
We developed a numerical integration based method for 
Bayesian Inference on psychometric functions. The method is 
fast and convenient to use. Furthermore, we provide suitable 
defaults for all common settings. By fitting a beta-binomial 
model our method exhibits increased robustness against 
nonstationary behaviour caused, e.g., by fluctuations in at-
tention or learning. We performed extensive simulations to 
validate our method and software implementation. Finally we 
provide generic methods to compare several psychometric 
functions statistically. All methods are freely available: 
https://github.com/wichmann-lab/psignifit  

We model psychometric functions ψ(x) at a stimulus level x 
with a sigmoid function Sm,w(x) parametrized by its thresh-
old m and width w scaled by upper and lower asymptotes 
l and g: 

 

!

 

on-stationaritites—when the psychometric function 
is not constant over time—are abundant in ex-

periments and may result from learning or fluctua-
tions in attention. This impairs statistical infer-
ence because they increase the variability of the 
data. To capture this we fit a model which con-
tains a specific non-stationarity, the beta-bino-
mial model. This model assumes that the proba-
bility of success for each block is drawn from a 
beta distribution with variance scaled by σ around the 
value of the psychometric function: 

 

!
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This model corrects the confidence intervals automatically, 
when the data is over-dispersed.  

ayesian inference of psychometric function is 
usually done by MCMC sampling. While be-

ing powerful, this typically requires users to have 
detailed knowledge of MCMC, e.g. to fine-tune 
the algorithm to datasets, or evaluate chain conver-
gence. Instead we propose to evaluate the full posterior 
using numerical integration on a grid. Our analysis method 
is fast—maximally a few seconds for the full 5 parameter 
model—stable, and independent of user intervention. De-
faults for the priors and all other settings making our soft-
ware easy to use whilst retaining full customisability. 

!

 

rom several posterior distributions of the parameters of 
individual psychometric functions posteriors on 

parameters of the measured sample can be cal-
culated, allowing comparisons between single 
subjects and the measured group. To test 
whether a group is congruent, e.g. shares 
some parameter(s) of the psychometric func-
tion we provide a Bayesfactor test, comparing 
the model with shared parameter(s) to the 
model with individual parameters. Finally we can 
draw conclusions on any generative model with pa-
rameter θ for one or more of the psychometric function pa-
rameters α from the marginal on these predicted parame-
ters for each psychometric function. 

!

!

This allows to draw conclusions for population models and 
to differentiate the variability between subjects from the one 
from the measurements. As an example we implemented a 
normal distribution model for the population
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Densities and example functions for our de-
fault prior distributions for a psychometric 
function sampled at the black dots on the x-
axis. The filled color circles in the densities in 
the top row correspond to the psychometric 
functions of the same color in the lower row. 
We choose prior distributions based on 
where the psychometric function is sam-
pled.
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How to combine the marginal posteriors from 
different psychometric functions. The thin 
lines are the posterior marginals for five single 
subjects for each of the two groups. The 
thicker ones are the computed posteriors for 
the means of the two groups. The dashed 
lines show the posterior we computed over 
the mean of the population assuming a nor-
mal distribution in each group.
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Confidence interval size normalized to the 
size estimated with 150 grid points per 
dimension against the number of grid-
points in the simulation.

Coverage from simulations for different 
sampling schemes, dataset sizes and a 
binomial and a β-binomial observer with σ 
= .2. The x axis depicts the strength of 
the prior on σ. As expected, coverage is 
good for the binomial observer and de-
pends on the prior for the β-binomial ob-
server.
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Left: Standard deviation of percent correct for differently strong  
betabinomial observers (normalized to one Bernoulli) trial against  
the number of trials measured  
Right: The different priors we tried for σ, indexed by parameter k: �(��, �, R)

Bayesian inference of 
psychometric 

functions allow more 
complex conclusions

The β-binomial mod-
el takes nonstation-
arities into account, 

yielding better 
confidence intervals
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Numerical integra-
tion and defaults 
make our toolbox 

fast and convenient
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