
-  Fitting empirical Bayes‘ models of reinforcement learning using Expectation 
Maximization (EM) [1] exhibits desirable normative properties 

-  Our new Variational Bayes method suggests that we can and should understand 
the heterogeneity and homogeneity observed in group studies of decision-making 
by investigating contributions of both, the underlying mechanisms and their 
parameters 

-  We find increased accuracy in Bayesian model comparison for our new VB method 
compared to previous approaches [1, 2] 

-  We expect that this new mixed-effects method will prove useful for a wide range of 
computational modeling approches in group studies of cognition and biology 
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Conclusions	  

Introduc-on	  
Bayesian model selection and estimation (BMSE):  
Powerful methods for determining the most likely among sets of 
competing hypotheses about the mechanisms and parameters that 
generated observed data, e.g., from experiments on decision-making. 
 
Mixed-effects (or empirical / hierarchical Bayes‘) models: 
Provide full inference in group-studies – with repeated observations for 
each individual – by adequatly capturing: 
-  Individual differences (random effects / posteriors) 
-  Mechanisms & parameters common to all individuals (fixed effects / 

priors) 

Previous models: have assumed mixed-effects   
-  either for model parameters: Huys et al. [1] applied empirical Bayes‘ 

via Expectation Maximization (EM) to reinforcement learning models 
-  or for the model identity: Stephan et al. [2] developed a Variational 

Bayes‘ (VB) method for treating models as random-effects 
 
Here:  
A) We evaluate the empirical Bayes‘ method assuming mixed-effects 

for parameters for reinforcement learning models [1] 
B) We present a novel Variational Bayes' (VB) model which considers 

mixed-effects for models and parameters simultaneously 
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-  Generating prior parameters can be 
recovered from simulated data 

-  The precision scales with number of 
data points as theoretically expected 

The likelihood for the prior is approximately 
Gaussian, providing a basis for a Laplace-
Approximation to derive error bars, with 
normative alpha errors 

BICint extracts the true generating model from the data 
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0.2 Parameter Estimation: Empirical Bayes

In an empirical Bayes’ approach the prior is inferred from the group information by inte-
grating over the vector of individual subject-parameters, ✓,

P (X | µ✓,�✓) /
Z 1

�1
d✓P (X,✓ | µ✓,�✓) (4)

and prior parameters are set to their ML estimates

µ̂✓,�̂✓ = argmax
µ
✓

,�
✓

P (X | µ✓,�✓) = argmax
µ
✓

,�
✓

Z 1

�1
d✓ P (X | ✓)P (✓ | µ✓,�✓) (5)

0.2.1 Expectation Maximization with Laplace approximation

To estimate model parameters we use Expectation Maximization (EM), where we iterate
between an expectation step, where we approximate the distribution of latent subject-
parameters, and a maximization step, where we search for maximum likelihood estimates
(MLE) for the prior parameters. In this procedure, each parameter update is obtained
conditional on the currently best estimates for the other parameters.

To ease computations with the likelihood of the prior parameters we take its logarithm (see
Equantion 6). As the distribution of individual subject parameters cannot in general be
solved analytically and directly, we introduce the distribution q(✓) ⌘ Normal(✓; ✓0, S) to
approximate the distribution over ✓ via a normal distribution (i.e., Laplace approximation).
In the E-step, we approximate this distribution based on the prior parameters and the data.
In the M-step, we can subsequently update our estimates for the other (prior) parameters
given this approximation to ✓. To solve equation (7) we utilize Jensen’s inequality and
move the logarithm into the integral in (8).

log p (X | µ✓,�✓) = log

Z 1

�1
d✓ p (X, ✓ | µ✓,�✓) (6)

= log

Z 1

�1
d✓ q(✓)

p (X, ✓ | µ✓,�✓)

q(✓)
(7)

�
Z 1

�1
d✓ q(✓) log

p (X, ✓ | µ✓,�✓)

q(✓)
(8)
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Figure 21: Bayesian dependency graphs for our random e↵ects generative model for
multi-subject data. Rectangles denote deterministic parameters and shaded circles rep-
resent observed values. ↵ = parameters of the Dirichlet distribution (number of model
”occurrences”); r = parameters of the multinomial distribution (probabilities of the mod-
els); m = model labels; ✓ = individual subject parameters; µ = prior group mean; �2 =
prior group variance; µ0, ⌫ = hyper-priors for the µ parameter; a0, b0 = hyper-priors for
the �2 parameter; y = observed data; y | m = probability of the data given model k; k =
model index; K = number of models; n = subject index; N = number of subjects.
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Simulations from known decision processes with N = 90 simulated subjects 

Simple RL + 200 trials 
With sufficient data, the correct model 
can be identified for all subjects and 
for both methods with high certainty 

Simple RL + 20 trials 
With scarce data per subject, the full 
VB method improves model 
comparison compared to the 
sufficient statistics approach 

2step + 201 trials 
Using three similar 
models with differing 
model parameters in 
the 2step task also 
yields posterior 
uncertainty, and the 
full VB performs best 

Simple RL: ab = simple RL model, assuming 1 state, 2 actions, learning rate (a) 
inverse noisiness (b) parameters (N=60) 
Rep = repetition model (N = 30) 

2step: Hybrid = model-based + model-free; model-free; non-learner [3] 

2step + 201 trials + 
parameters based 
on real data [4] 
The advantage for 
the full VB is visible 
also for parameters 
obtained from real 
(observed) data 
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