Bayesian model selection and estimation： Simultaneous mixed effects for models and parameters

Daniel J．Schada＊，Michael A．Rapp ${ }^{\text {a，b }}$ ，Quentin J．M．Huys ${ }^{\text {c }}$
＊contact：danieljschad＠gmail．com

Introduction

Bayesian model selection and estimation（BMSE）：
Powerful methods for determining the most likely among sets of competing hypotheses about the mechanisms and parameters that generated observed data，e．g．，from experiments on decision－making．

Mixed－effects（or empirical／hierarchical Bayes＇）models：

Provide full inference in group－studies－with repeated observations for each individual－by adequatly capturing

Individual differences（random effects／posteriors）
Mechanisms \＆parameters common to all individuals（fixed effects／ priors）

Previous models：have assumed mixed－effects
either for model parameters：Huys et al．［1］applied empirical Bayes‘ via Expectation Maximization（EM）to reinforcement learning models or for the model identity：Stephan et al．［2］developed a Variational Bayes‘（VB）method for treating models as random－effects

Here：

A）We evaluate the empirical Bayes＇method assuming mixed－effects for parameters for reinforcement learning models［1］
B）We present a novel Variational Bayes＇（VB）model which considers mixed－effects for models and parameters simultaneously

A）empirical Bayes

－Generating prior parameters can be recovered from simulated data
The precision scales with number of data points as theoretically expected

$\bar{\circ}$	
塈。	
coid	
c	
－	
边	

