x})$ is a convex partition with respect to \boldsymbol{x}.
Infinite sequence of observations, the MAP on prefixes (a movie).

Question:
Can we control the (relative) size of the smallest cluster?

$$
n=500
$$

Main results

Result 1 (convexity)

$\hat{\mathcal{J}}_{\text {MAP }}(\boldsymbol{x})$ is a convex partition with respect to \boldsymbol{x}.
Infinite sequence of observations, the MAP on prefixes (a movie).

Question:
Can we control the (relative) size of the smallest cluster?

$$
n=1000
$$

Main results

Result 1 (convexity)

$\hat{\mathcal{J}}_{\text {MAP }}(\boldsymbol{x})$ is a convex partition with respect to \boldsymbol{x}.

Result 2 (size of clusters)
If $\sup _{n} \frac{1}{n} \sum_{i=1}^{n}\left\|x_{n}\right\|^{2}<\infty$ then for every $r>0$
$\liminf _{n \rightarrow \infty} \min \left\{|J|: J \in \hat{\mathcal{J}}_{M A P}\left(\boldsymbol{x}_{1: n}\right), \exists_{j \in J}\left\|x_{j}\right\|<r\right\} / n:=\gamma>0$.

Main results

Result 1 (convexity)

$\hat{\mathcal{J}}_{\text {MAP }}(\boldsymbol{x})$ is a convex partition with respect to \boldsymbol{x}.

Result 2 (size of clusters)
If $\sup _{n} \frac{1}{n} \sum_{i=1}^{n}\left\|x_{n}\right\|^{2}<\infty$ then for every $r>0$

$$
\liminf _{n \rightarrow \infty} \min \left\{|J|: J \in \hat{\mathcal{J}}_{M A P}\left(x_{1: n}\right), \exists_{j \in J}\left\|x_{j}\right\|<r\right\} / n:=\gamma>0 .
$$

Result 3 (behaviour in the limit)

If $X_{1}, X_{2}, \ldots \sim P$ then $\hat{\mathcal{J}}_{\text {MAP }}\left(\boldsymbol{X}_{1: n}\right)$ 'concentrates' around 'partitions' of R^{d} that maximise some given functional Δ (P bounded and continous).

Induced partitions

Let $X_{1}, X_{2}, \ldots \stackrel{\text { iid }}{\sim} P$ (e.g. a mixture of three gaussians).

Induced partitions

Let $X_{1}, X_{2}, \ldots \stackrel{\text { iid }}{\sim} P$ (e.g. a mixture of three gaussians). \mathcal{A} is a fixed partition of \mathbb{R}^{d};

Induced partitions

Let $X_{1}, X_{2}, \ldots \stackrel{\text { iid }}{\sim} P$ (e.g. a mixture of three gaussians).
\mathcal{A} is a fixed partition of $\mathbb{R}^{d} ; \quad \mathcal{J}_{n}^{\mathcal{A}}=\left\{\left\{i \leqslant n: X_{i} \in A\right\}: A \in \mathcal{A}\right\}$.

Induced partitions

Let $X_{1}, X_{2}, \ldots \stackrel{\text { iid }}{\sim} P$ (e.g. a mixture of three gaussians).
\mathcal{A} is a fixed partition of $\mathbb{R}^{d} ; \quad \mathcal{J}_{n}^{\mathcal{A}}=\left\{\left\{i \leqslant n: X_{i} \in A\right\}: A \in \mathcal{A}\right\}$.

Induced partitions

Let $X_{1}, X_{2}, \ldots \stackrel{\text { iid }}{\sim} P$ (e.g. a mixture of three gaussians).
\mathcal{A} is a fixed partition of $\mathbb{R}^{d} ; \quad \mathcal{J}_{n}^{\mathcal{A}}=\left\{\left\{i \leqslant n: X_{i} \in A\right\}: A \in \mathcal{A}\right\}$.

Proposition

$\sqrt[n]{Q_{\boldsymbol{X}_{1: n}}\left(\mathcal{J}_{n}^{\mathcal{A}}\right)} \stackrel{\text { a.s. }}{\approx} \frac{n}{e} \exp \{\Delta(\mathcal{A})\}$, where

$$
\Delta(\mathcal{A})=\frac{1}{2} \sum_{A \in \mathcal{A}} P(A) \cdot\left\|\mathbb{E}\left(\Sigma^{-2} X \mid A\right)\right\|^{2}+\sum_{A \in \mathcal{A}} P(A) \ln P(A)
$$

Induced partitions

Let $X_{1}, X_{2}, \ldots \stackrel{\text { iid }}{\sim} P$ (e.g. a mixture of three gaussians).
\mathcal{A} is a fixed partition of $\mathbb{R}^{d} ; \quad \mathcal{J}_{n}^{\mathcal{A}}=\left\{\left\{i \leqslant n: X_{i} \in A\right\}: A \in \mathcal{A}\right\}$.

Proposition

$\sqrt[n]{Q_{\boldsymbol{X}_{1: n}}\left(\mathcal{J}_{n}^{\mathcal{A}}\right)} \stackrel{\text { a.s. }}{\approx} \frac{n}{e} \exp \{\Delta(\mathcal{A})\}$, where

$$
\Delta(\mathcal{A})=\frac{1}{2} \sum_{A \in \mathcal{A}} P(A) \cdot\left\|\mathbb{E}\left(\Sigma^{-2} X \mid A\right)\right\|^{2}+\sum_{A \in \mathcal{A}} P(A) \ln P(A)
$$

- nice interpretation of Δ (variance of CEV vs entropy)

Induced partitions

Let $X_{1}, X_{2}, \ldots \stackrel{\text { iid }}{\sim} P$ (e.g. a mixture of three gaussians).
\mathcal{A} is a fixed partition of $\mathbb{R}^{d} ; \quad \mathcal{J}_{n}^{\mathcal{A}}=\left\{\left\{i \leqslant n: X_{i} \in A\right\}: A \in \mathcal{A}\right\}$.

Proposition

$\sqrt[n]{Q_{\boldsymbol{X}_{1: n}}\left(\mathcal{J}_{n}^{\mathcal{A}}\right)} \stackrel{\text { a.s. }}{\approx} \frac{n}{e} \exp \{\Delta(\mathcal{A})\}$, where

$$
\Delta(\mathcal{A})=\frac{1}{2} \sum_{A \in \mathcal{A}} P(A) \cdot\left\|\mathbb{E}\left(\Sigma^{-2} X \mid A\right)\right\|^{2}+\sum_{A \in \mathcal{A}} P(A) \ln P(A)
$$

- nice interpretation of Δ (variance of CEV vs entropy)
- for P bounded you can do something similar for the MAP and hence prove Result 3

Induced partitions

Let $X_{1}, X_{2}, \ldots \stackrel{\text { iid }}{\sim} P$ (e.g. a mixture of three gaussians).
\mathcal{A} is a fixed partition of $\mathbb{R}^{d} ; \quad \mathcal{J}_{n}^{\mathcal{A}}=\left\{\left\{i \leqslant n: X_{i} \in A\right\}: A \in \mathcal{A}\right\}$.

Proposition

$\sqrt[n]{Q_{\boldsymbol{X}_{1: n}}\left(\mathcal{J}_{n}^{\mathcal{A}}\right)} \stackrel{\text { a.s. }}{\approx} \frac{n}{e} \exp \{\Delta(\mathcal{A})\}$, where

$$
\Delta(\mathcal{A})=\frac{1}{2} \sum_{A \in \mathcal{A}} P(A) \cdot\left\|\mathbb{E}\left(\Sigma^{-2} X \mid A\right)\right\|^{2}+\sum_{A \in \mathcal{A}} P(A) \ln P(A)
$$

- nice interpretation of Δ (variance of CEV vs entropy)
- for P bounded you can do something similar for the MAP and hence prove Result 3
- depends only on within-group covariance Σ^{2} - 'inconsistency'!

Illustration of the last point

\qquad

1
-1

i

Interested in details?

- Analysis of the maximal posterior partition in the Dirichlet Process Gaussian Mixture Model available on arXiv.org and accepted to Bayesian Analysis
- Poster:

Thank you for your attention

