
Alexandre Bouchard-Côté

University of British Columbia

Collaborators:

Seong-Hwan Jun, Bonnie Kirkpatrick, Liangliang Wang

Applications of SMC to the analysis of
partially observed jump processes

and: the Entangled Monte Carlo algorithm

samedi 22 septembre 2012

Part I : Overview

 Problem: posterior inference on countably infinite
Continuous Time Markov Chains (CTMCs)

 Motivations: phylogenetic inference under evolutionary
models with random dependencies across sites

 Proposed method:

 Proposals based on supermartingales on combinatorial
potentials

 Weights given by exponentiation of random matrices

samedi 22 septembre 2012

Slipped strand mispairing (SSMs)

Levinson ’87

Example of Non-local Evolutionary Events

Slipped Strand Mispairing (SSM)
An example from Levinson ’87

Replication continues. Inserting TA repeat unit:

L. Wang and A. Bouchard-Côté (UBC) Harnessing Non-Local Evolutionary Events for Tree Infer. June 25, 2012 3 / 17

Example of Non-local Evolutionary Events

Slipped Strand Mispairing (SSM)
An example from Levinson ’87

Normal pairing during DNA replication:

L. Wang and A. Bouchard-Côté (UBC) Harnessing Non-Local Evolutionary Events for Tree Infer. June 25, 2012 3 / 17

Normal pairing
during DNA
replication

SSM:
Example of

insertion of an
extra TA

repeat

samedi 22 septembre 2012

SSMs on a tree
Example of Non-local Evolutionary Events

An Example of Evolutionary Events

v
3
 :v

2
 :

v
4
 :

Cv
1

:

TA C!:

TG

G

A

L. Wang and A. Bouchard-Côté (UBC) Harnessing Non-Local Evolutionary Events for Tree Infer. June 25, 2012 4 / 17

String-valued branching process:

samedi 22 septembre 2012

SSMs on a branch
Example of Non-local Evolutionary Events

An Example of Evolutionary Events

TA C

SSM insertion: (G T)

TA CG

TG C

TG CTG

Point insertion: A

TG CTG A

CTG A

Cv
1

:

TA C!:

TG

G

A Ending sequence

Starting sequence0

T
1 Point deletion: G

T
2 Point mutation: A->G

T
3

T
4

T
5 SSM deletion: (G T)

T
6

L. Wang and A. Bouchard-Côté (UBC) Harnessing Non-Local Evolutionary Events for Tree Infer. June 25, 2012 5 / 17

samedi 22 septembre 2012

SSMs and phylogenetic inference

 Potential of SSM in phylogenetics:

 Interactions between SSMs and point mutations adds
constrains---this can help resolving trees and alignments

 Very frequent in neutral regions (e.g. plant introns)

 This potential has not been exploited yet

 Reason: inference is computationally challenging

samedi 22 septembre 2012

Computational problem

 Our application (phylogenetic tree inference) requires
SMC/PMCMC samplers...

 but the main ideas can be explained in a simpler
setup:

 Computing a marginal transition probability,

 using importance sampling

samedi 22 septembre 2012

Marginal transition probability
Model: String-valued Continuous Time Markov Chain

Evolution of strings is denoted by M

Branch length is T = T6.
Strings {Xt : 0 ≤ t ≤ T}; Xt has a countable infinite domain of all possible
molecular sequences.

0 T
1

T
2

T
3

Branch length

Strings

TA CGx
1

TA Cx
2

TG Cx
3

TG CTGx
4

TG CTG Ax
5

CTG Ax
6

T
4

T
5

T
6

L. Wang and A. Bouchard-Côté (UBC) Harnessing Non-Local Evolutionary Events for Tree Infer. June 25, 2012 6 / 17

X1 = x

where T : (X × R+)∞ → X gives the state at T (overloading).
Model: Hi|Xi ∼ Expd(λ(Xi)), Xi|Xi−1 ∼ νXi−1 where λ : X → R+ is a rate

function and ν· is a jump kernel, the two parameters of the model.
Let also N : (R+)∞ → N denote the number of states visited before T

(counting multiplicities).
We will sample according to the law

π(x∗) = P(N = |x∗|, X1 = x∗
1, . . . , X|x∗|

= x∗
|x∗||E)

where (N = n) = (
∑n−1

i=1 Hi < T ≤
∑n

i=1 Hi).
Now,

π(x∗) =
1E(x∗)P(

∑n−1
i=1 Hi < T ≤

∑n
i=1 Hi, X1 = x∗

1, . . . , X|x∗| = x∗
|x∗||Xs)

P(Xe|Xs)

=
1E(x∗)P(X1 = x∗

1, . . . , X|x∗| = x∗
|x∗||Xs)P(

∑n−1
i=1 Hi < T ≤

∑n
i=1 Hi|X1 = x∗

1, . . . , X|x∗| = x∗
|x∗|)

P(Xe|Xs)

=
1E(x∗)(

∏n−1
i=1 νx∗

i
({x∗

i+1))P(
∑n−1

i=1 Zi < T ≤
∑n

i=1 Zi)

P(Xe|Xs)
,

where Zi ∼ Expd(λ(x∗
i)). We therefore build a IS algorithm with unormalized

density given by the numerator of the above equation. The average of the
unnormalized particles gives an estimate for the transition probability P(Xe|Xs).

2 Notation for paper

X

2

=

X2

XN = y

t

samedi 22 septembre 2012

Marginal transition probability
Model: String-valued Continuous Time Markov Chain

Evolution of strings is denoted by M

Branch length is T = T6.
Strings {Xt : 0 ≤ t ≤ T}; Xt has a countable infinite domain of all possible
molecular sequences.

0 T
1

T
2

T
3

Branch length

Strings

TA CGx
1

TA Cx
2

TG Cx
3

TG CTGx
4

TG CTG Ax
5

CTG Ax
6

T
4

T
5

T
6

L. Wang and A. Bouchard-Côté (UBC) Harnessing Non-Local Evolutionary Events for Tree Infer. June 25, 2012 6 / 17

X1 = x

where T : (X × R+)∞ → X gives the state at T (overloading).
Model: Hi|Xi ∼ Expd(λ(Xi)), Xi|Xi−1 ∼ νXi−1 where λ : X → R+ is a rate

function and ν· is a jump kernel, the two parameters of the model.
Let also N : (R+)∞ → N denote the number of states visited before T

(counting multiplicities).
We will sample according to the law

π(x∗) = P(N = |x∗|, X1 = x∗
1, . . . , X|x∗|

= x∗
|x∗||E)

where (N = n) = (
∑n−1

i=1 Hi < T ≤
∑n

i=1 Hi).
Now,

π(x∗) =
1E(x∗)P(

∑n−1
i=1 Hi < T ≤

∑n
i=1 Hi, X1 = x∗

1, . . . , X|x∗| = x∗
|x∗||Xs)

P(Xe|Xs)

=
1E(x∗)P(X1 = x∗

1, . . . , X|x∗| = x∗
|x∗||Xs)P(

∑n−1
i=1 Hi < T ≤

∑n
i=1 Hi|X1 = x∗

1, . . . , X|x∗| = x∗
|x∗|)

P(Xe|Xs)

=
1E(x∗)(

∏n−1
i=1 νx∗

i
({x∗

i+1))P(
∑n−1

i=1 Zi < T ≤
∑n

i=1 Zi)

P(Xe|Xs)
,

where Zi ∼ Expd(λ(x∗
i)). We therefore build a IS algorithm with unormalized

density given by the numerator of the above equation. The average of the
unnormalized particles gives an estimate for the transition probability P(Xe|Xs).

2 Notation for paper

X

2

=

X2

XN = y

t

where T : (X × R+)∞ → X gives the state at T (overloading).
Model: Hi|Xi ∼ Expd(λ(Xi)), Xi|Xi−1 ∼ νXi−1 where λ : X → R+ is a rate

function and ν· is a jump kernel, the two parameters of the model.
Let also N : (R+)∞ → N denote the number of states visited before T

(counting multiplicities).
We will sample according to the law

π(x∗) = P(N = |x∗|, X1 = x∗
1, . . . , X|x∗|

= x∗
|x∗||E)

where (N = n) = (
∑n−1

i=1 Hi < T ≤
∑n

i=1 Hi).
Now,

π(x∗) =
1E(x∗)P(

∑n−1
i=1 Hi < T ≤

∑n
i=1 Hi, X1 = x∗

1, . . . , X|x∗| = x∗
|x∗||Xs)

P(Xe|Xs)

=
1E(x∗)P(X1 = x∗

1, . . . , X|x∗| = x∗
|x∗||Xs)P(

∑n−1
i=1 Hi < T ≤

∑n
i=1 Hi|X1 = x∗

1, . . . , X|x∗| = x∗
|x∗|)

P(Xe|Xs)

=
1E(x∗)(

∏n−1
i=1 νx∗

i
({x∗

i+1))P(
∑n−1

i=1 Zi < T ≤
∑n

i=1 Zi)

P(Xe|Xs)
,

where Zi ∼ Expd(λ(x∗
i)). We therefore build a IS algorithm with unormalized

density given by the numerator of the above equation. The average of the
unnormalized particles gives an estimate for the transition probability P(Xe|Xs).

2 Notation for paper

X

P(XN = y|X1 = x)

2

samedi 22 septembre 2012

Model
Model: String-valued Continuous Time Markov Chain

Evolution of strings is denoted by M

Branch length is T = T6.
Strings {Xt : 0 ≤ t ≤ T}; Xt has a countable infinite domain of all possible
molecular sequences.

0 T
1

T
2

T
3

Branch length

Strings

TA CGx
1

TA Cx
2

TG Cx
3

TG CTGx
4

TG CTG Ax
5

CTG Ax
6

T
4

T
5

T
6

L. Wang and A. Bouchard-Côté (UBC) Harnessing Non-Local Evolutionary Events for Tree Infer. June 25, 2012 6 / 17

X1 = x

where T : (X × R+)∞ → X gives the state at T (overloading).
Model: Hi|Xi ∼ Expd(λ(Xi)), Xi|Xi−1 ∼ νXi−1 where λ : X → R+ is a rate

function and ν· is a jump kernel, the two parameters of the model.
Let also N : (R+)∞ → N denote the number of states visited before T

(counting multiplicities).
We will sample according to the law

π(x∗) = P(N = |x∗|, X1 = x∗
1, . . . , X|x∗|

= x∗
|x∗||E)

where (N = n) = (
∑n−1

i=1 Hi < T ≤
∑n

i=1 Hi).
Now,

π(x∗) =
1E(x∗)P(

∑n−1
i=1 Hi < T ≤

∑n
i=1 Hi, X1 = x∗

1, . . . , X|x∗| = x∗
|x∗||Xs)

P(Xe|Xs)

=
1E(x∗)P(X1 = x∗

1, . . . , X|x∗| = x∗
|x∗||Xs)P(

∑n−1
i=1 Hi < T ≤

∑n
i=1 Hi|X1 = x∗

1, . . . , X|x∗| = x∗
|x∗|)

P(Xe|Xs)

=
1E(x∗)(

∏n−1
i=1 νx∗

i
({x∗

i+1))P(
∑n−1

i=1 Zi < T ≤
∑n

i=1 Zi)

P(Xe|Xs)
,

where Zi ∼ Expd(λ(x∗
i)). We therefore build a IS algorithm with unormalized

density given by the numerator of the above equation. The average of the
unnormalized particles gives an estimate for the transition probability P(Xe|Xs).

2 Notation for paper

X

2

=

X2

XN = y

t

where T : (X × R+)∞ → X gives the state at T (overloading).
Model: Hi|Xi ∼ Expd(λ(Xi)), Xi|Xi−1 ∼ νXi−1 where λ : X → R+ is a rate

function and ν· is a jump kernel, the two parameters of the model.
Let also N : (R+)∞ → N denote the number of states visited before T

(counting multiplicities).
We will sample according to the law

π(x∗) = P(N = |x∗|, X1 = x∗
1, . . . , X|x∗|

= x∗
|x∗||E)

where (N = n) = (
∑n−1

i=1 Hi < T ≤
∑n

i=1 Hi).
Now,

π(x∗) =
1E(x∗)P(

∑n−1
i=1 Hi < T ≤

∑n
i=1 Hi, X1 = x∗

1, . . . , X|x∗| = x∗
|x∗||Xs)

P(Xe|Xs)

=
1E(x∗)P(X1 = x∗

1, . . . , X|x∗| = x∗
|x∗||Xs)P(

∑n−1
i=1 Hi < T ≤

∑n
i=1 Hi|X1 = x∗

1, . . . , X|x∗| = x∗
|x∗|)

P(Xe|Xs)

=
1E(x∗)(

∏n−1
i=1 νx∗

i
({x∗

i+1))P(
∑n−1

i=1 Zi < T ≤
∑n

i=1 Zi)

P(Xe|Xs)
,

where Zi ∼ Expd(λ(x∗
i)). We therefore build a IS algorithm with unormalized

density given by the numerator of the above equation. The average of the
unnormalized particles gives an estimate for the transition probability P(Xe|Xs).

2 Notation for paper

X

P(XN = y|X1 = x)

Xi+1|Xi ∼ νXi

2

 Jump distribution:

 Hold times:

where T : (X × R+)∞ → X gives the state at T (overloading).
Model: Hi|Xi ∼ Expd(λ(Xi)), Xi|Xi−1 ∼ νXi−1 where λ : X → R+ is a rate

function and ν· is a jump kernel, the two parameters of the model.
Let also N : (R+)∞ → N denote the number of states visited before T

(counting multiplicities).
We will sample according to the law

π(x∗) = P(N = |x∗|, X1 = x∗
1, . . . , X|x∗|

= x∗
|x∗||E)

where (N = n) = (
∑n−1

i=1 Hi < T ≤
∑n

i=1 Hi).
Now,

π(x∗) =
1E(x∗)P(

∑n−1
i=1 Hi < T ≤

∑n
i=1 Hi, X1 = x∗

1, . . . , X|x∗| = x∗
|x∗||Xs)

P(Xe|Xs)

=
1E(x∗)P(X1 = x∗

1, . . . , X|x∗| = x∗
|x∗||Xs)P(

∑n−1
i=1 Hi < T ≤

∑n
i=1 Hi|X1 = x∗

1, . . . , X|x∗| = x∗
|x∗|)

P(Xe|Xs)

=
1E(x∗)(

∏n−1
i=1 νx∗

i
({x∗

i+1))P(
∑n−1

i=1 Zi < T ≤
∑n

i=1 Zi)

P(Xe|Xs)
,

where Zi ∼ Expd(λ(x∗
i)). We therefore build a IS algorithm with unormalized

density given by the numerator of the above equation. The average of the
unnormalized particles gives an estimate for the transition probability P(Xe|Xs).

2 Notation for paper

X

P(XN = y|X1 = x)

Xi+1|Xi ∼ νXi

Hi ∼ Exp(λ); Hi = Ti − Ti−1

2

H3

.

samedi 22 septembre 2012

Parameters: example
Model: String-valued Continuous Time Markov Chain

An Example of λ(x) and J(x → ·)
The rate of departing from x: λ(x)

λ(x) = nθsub + λpt + nµpt + λSSM + f(x)µSSM

n: length of x; f(x): the number of valid SSM deletion locations.

The jumping distribution: J(x → ·)
Mutation type from x to x′

J(x → x′) = 1
λ(x)

θsub Point substitution
λpt

n+1 Point insertion
µpt Point deletion
λSSM
f(x) SSM insertion
µSSM SSM deletion,

L. Wang and A. Bouchard-Côté (UBC) Harnessing Non-Local Evolutionary Events for Tree Infer. June 25, 2012 8 / 17

Model: String-valued Continuous Time Markov Chain

An Example of λ(x) and J(x → ·)
The rate of departing from x: λ(x)

λ(x) = nθsub + λpt + nµpt + λSSM + f(x)µSSM

n: length of x; f(x): the number of valid SSM deletion locations.

The jumping distribution: J(x → ·)
Mutation type from x to x′

J(x → x′) = 1
λ(x)

θsub Point substitution
λpt

n+1 Point insertion
µpt Point deletion
λSSM
f(x) SSM insertion
µSSM SSM deletion,

L. Wang and A. Bouchard-Côté (UBC) Harnessing Non-Local Evolutionary Events for Tree Infer. June 25, 2012 8 / 17

where T : (X × R+)∞ → X gives the state at T (overloading).
Model: Hi|Xi ∼ Expd(λ(Xi)), Xi|Xi−1 ∼ νXi−1 where λ : X → R+ is a rate

function and ν· is a jump kernel, the two parameters of the model.
Let also N : (R+)∞ → N denote the number of states visited before T

(counting multiplicities).
We will sample according to the law

π(x∗) = P(N = |x∗|, X1 = x∗
1, . . . , X|x∗|

= x∗
|x∗||E)

where (N = n) = (
∑n−1

i=1 Hi < T ≤
∑n

i=1 Hi).
Now,

π(x∗) =
1E(x∗)P(

∑n−1
i=1 Hi < T ≤

∑n
i=1 Hi, X1 = x∗

1, . . . , X|x∗| = x∗
|x∗||Xs)

P(Xe|Xs)

=
1E(x∗)P(X1 = x∗

1, . . . , X|x∗| = x∗
|x∗||Xs)P(

∑n−1
i=1 Hi < T ≤

∑n
i=1 Hi|X1 = x∗

1, . . . , X|x∗| = x∗
|x∗|)

P(Xe|Xs)

=
1E(x∗)(

∏n−1
i=1 νx∗

i
({x∗

i+1))P(
∑n−1

i=1 Zi < T ≤
∑n

i=1 Zi)

P(Xe|Xs)
,

where Zi ∼ Expd(λ(x∗
i)). We therefore build a IS algorithm with unormalized

density given by the numerator of the above equation. The average of the
unnormalized particles gives an estimate for the transition probability P(Xe|Xs).

2 Notation for paper

X

P(XN = y|X1 = x)

Xi+1|Xi ∼ νXi

Hi ∼ Exp(λ); Hi = Ti − Ti−1

λ : X → (0,∞)

2

where T : (X × R+)∞ → X gives the state at T (overloading).
Model: Hi|Xi ∼ Expd(λ(Xi)), Xi|Xi−1 ∼ νXi−1 where λ : X → R+ is a rate

function and ν· is a jump kernel, the two parameters of the model.
Let also N : (R+)∞ → N denote the number of states visited before T

(counting multiplicities).
We will sample according to the law

π(x∗) = P(N = |x∗|, X1 = x∗
1, . . . , X|x∗|

= x∗
|x∗||E)

where (N = n) = (
∑n−1

i=1 Hi < T ≤
∑n

i=1 Hi).
Now,

π(x∗) =
1E(x∗)P(

∑n−1
i=1 Hi < T ≤

∑n
i=1 Hi, X1 = x∗

1, . . . , X|x∗| = x∗
|x∗||Xs)

P(Xe|Xs)

=
1E(x∗)P(X1 = x∗

1, . . . , X|x∗| = x∗
|x∗||Xs)P(

∑n−1
i=1 Hi < T ≤

∑n
i=1 Hi|X1 = x∗

1, . . . , X|x∗| = x∗
|x∗|)

P(Xe|Xs)

=
1E(x∗)(

∏n−1
i=1 νx∗

i
({x∗

i+1))P(
∑n−1

i=1 Zi < T ≤
∑n

i=1 Zi)

P(Xe|Xs)
,

where Zi ∼ Expd(λ(x∗
i)). We therefore build a IS algorithm with unormalized

density given by the numerator of the above equation. The average of the
unnormalized particles gives an estimate for the transition probability P(Xe|Xs).

2 Notation for paper

X

P(XN = y|X1 = x)

Xi+1|Xi ∼ νXi

Hi ∼ Exp(λ); Hi = Ti − Ti−1

λ : X → (0,∞)

ν : X × FX → [0, 1]

2

where T : (X × R+)∞ → X gives the state at T (overloading).
Model: Hi|Xi ∼ Expd(λ(Xi)), Xi|Xi−1 ∼ νXi−1 where λ : X → R+ is a rate

function and ν· is a jump kernel, the two parameters of the model.
Let also N : (R+)∞ → N denote the number of states visited before T

(counting multiplicities).
We will sample according to the law

π(x∗) = P(N = |x∗|, X1 = x∗
1, . . . , X|x∗|

= x∗
|x∗||E)

where (N = n) = (
∑n−1

i=1 Hi < T ≤
∑n

i=1 Hi).
Now,

π(x∗) =
1E(x∗)P(

∑n−1
i=1 Hi < T ≤

∑n
i=1 Hi, X1 = x∗

1, . . . , X|x∗| = x∗
|x∗||Xs)

P(Xe|Xs)

=
1E(x∗)P(X1 = x∗

1, . . . , X|x∗| = x∗
|x∗||Xs)P(

∑n−1
i=1 Hi < T ≤

∑n
i=1 Hi|X1 = x∗

1, . . . , X|x∗| = x∗
|x∗|)

P(Xe|Xs)

=
1E(x∗)(

∏n−1
i=1 νx∗

i
({x∗

i+1))P(
∑n−1

i=1 Zi < T ≤
∑n

i=1 Zi)

P(Xe|Xs)
,

where Zi ∼ Expd(λ(x∗
i)). We therefore build a IS algorithm with unormalized

density given by the numerator of the above equation. The average of the
unnormalized particles gives an estimate for the transition probability P(Xe|Xs).

2 Notation for paper

X

P(XN = y|X1 = x)

Xi+1|Xi ∼ νXi

Hi ∼ Exp(λ); Hi = Ti − Ti−1

λ : X → (0,∞)

ν : X × FX → [0, 1]

νx({x′})

2

samedi 22 septembre 2012

Parameters: example
Model: String-valued Continuous Time Markov Chain

An Example of λ(x) and J(x → ·)
The rate of departing from x: λ(x)

λ(x) = nθsub + λpt + nµpt + λSSM + f(x)µSSM

n: length of x; f(x): the number of valid SSM deletion locations.

The jumping distribution: J(x → ·)
Mutation type from x to x′

J(x → x′) = 1
λ(x)

θsub Point substitution
λpt

n+1 Point insertion
µpt Point deletion
λSSM
f(x) SSM insertion
µSSM SSM deletion,

L. Wang and A. Bouchard-Côté (UBC) Harnessing Non-Local Evolutionary Events for Tree Infer. June 25, 2012 8 / 17

Model: String-valued Continuous Time Markov Chain

An Example of λ(x) and J(x → ·)
The rate of departing from x: λ(x)

λ(x) = nθsub + λpt + nµpt + λSSM + f(x)µSSM

n: length of x; f(x): the number of valid SSM deletion locations.

The jumping distribution: J(x → ·)
Mutation type from x to x′

J(x → x′) = 1
λ(x)

θsub Point substitution
λpt

n+1 Point insertion
µpt Point deletion
λSSM
f(x) SSM insertion
µSSM SSM deletion,

L. Wang and A. Bouchard-Côté (UBC) Harnessing Non-Local Evolutionary Events for Tree Infer. June 25, 2012 8 / 17

where T : (X × R+)∞ → X gives the state at T (overloading).
Model: Hi|Xi ∼ Expd(λ(Xi)), Xi|Xi−1 ∼ νXi−1 where λ : X → R+ is a rate

function and ν· is a jump kernel, the two parameters of the model.
Let also N : (R+)∞ → N denote the number of states visited before T

(counting multiplicities).
We will sample according to the law

π(x∗) = P(N = |x∗|, X1 = x∗
1, . . . , X|x∗|

= x∗
|x∗||E)

where (N = n) = (
∑n−1

i=1 Hi < T ≤
∑n

i=1 Hi).
Now,

π(x∗) =
1E(x∗)P(

∑n−1
i=1 Hi < T ≤

∑n
i=1 Hi, X1 = x∗

1, . . . , X|x∗| = x∗
|x∗||Xs)

P(Xe|Xs)

=
1E(x∗)P(X1 = x∗

1, . . . , X|x∗| = x∗
|x∗||Xs)P(

∑n−1
i=1 Hi < T ≤

∑n
i=1 Hi|X1 = x∗

1, . . . , X|x∗| = x∗
|x∗|)

P(Xe|Xs)

=
1E(x∗)(

∏n−1
i=1 νx∗

i
({x∗

i+1))P(
∑n−1

i=1 Zi < T ≤
∑n

i=1 Zi)

P(Xe|Xs)
,

where Zi ∼ Expd(λ(x∗
i)). We therefore build a IS algorithm with unormalized

density given by the numerator of the above equation. The average of the
unnormalized particles gives an estimate for the transition probability P(Xe|Xs).

2 Notation for paper

X

P(XN = y|X1 = x)

Xi+1|Xi ∼ νXi

Hi ∼ Exp(λ); Hi = Ti − Ti−1

λ : X → (0,∞)

2

where T : (X × R+)∞ → X gives the state at T (overloading).
Model: Hi|Xi ∼ Expd(λ(Xi)), Xi|Xi−1 ∼ νXi−1 where λ : X → R+ is a rate

function and ν· is a jump kernel, the two parameters of the model.
Let also N : (R+)∞ → N denote the number of states visited before T

(counting multiplicities).
We will sample according to the law

π(x∗) = P(N = |x∗|, X1 = x∗
1, . . . , X|x∗|

= x∗
|x∗||E)

where (N = n) = (
∑n−1

i=1 Hi < T ≤
∑n

i=1 Hi).
Now,

π(x∗) =
1E(x∗)P(

∑n−1
i=1 Hi < T ≤

∑n
i=1 Hi, X1 = x∗

1, . . . , X|x∗| = x∗
|x∗||Xs)

P(Xe|Xs)

=
1E(x∗)P(X1 = x∗

1, . . . , X|x∗| = x∗
|x∗||Xs)P(

∑n−1
i=1 Hi < T ≤

∑n
i=1 Hi|X1 = x∗

1, . . . , X|x∗| = x∗
|x∗|)

P(Xe|Xs)

=
1E(x∗)(

∏n−1
i=1 νx∗

i
({x∗

i+1))P(
∑n−1

i=1 Zi < T ≤
∑n

i=1 Zi)

P(Xe|Xs)
,

where Zi ∼ Expd(λ(x∗
i)). We therefore build a IS algorithm with unormalized

density given by the numerator of the above equation. The average of the
unnormalized particles gives an estimate for the transition probability P(Xe|Xs).

2 Notation for paper

X

P(XN = y|X1 = x)

Xi+1|Xi ∼ νXi

Hi ∼ Exp(λ); Hi = Ti − Ti−1

λ : X → (0,∞)

ν : X × FX → [0, 1]

2

where T : (X × R+)∞ → X gives the state at T (overloading).
Model: Hi|Xi ∼ Expd(λ(Xi)), Xi|Xi−1 ∼ νXi−1 where λ : X → R+ is a rate

function and ν· is a jump kernel, the two parameters of the model.
Let also N : (R+)∞ → N denote the number of states visited before T

(counting multiplicities).
We will sample according to the law

π(x∗) = P(N = |x∗|, X1 = x∗
1, . . . , X|x∗|

= x∗
|x∗||E)

where (N = n) = (
∑n−1

i=1 Hi < T ≤
∑n

i=1 Hi).
Now,

π(x∗) =
1E(x∗)P(

∑n−1
i=1 Hi < T ≤

∑n
i=1 Hi, X1 = x∗

1, . . . , X|x∗| = x∗
|x∗||Xs)

P(Xe|Xs)

=
1E(x∗)P(X1 = x∗

1, . . . , X|x∗| = x∗
|x∗||Xs)P(

∑n−1
i=1 Hi < T ≤

∑n
i=1 Hi|X1 = x∗

1, . . . , X|x∗| = x∗
|x∗|)

P(Xe|Xs)

=
1E(x∗)(

∏n−1
i=1 νx∗

i
({x∗

i+1))P(
∑n−1

i=1 Zi < T ≤
∑n

i=1 Zi)

P(Xe|Xs)
,

where Zi ∼ Expd(λ(x∗
i)). We therefore build a IS algorithm with unormalized

density given by the numerator of the above equation. The average of the
unnormalized particles gives an estimate for the transition probability P(Xe|Xs).

2 Notation for paper

X

P(XN = y|X1 = x)

Xi+1|Xi ∼ νXi

Hi ∼ Exp(λ); Hi = Ti − Ti−1

λ : X → (0,∞)

ν : X × FX → [0, 1]

νx({x′})

2

Note: this is
explosion free

(always assumed
today)

samedi 22 septembre 2012

Parameters: example
Model: String-valued Continuous Time Markov Chain

An Example of λ(x) and J(x → ·)
The rate of departing from x: λ(x)

λ(x) = nθsub + λpt + nµpt + λSSM + f(x)µSSM

n: length of x; f(x): the number of valid SSM deletion locations.

The jumping distribution: J(x → ·)
Mutation type from x to x′

J(x → x′) = 1
λ(x)

θsub Point substitution
λpt

n+1 Point insertion
µpt Point deletion
λSSM
f(x) SSM insertion
µSSM SSM deletion,

L. Wang and A. Bouchard-Côté (UBC) Harnessing Non-Local Evolutionary Events for Tree Infer. June 25, 2012 8 / 17

Model: String-valued Continuous Time Markov Chain

An Example of λ(x) and J(x → ·)
The rate of departing from x: λ(x)

λ(x) = nθsub + λpt + nµpt + λSSM + f(x)µSSM

n: length of x; f(x): the number of valid SSM deletion locations.

The jumping distribution: J(x → ·)
Mutation type from x to x′

J(x → x′) = 1
λ(x)

θsub Point substitution
λpt

n+1 Point insertion
µpt Point deletion
λSSM
f(x) SSM insertion
µSSM SSM deletion,

L. Wang and A. Bouchard-Côté (UBC) Harnessing Non-Local Evolutionary Events for Tree Infer. June 25, 2012 8 / 17

where T : (X × R+)∞ → X gives the state at T (overloading).
Model: Hi|Xi ∼ Expd(λ(Xi)), Xi|Xi−1 ∼ νXi−1 where λ : X → R+ is a rate

function and ν· is a jump kernel, the two parameters of the model.
Let also N : (R+)∞ → N denote the number of states visited before T

(counting multiplicities).
We will sample according to the law

π(x∗) = P(N = |x∗|, X1 = x∗
1, . . . , X|x∗|

= x∗
|x∗||E)

where (N = n) = (
∑n−1

i=1 Hi < T ≤
∑n

i=1 Hi).
Now,

π(x∗) =
1E(x∗)P(

∑n−1
i=1 Hi < T ≤

∑n
i=1 Hi, X1 = x∗

1, . . . , X|x∗| = x∗
|x∗||Xs)

P(Xe|Xs)

=
1E(x∗)P(X1 = x∗

1, . . . , X|x∗| = x∗
|x∗||Xs)P(

∑n−1
i=1 Hi < T ≤

∑n
i=1 Hi|X1 = x∗

1, . . . , X|x∗| = x∗
|x∗|)

P(Xe|Xs)

=
1E(x∗)(

∏n−1
i=1 νx∗

i
({x∗

i+1))P(
∑n−1

i=1 Zi < T ≤
∑n

i=1 Zi)

P(Xe|Xs)
,

where Zi ∼ Expd(λ(x∗
i)). We therefore build a IS algorithm with unormalized

density given by the numerator of the above equation. The average of the
unnormalized particles gives an estimate for the transition probability P(Xe|Xs).

2 Notation for paper

X

P(XN = y|X1 = x)

Xi+1|Xi ∼ νXi

Hi ∼ Exp(λ); Hi = Ti − Ti−1

λ : X → (0,∞)

2

where T : (X × R+)∞ → X gives the state at T (overloading).
Model: Hi|Xi ∼ Expd(λ(Xi)), Xi|Xi−1 ∼ νXi−1 where λ : X → R+ is a rate

function and ν· is a jump kernel, the two parameters of the model.
Let also N : (R+)∞ → N denote the number of states visited before T

(counting multiplicities).
We will sample according to the law

π(x∗) = P(N = |x∗|, X1 = x∗
1, . . . , X|x∗|

= x∗
|x∗||E)

where (N = n) = (
∑n−1

i=1 Hi < T ≤
∑n

i=1 Hi).
Now,

π(x∗) =
1E(x∗)P(

∑n−1
i=1 Hi < T ≤

∑n
i=1 Hi, X1 = x∗

1, . . . , X|x∗| = x∗
|x∗||Xs)

P(Xe|Xs)

=
1E(x∗)P(X1 = x∗

1, . . . , X|x∗| = x∗
|x∗||Xs)P(

∑n−1
i=1 Hi < T ≤

∑n
i=1 Hi|X1 = x∗

1, . . . , X|x∗| = x∗
|x∗|)

P(Xe|Xs)

=
1E(x∗)(

∏n−1
i=1 νx∗

i
({x∗

i+1))P(
∑n−1

i=1 Zi < T ≤
∑n

i=1 Zi)

P(Xe|Xs)
,

where Zi ∼ Expd(λ(x∗
i)). We therefore build a IS algorithm with unormalized

density given by the numerator of the above equation. The average of the
unnormalized particles gives an estimate for the transition probability P(Xe|Xs).

2 Notation for paper

X

P(XN = y|X1 = x)

Xi+1|Xi ∼ νXi

Hi ∼ Exp(λ); Hi = Ti − Ti−1

λ : X → (0,∞)

ν : X × FX → [0, 1]

2

where T : (X × R+)∞ → X gives the state at T (overloading).
Model: Hi|Xi ∼ Expd(λ(Xi)), Xi|Xi−1 ∼ νXi−1 where λ : X → R+ is a rate

function and ν· is a jump kernel, the two parameters of the model.
Let also N : (R+)∞ → N denote the number of states visited before T

(counting multiplicities).
We will sample according to the law

π(x∗) = P(N = |x∗|, X1 = x∗
1, . . . , X|x∗|

= x∗
|x∗||E)

where (N = n) = (
∑n−1

i=1 Hi < T ≤
∑n

i=1 Hi).
Now,

π(x∗) =
1E(x∗)P(

∑n−1
i=1 Hi < T ≤

∑n
i=1 Hi, X1 = x∗

1, . . . , X|x∗| = x∗
|x∗||Xs)

P(Xe|Xs)

=
1E(x∗)P(X1 = x∗

1, . . . , X|x∗| = x∗
|x∗||Xs)P(

∑n−1
i=1 Hi < T ≤

∑n
i=1 Hi|X1 = x∗

1, . . . , X|x∗| = x∗
|x∗|)

P(Xe|Xs)

=
1E(x∗)(

∏n−1
i=1 νx∗

i
({x∗

i+1))P(
∑n−1

i=1 Zi < T ≤
∑n

i=1 Zi)

P(Xe|Xs)
,

where Zi ∼ Expd(λ(x∗
i)). We therefore build a IS algorithm with unormalized

density given by the numerator of the above equation. The average of the
unnormalized particles gives an estimate for the transition probability P(Xe|Xs).

2 Notation for paper

X

P(XN = y|X1 = x)

Xi+1|Xi ∼ νXi

Hi ∼ Exp(λ); Hi = Ti − Ti−1

λ : X → (0,∞)

ν : X × FX → [0, 1]

νx({x′})

2

Note: this is
explosion free

(always assumed
today)

Note:
unbounded rate

function

samedi 22 septembre 2012

Related work

 Finite case: efficient exact and approximate exponentiation and
estimation of rate matrices (Albert 1962; Asmussen et al 1996;
Hobolth et al. 2005; Tataru et al. 2011; inter alia)

 When the rate function is bounded: Uniformization (Jensen
1953; Hobolth et al. 2009; inter alia), more recent jump-diffusion
inference schemes using thinning for the discrete part (Casella
et al. 2011, Murray Pollock’s talk)

 MCMC approaches (Rao et al. 2011)

 Work on countable spaces based on forward simulation (Saeedi
et al. 2011, Läubli 2011)

 Birth-death processes (Crawford et al. 2011; inter alia)
samedi 22 septembre 2012

Proposed method: notation

State space: list of visited states between end points

Marginalized: transition times

|x∗|∏

i=1

νx∗
i
({x∗

i+1})P

X = (X1, X2, . . . , XN)

3

Target distribution:

|x∗|∏

i=1

νx∗
i
({x∗

i+1})P

X = (X1, X2, . . . , XN)

T = (T1, T2, . . . , TN)

3

X = (X1, X2, . . . , XN)

T = (T1, T2, . . . , TN)

π(x∗) = P(X = x∗|X1 = x,XN = y)

x∗ ∈ X ∗

3

X = (X1, X2, . . . , XN)

T = (T1, T2, . . . , TN)

π({x∗}) = P(X = x∗|X1 = x,XN = y)

x∗ ∈ X ∗

=
1
(
x∗
|x∗| = y

)
P
(
X = x∗,

∑n−1
i=1 Hi < t ≤

∑n
i=1 Hi|X1 = x

)

P(XN = y|X1 = x)

=
P (X = x∗|X1 = x)

P(XN = y|X1 = x)

P̃(X = x∗)

P̃(X = x∗) = P(X = x∗|X1 = x)

ρy : X → N

P
(
ρy (Xn+1) < ρy (x)

∣∣∣ Xn = x
)
> 0

P̃

P̃(N < ∞) = 1

ν↓yx (A) = νx (A ∩ {z : ρy(x) > ρy(z)})

P

∫
. . .

∫

︸ ︷︷ ︸
n=|x∗|times

λ(x∗
1) exp(−h1λ(x

∗
1)) . . .λ(x

∗
n−1) exp(hn−1x

∗
n−1)(1−exp(hnx

∗
n)) dh1 . . . dhn

ν̃x = αy
x

ν↓yx
ν↓yx (X)

+ (1− αy
x)

νx − ν↓yx
1− ν↓yx (X)

3

samedi 22 septembre 2012

Obtaining the marginal transition probability

Marginal transition obtained from the estimator of Z

X = (X1, X2, . . . , XN)

T = (T1, T2, . . . , TN)

π({x∗}) = P(X = x∗|X1 = x,XN = y)

x∗ ∈ X ∗

=
1
(
x∗
|x∗| = y

)
P
(
X = x∗,

∑n−1
i=1 Hi < t ≤

∑n
i=1 Hi|X1 = x

)

P(XN = y|X1 = x)

=
P (X = x∗|X1 = x)

P(XN = y|X1 = x)

P̃(X = x∗)

P̃(X = x∗) = P(X = x∗|X1 = x)

ρy : X → N

P
(
ρy (Xn+1) < ρy (x)

∣∣∣ Xn = x
)
> 0

P̃

P̃(N < ∞) = 1

ν↓yx (A) = νx (A ∩ {z : ρy(x) > ρy(z)})

P

∫
. . .

∫

︸ ︷︷ ︸
n=|x∗|times

λ(x∗
1) exp(−h1λ(x

∗
1)) . . .λ(x

∗
n−1) exp(hn−1x

∗
n−1)(1−exp(hnx

∗
n)) dh1 . . . dhn

ν̃x = αy
x

ν↓yx
ν↓yx (X)

+ (1− αy
x)

νx − ν↓yx
1− ν↓yx (X)

3

}
}

X = (X1, X2, . . . , XN)

T = (T1, T2, . . . , TN)

π({x∗}) = P(X = x∗|X1 = x,XN = y)

x∗ ∈ X ∗

=
1
(
x∗
|x∗| = y

)
P
(
X = x∗,

∑n−1
i=1 Hi < t ≤

∑n
i=1 Hi|X1 = x

)

P(XN = y|X1 = x)

=
P (X = x∗|X1 = x)

P(XN = y|X1 = x)

P̃(X = x∗)

P̃(X = x∗) = P(X = x∗|X1 = x)

ρy : X → N

P
(
ρy (Xn+1) < ρy (x)

∣∣∣ Xn = x
)
> 0

P̃

P̃(N < ∞) = 1

ν↓yx (A) = νx (A ∩ {z : ρy(x) > ρy(z)})

P

∫
. . .

∫

︸ ︷︷ ︸
n=|x∗|times

λ(x∗
1) exp(−h1λ(x

∗
1)) . . .λ(x

∗
n−1) exp(hn−1x

∗
n−1)(1−exp(hnx

∗
n)) dh1 . . . dhn

ν̃x = αy
x

ν↓yx
ν↓yx (X)

+ (1− αy
x)

νx − ν↓yx
1− ν↓yx (X)

3

αy
x = max{α, ν↓yx (X)}

α >
1

2

E ∼ β

−λ(X1) λ(X1)
−λ(X2) λ(X2)

−λ(XN) λ(XN)

γ(x∗) Z

4

αy
x = max{α, ν↓yx (X)}

α >
1

2

E ∼ β

−λ(X1) λ(X1)
−λ(X2) λ(X2)

−λ(XN) λ(XN)

γ(x∗) Z

4

samedi 22 septembre 2012

Proposal

Natural choice: Forward simulation

The space is infinite ⇒ positive probability of not reaching y

Notation:

X = (X1, X2, . . . , XN)

T = (T1, T2, . . . , TN)

π({x∗}) = P(X = x∗|X1 = x,XN = y)

x∗ ∈ X ∗

=
1
(
x∗
|x∗| = y

)
P
(
X = x∗,

∑n−1
i=1 Hi < t ≤

∑n
i=1 Hi|X1 = x

)

P(XN = y|X1 = x)

P̃(X = x∗)

3

X = (X1, X2, . . . , XN)

T = (T1, T2, . . . , TN)

π({x∗}) = P(X = x∗|X1 = x,XN = y)

x∗ ∈ X ∗

=
1
(
x∗
|x∗| = y

)
P
(
X = x∗,

∑n−1
i=1 Hi < t ≤

∑n
i=1 Hi|X1 = x

)

P(XN = y|X1 = x)

P̃(X = x∗)

P̃(X = x∗) = P(X = x∗|X1 = x)

3

samedi 22 septembre 2012

Solution: introduce potentials ρy

 Functions on the state space

 Assume: ρy(x) = 0 iff x = y

 Dependency on the length to end point also possible

Example: Levenshtein edit distance

X = (X1, X2, . . . , XN)

T = (T1, T2, . . . , TN)

π({x∗}) = P(X = x∗|X1 = x,XN = y)

x∗ ∈ X ∗

=
1
(
x∗
|x∗| = y

)
P
(
X = x∗,

∑n−1
i=1 Hi < t ≤

∑n
i=1 Hi|X1 = x

)

P(XN = y|X1 = x)

P̃(X = x∗)

P̃(X = x∗) = P(X = x∗|X1 = x)

ρy : X → N

3

ρ’ACTG’(‘CGG’) = min number of point insertion, deletion, subst.
= 2

samedi 22 septembre 2012

Using the potentials

 If for all x ≠ y:

 For ρ = Levenshtein, this holds because for x ≠ y there
is always a string z reached in one operation and
closer (or equal) to y

 Then we can build such that:

X = (X1, X2, . . . , XN)

T = (T1, T2, . . . , TN)

π({x∗}) = P(X = x∗|X1 = x,XN = y)

x∗ ∈ X ∗

=
1
(
x∗
|x∗| = y

)
P
(
X = x∗,

∑n−1
i=1 Hi < t ≤

∑n
i=1 Hi|X1 = x

)

P(XN = y|X1 = x)

P̃(X = x∗)

P̃(X = x∗) = P(X = x∗|X1 = x)

ρy : X → N

P
(
ρy (Xn+1) < ρy (Xn)

∣∣∣ ρy (Xn) > 0
)
> 0

P̃

3

X = (X1, X2, . . . , XN)

T = (T1, T2, . . . , TN)

π({x∗}) = P(X = x∗|X1 = x,XN = y)

x∗ ∈ X ∗

=
1
(
x∗
|x∗| = y

)
P
(
X = x∗,

∑n−1
i=1 Hi < t ≤

∑n
i=1 Hi|X1 = x

)

P(XN = y|X1 = x)

P̃(X = x∗)

P̃(X = x∗) = P(X = x∗|X1 = x)

ρy : X → N

P
(
ρy (Xn+1) < ρy (Xn)

∣∣∣ ρy (Xn) > 0
)
> 0

P̃

P̃(N < ∞) = 1

3

X = (X1, X2, . . . , XN)

T = (T1, T2, . . . , TN)

π({x∗}) = P(X = x∗|X1 = x,XN = y)

x∗ ∈ X ∗

=
1
(
x∗
|x∗| = y

)
P
(
X = x∗,

∑n−1
i=1 Hi < t ≤

∑n
i=1 Hi|X1 = x

)

P(XN = y|X1 = x)

P̃(X = x∗)

P̃(X = x∗) = P(X = x∗|X1 = x)

ρy : X → N

P
(
ρy (Xn+1) < ρy (x)

∣∣∣ Xn = x
)
> 0

P̃

P̃(N < ∞) = 1

ν↑yx (A) = νx (A ∩ {z : ρy(x) > ρy(z)})

P

∫
. . .

∫

︸ ︷︷ ︸
n=|x∗|times

λ(x∗
1) exp(−h1λ(x

∗
1)) . . .λ(x

∗
n−1) exp(hn−1x

∗
n−1)(1−exp(hnx

∗
n)) dh1 . . . dhn

3

samedi 22 septembre 2012

Construction

X = (X1, X2, . . . , XN)

T = (T1, T2, . . . , TN)

π({x∗}) = P(X = x∗|X1 = x,XN = y)

x∗ ∈ X ∗

=
1
(
x∗
|x∗| = y

)
P
(
X = x∗,

∑n−1
i=1 Hi < t ≤

∑n
i=1 Hi|X1 = x

)

P(XN = y|X1 = x)

P̃(X = x∗)

P̃(X = x∗) = P(X = x∗|X1 = x)

ρy : X → N

P
(
ρy (Xn+1) < ρy (x)

∣∣∣ Xn = x
)
> 0

P̃

P̃(N < ∞) = 1

ν↓yx (A) = νx (A ∩ {z : ρy(x) > ρy(z)})

P

∫
. . .

∫

︸ ︷︷ ︸
n=|x∗|times

λ(x∗
1) exp(−h1λ(x

∗
1)) . . .λ(x

∗
n−1) exp(hn−1x

∗
n−1)(1−exp(hnx

∗
n)) dh1 . . . dhn

ν̃x = αy
x

ν↓yx
ν↓yx (X)

+ (1− αy
x)

νx − ν↓yx
1− ν↓yx (X)

3

X = (X1, X2, . . . , XN)

T = (T1, T2, . . . , TN)

π({x∗}) = P(X = x∗|X1 = x,XN = y)

x∗ ∈ X ∗

=
1
(
x∗
|x∗| = y

)
P
(
X = x∗,

∑n−1
i=1 Hi < t ≤

∑n
i=1 Hi|X1 = x

)

P(XN = y|X1 = x)

P̃(X = x∗)

P̃(X = x∗) = P(X = x∗|X1 = x)

ρy : X → N

P
(
ρy (Xn+1) < ρy (x)

∣∣∣ Xn = x
)
> 0

P̃

P̃(N < ∞) = 1

ν↓yx (A) = νx (A ∩ {z : ρy(x) > ρy(z)})

P

∫
. . .

∫

︸ ︷︷ ︸
n=|x∗|times

λ(x∗
1) exp(−h1λ(x

∗
1)) . . .λ(x

∗
n−1) exp(hn−1x

∗
n−1)(1−exp(hnx

∗
n)) dh1 . . . dhn

ν̃x = αy
x

ν↓yx
ν↓yx (X)

+ (1− αy
x)

νx − ν↓yx
1− ν↓yx (X)

3

X = (X1, X2, . . . , XN)

T = (T1, T2, . . . , TN)

π({x∗}) = P(X = x∗|X1 = x,XN = y)

x∗ ∈ X ∗

=
1
(
x∗
|x∗| = y

)
P
(
X = x∗,

∑n−1
i=1 Hi < t ≤

∑n
i=1 Hi|X1 = x

)

P(XN = y|X1 = x)

P̃(X = x∗)

P̃(X = x∗) = P(X = x∗|X1 = x)

ρy : X → N

P
(
ρy (Xn+1) < ρy (x)

∣∣∣ Xn = x
)
> 0

P̃

P̃(N < ∞) = 1

ν↓yx (A) = νx (A ∩ {z : ρy(x) > ρy(z)})

P

∫
. . .

∫

︸ ︷︷ ︸
n=|x∗|times

λ(x∗
1) exp(−h1λ(x

∗
1)) . . .λ(x

∗
n−1) exp(hn−1x

∗
n−1)(1−exp(hnx

∗
n)) dh1 . . . dhn

ν̃x = αy
x

ν↓yx
ν↓yx (X)

+ (1− αy
x)

νx − ν↓yx
1− ν↓yx (X)

αy
x = max{α, ν↓yx (X)}

3

Notation: Proposal restriced on states decreasing the potential:

With large enough, this yields a suitable :

X = (X1, X2, . . . , XN)

T = (T1, T2, . . . , TN)

π({x∗}) = P(X = x∗|X1 = x,XN = y)

x∗ ∈ X ∗

=
1
(
x∗
|x∗| = y

)
P
(
X = x∗,

∑n−1
i=1 Hi < t ≤

∑n
i=1 Hi|X1 = x

)

P(XN = y|X1 = x)

P̃(X = x∗)

P̃(X = x∗) = P(X = x∗|X1 = x)

ρy : X → N

P
(
ρy (Xn+1) < ρy (Xn)

∣∣∣ ρy (Xn) > 0
)
> 0

P̃

3

X = (X1, X2, . . . , XN)

T = (T1, T2, . . . , TN)

π({x∗}) = P(X = x∗|X1 = x,XN = y)

x∗ ∈ X ∗

=
1
(
x∗
|x∗| = y

)
P
(
X = x∗,

∑n−1
i=1 Hi < t ≤

∑n
i=1 Hi|X1 = x

)

P(XN = y|X1 = x)

P̃(X = x∗)

P̃(X = x∗) = P(X = x∗|X1 = x)

ρy : X → N

P
(
ρy (Xn+1) < ρy (x)

∣∣∣ Xn = x
)
> 0

P̃

P̃(N < ∞) = 1

ν↓yx (A) = νx (A ∩ {z : ρy(x) > ρy(z)})

P

∫
. . .

∫

︸ ︷︷ ︸
n=|x∗|times

λ(x∗
1) exp(−h1λ(x

∗
1)) . . .λ(x

∗
n−1) exp(hn−1x

∗
n−1)(1−exp(hnx

∗
n)) dh1 . . . dhn

ν̃x = αy
x

ν↓yx
ν↓yx (X)

+ (1− αy
x)

νx − ν↓yx
1− ν↓yx (X)

αy
x = max{α, ν↓yx (X)}

3Example: for ρ = Levenshtein can pick

X = (X1, X2, . . . , XN)

T = (T1, T2, . . . , TN)

π({x∗}) = P(X = x∗|X1 = x,XN = y)

x∗ ∈ X ∗

=
1
(
x∗
|x∗| = y

)
P
(
X = x∗,

∑n−1
i=1 Hi < t ≤

∑n
i=1 Hi|X1 = x

)

P(XN = y|X1 = x)

P̃(X = x∗)

P̃(X = x∗) = P(X = x∗|X1 = x)

ρy : X → N

P
(
ρy (Xn+1) < ρy (x)

∣∣∣ Xn = x
)
> 0

P̃

P̃(N < ∞) = 1

ν↓yx (A) = νx (A ∩ {z : ρy(x) > ρy(z)})

P

∫
. . .

∫

︸ ︷︷ ︸
n=|x∗|times

λ(x∗
1) exp(−h1λ(x

∗
1)) . . .λ(x

∗
n−1) exp(hn−1x

∗
n−1)(1−exp(hnx

∗
n)) dh1 . . . dhn

ν̃x = αy
x

ν↓yx
ν↓yx (X)

+ (1− αy
x)

νx − ν↓yx
1− ν↓yx (X)

αy
x = max{α, ν↓yx (X)}

α >
1

2

3

samedi 22 septembre 2012

Multiple excursions

Paths generated by stop as soon as they hit y

X = (X1, X2, . . . , XN)

T = (T1, T2, . . . , TN)

π({x∗}) = P(X = x∗|X1 = x,XN = y)

x∗ ∈ X ∗

=
1
(
x∗
|x∗| = y

)
P
(
X = x∗,

∑n−1
i=1 Hi < t ≤

∑n
i=1 Hi|X1 = x

)

P(XN = y|X1 = x)

P̃(X = x∗)

P̃(X = x∗) = P(X = x∗|X1 = x)

ρy : X → N

P
(
ρy (Xn+1) < ρy (Xn)

∣∣∣ ρy (Xn) > 0
)
> 0

P̃

3

This is not necessarily the case under

X = (X1, X2, . . . , XN)

T = (T1, T2, . . . , TN)

π({x∗}) = P(X = x∗|X1 = x,XN = y)

x∗ ∈ X ∗

=
1
(
x∗
|x∗| = y

)
P
(
X = x∗,

∑n−1
i=1 Hi < t ≤

∑n
i=1 Hi|X1 = x

)

P(XN = y|X1 = x)

P̃(X = x∗)

P̃(X = x∗) = P(X = x∗|X1 = x)

ρy : X → N

P
(
ρy (Xn+1) < ρy (Xn)

∣∣∣ ρy (Xn) > 0
)
> 0

P̃

P̃(N < ∞) = 1

ν↑yx (A) = νx (A ∩ {z : ρy(x) > ρy(z)})

P

3

Solution: first sample a number of excursions E from a
hyper-parameter distribution

x
y

x
y E = 2

αy
x = max{α, ν↓yx (X)}

α >
1

2

E ∼ Geo(β)

−λ(X1) λ(X1)
−λ(X2) λ(X2)

−λ(XN) λ(XN)

γ(x∗) Z

4

samedi 22 septembre 2012

Proposal hyper-parameters

 How to set α, β ?
 Optimal choice depends on the process and on t

 We use an ensemble of kernels with different
combinations of α, β, ranging over several magnitudes

 The particles produced by the members of this ensemble
compete; the weights and resampling naturally do selection

 Easy to justify with an auxiliary variable construction

samedi 22 septembre 2012

Weights

Integrating the holding times:

 High dimensional integral
 Results on convolution of exponential?

 Not directly applicable
 Expensive when rates have multiplicities

X = (X1, X2, . . . , XN)

T = (T1, T2, . . . , TN)

π({x∗}) = P(X = x∗|X1 = x,XN = y)

x∗ ∈ X ∗

=
1
(
x∗
|x∗| = y

)
P
(
X = x∗,

∑n−1
i=1 Hi < t ≤

∑n
i=1 Hi|X1 = x

)

P(XN = y|X1 = x)

P̃(X = x∗)

P̃(X = x∗) = P(X = x∗|X1 = x)

ρy : X → N

P
(
ρy (Xn+1) < ρy (Xn)

∣∣∣ ρy (Xn) > 0
)
> 0

P̃

P̃(N < ∞) = 1

ν↑yx (A) = νx (A ∩ {z : ρy(x) > ρy(z)})

P

∫
. . .

∫

︸ ︷︷ ︸
n=|x∗|times

λ(x∗
1) exp(−h1λ(x

∗
1)) . . .λ(x

∗
n−1) exp(hn−1x

∗
n−1)(1−exp(hnx

∗
n)) dh1 . . . dhn

3

Model: String-valued Continuous Time Markov Chain

Evolution of strings is denoted by M

Branch length is T = T6.
Strings {Xt : 0 ≤ t ≤ T}; Xt has a countable infinite domain of all possible
molecular sequences.

0 T
1

T
2

T
3

Branch length

Strings

TA CGx
1

TA Cx
2

TG Cx
3

TG CTGx
4

TG CTG Ax
5

CTG Ax
6

T
4

T
5

T
6

L. Wang and A. Bouchard-Côté (UBC) Harnessing Non-Local Evolutionary Events for Tree Infer. June 25, 2012 6 / 17

X1 = x

where T : (X × R+)∞ → X gives the state at T (overloading).
Model: Hi|Xi ∼ Expd(λ(Xi)), Xi|Xi−1 ∼ νXi−1 where λ : X → R+ is a rate

function and ν· is a jump kernel, the two parameters of the model.
Let also N : (R+)∞ → N denote the number of states visited before T

(counting multiplicities).
We will sample according to the law

π(x∗) = P(N = |x∗|, X1 = x∗
1, . . . , X|x∗|

= x∗
|x∗||E)

where (N = n) = (
∑n−1

i=1 Hi < T ≤
∑n

i=1 Hi).
Now,

π(x∗) =
1E(x∗)P(

∑n−1
i=1 Hi < T ≤

∑n
i=1 Hi, X1 = x∗

1, . . . , X|x∗| = x∗
|x∗||Xs)

P(Xe|Xs)

=
1E(x∗)P(X1 = x∗

1, . . . , X|x∗| = x∗
|x∗||Xs)P(

∑n−1
i=1 Hi < T ≤

∑n
i=1 Hi|X1 = x∗

1, . . . , X|x∗| = x∗
|x∗|)

P(Xe|Xs)

=
1E(x∗)(

∏n−1
i=1 νx∗

i
({x∗

i+1))P(
∑n−1

i=1 Zi < T ≤
∑n

i=1 Zi)

P(Xe|Xs)
,

where Zi ∼ Expd(λ(x∗
i)). We therefore build a IS algorithm with unormalized

density given by the numerator of the above equation. The average of the
unnormalized particles gives an estimate for the transition probability P(Xe|Xs).

2 Notation for paper

X

2

=

X2

XN = y

t
H3

samedi 22 septembre 2012

Reduction to a matrix exponential

...

Idea: construct a finite rate matrix Q on the fly, for each particle

Model: String-valued Continuous Time Markov Chain

Evolution of strings is denoted by M

Branch length is T = T6.
Strings {Xt : 0 ≤ t ≤ T}; Xt has a countable infinite domain of all possible
molecular sequences.

0 T
1

T
2

T
3

Branch length

Strings

TA CGx
1

TA Cx
2

TG Cx
3

TG CTGx
4

TG CTG Ax
5

CTG Ax
6

T
4

T
5

T
6

L. Wang and A. Bouchard-Côté (UBC) Harnessing Non-Local Evolutionary Events for Tree Infer. June 25, 2012 6 / 17

X1 = x

where T : (X × R+)∞ → X gives the state at T (overloading).
Model: Hi|Xi ∼ Expd(λ(Xi)), Xi|Xi−1 ∼ νXi−1 where λ : X → R+ is a rate

function and ν· is a jump kernel, the two parameters of the model.
Let also N : (R+)∞ → N denote the number of states visited before T

(counting multiplicities).
We will sample according to the law

π(x∗) = P(N = |x∗|, X1 = x∗
1, . . . , X|x∗|

= x∗
|x∗||E)

where (N = n) = (
∑n−1

i=1 Hi < T ≤
∑n

i=1 Hi).
Now,

π(x∗) =
1E(x∗)P(

∑n−1
i=1 Hi < T ≤

∑n
i=1 Hi, X1 = x∗

1, . . . , X|x∗| = x∗
|x∗||Xs)

P(Xe|Xs)

=
1E(x∗)P(X1 = x∗

1, . . . , X|x∗| = x∗
|x∗||Xs)P(

∑n−1
i=1 Hi < T ≤

∑n
i=1 Hi|X1 = x∗

1, . . . , X|x∗| = x∗
|x∗|)

P(Xe|Xs)

=
1E(x∗)(

∏n−1
i=1 νx∗

i
({x∗

i+1))P(
∑n−1

i=1 Zi < T ≤
∑n

i=1 Zi)

P(Xe|Xs)
,

where Zi ∼ Expd(λ(x∗
i)). We therefore build a IS algorithm with unormalized

density given by the numerator of the above equation. The average of the
unnormalized particles gives an estimate for the transition probability P(Xe|Xs).

2 Notation for paper

X

2

=

X2

XN = y

t
H3

For each state visited in
X, build an artificial state

(with multiplicities)

samedi 22 septembre 2012

Reduction to a matrix exponential

...

Idea: construct a finite rate matrix Q on the fly, for each particle

Model: String-valued Continuous Time Markov Chain

Evolution of strings is denoted by M

Branch length is T = T6.
Strings {Xt : 0 ≤ t ≤ T}; Xt has a countable infinite domain of all possible
molecular sequences.

0 T
1

T
2

T
3

Branch length

Strings

TA CGx
1

TA Cx
2

TG Cx
3

TG CTGx
4

TG CTG Ax
5

CTG Ax
6

T
4

T
5

T
6

L. Wang and A. Bouchard-Côté (UBC) Harnessing Non-Local Evolutionary Events for Tree Infer. June 25, 2012 6 / 17

X1 = x

where T : (X × R+)∞ → X gives the state at T (overloading).
Model: Hi|Xi ∼ Expd(λ(Xi)), Xi|Xi−1 ∼ νXi−1 where λ : X → R+ is a rate

function and ν· is a jump kernel, the two parameters of the model.
Let also N : (R+)∞ → N denote the number of states visited before T

(counting multiplicities).
We will sample according to the law

π(x∗) = P(N = |x∗|, X1 = x∗
1, . . . , X|x∗|

= x∗
|x∗||E)

where (N = n) = (
∑n−1

i=1 Hi < T ≤
∑n

i=1 Hi).
Now,

π(x∗) =
1E(x∗)P(

∑n−1
i=1 Hi < T ≤

∑n
i=1 Hi, X1 = x∗

1, . . . , X|x∗| = x∗
|x∗||Xs)

P(Xe|Xs)

=
1E(x∗)P(X1 = x∗

1, . . . , X|x∗| = x∗
|x∗||Xs)P(

∑n−1
i=1 Hi < T ≤

∑n
i=1 Hi|X1 = x∗

1, . . . , X|x∗| = x∗
|x∗|)

P(Xe|Xs)

=
1E(x∗)(

∏n−1
i=1 νx∗

i
({x∗

i+1))P(
∑n−1

i=1 Zi < T ≤
∑n

i=1 Zi)

P(Xe|Xs)
,

where Zi ∼ Expd(λ(x∗
i)). We therefore build a IS algorithm with unormalized

density given by the numerator of the above equation. The average of the
unnormalized particles gives an estimate for the transition probability P(Xe|Xs).

2 Notation for paper

X

2

=

X2

XN = y

t
H3

For each state visited in
X, build an artificial state

(with multiplicities) There will be positive rates
only between consecutive

artificial states
samedi 22 septembre 2012

Reduction to a matrix exponential

...

Construct Q using the rate function parameter as follows:
E ∼ β

−λ(X1) λ(X1)
−λ(X2) λ(X2)

−λ(XN) λ(XN)

4

0
0

0
...

samedi 22 septembre 2012

Reduction to a matrix exponential

...

Take the matrix exponential E ∼ β

−λ(X1) λ(X1)
−λ(X2) λ(X2)

−λ(XN) λ(XN)

4

0
0

0
...M = exp

Value of the integral: given by entry M1,N-1

X = (X1, X2, . . . , XN)

T = (T1, T2, . . . , TN)

π({x∗}) = P(X = x∗|X1 = x,XN = y)

x∗ ∈ X ∗

=
1
(
x∗
|x∗| = y

)
P
(
X = x∗,

∑n−1
i=1 Hi < t ≤

∑n
i=1 Hi|X1 = x

)

P(XN = y|X1 = x)

P̃(X = x∗)

P̃(X = x∗) = P(X = x∗|X1 = x)

ρy : X → N

P
(
ρy (Xn+1) < ρy (Xn)

∣∣∣ ρy (Xn) > 0
)
> 0

P̃

P̃(N < ∞) = 1

ν↑yx (A) = νx (A ∩ {z : ρy(x) > ρy(z)})

P

∫
. . .

∫

︸ ︷︷ ︸
n=|x∗|times

λ(x∗
1) exp(−h1λ(x

∗
1)) . . .λ(x

∗
n−1) exp(hn−1x

∗
n−1)(1−exp(hnx

∗
n)) dh1 . . . dhn

3

=

samedi 22 septembre 2012

Numerical issues

 If all rates are distinct (in particular, same state not
visited twice): exponentiation through diagonalisation
is possible and fast

 Using sparsity: inversion is quadratic
 Can do the computation only for one entry of M

 If rates are not distinct: above method fails (Q does not
have a complete set of linearly indep. eigenvectors)

 Can use Jordan-Chevalley decomposition (Q = A + N, A
diag., N nilpotent)

 Simpler: Padé series + scaling & squaring method

samedi 22 septembre 2012

Experiments

 Numerical validations of consistency in # of particles
 All the ideas presented today tested on 2 (of the rare)

countably infinite CTMCs with closed form for the marginals
 Linear birth death process
 Poisson Indel Process

 Experiments on phylogenetic inference for the
proposal presented today but without integrated
holding times

samedi 22 septembre 2012

Experiments

 Task: reconstruction of tree topologies and branch
lengths (error measured using tree metrics)

 10 taxa at the leaves

 Example of simulated data:

 Alignment not given

Experiments

A Subset of Simulated Data

Setting: SSM length is 3; θsub = 0.03; λpt = 0.05; µpt = 0.2; λSSM = 2.0; µSSM = 2.0

L. Wang and A. Bouchard-Côté (UBC) Harnessing Non-Local Evolutionary Events for Tree Infer. June 25, 2012 14 / 17

Experiments

A Subset of Simulated Data

Setting: SSM length is 3; θsub = 0.03; λpt = 0.05; µpt = 0.2; λSSM = 2.0; µSSM = 2.0

L. Wang and A. Bouchard-Côté (UBC) Harnessing Non-Local Evolutionary Events for Tree Infer. June 25, 2012 14 / 17
samedi 22 septembre 2012

Preliminary results
Experiments

Performance on Estimating Trees

Pa
rt

iti
on

M
et

ric

1 10 100 1000

0
5

1
0

1
5

1 10 100 1000

0
5

1
0

1
5

1 10 100 1000

0
5

1
0

1
5

!

!

!

!

!

Ku
hn

er
Fe

ls
en

st
ei

n
M

et
ric

1 10 100 1000

0
1
0

2
0

3
0

4
0

1 10 100 1000

0
1
0

2
0

3
0

4
0

1 10 100 1000

0
1
0

2
0

3
0

4
0

!

!
!

!
!

Number of particles Number of particles

L. Wang and A. Bouchard-Côté (UBC) Harnessing Non-Local Evolutionary Events for Tree Infer. June 25, 2012 15 / 17

Tree inference using correct parameters:

(replications on 10 random trees & datasets)
samedi 22 septembre 2012

Scaling up to large datasets

 Large number of particles needed
 Large phylogenetic trees
 Mixing proposals with different hyper-parameter values α, β

 Motivation for parallel architectures
 Revised Moore’s law: parallel architectures
 Each particle is large

 particles are forests
 need to keep one string for each tree in forest
 ‘worst’ case: one string = one genome

samedi 22 septembre 2012

Part II : Entangled Monte Carlo (EMC)

 Goal:
 Do parallelization in such as way that the result is

equivalent to running everything on a (hypothetical) single
machine

 Complementary approach: modify SMC
 Éric Moulines’ talk on Island models from yesterday
 Pierre Jacob’s talk on pairwise resampling scheme; this

afternoon

samedi 22 septembre 2012

Stochastic maps

 A way to decouple randomness and state
dependencies

 Consider an arbitrary kernel:
 Stochastic map: -valued r.v. F such that

 Example: alternate view on MCMC
 Sample F1, F2, ... i.i.d.
 Pick x0 arbitrarily
 Return:

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

and challenging. In the case of the SMC sampler from [2], the cost of transmitting one particle is
proportional to the product of the number of species under study, times the number of sites in the
sequences, times the number of characters possible at each site.

We also introduce the algorithms needed to do these reconstructions efficiently while maintaining a
distributed representation of the particle genealogies. The main algorithm is based on an alternative
representation of simulation borrowed from the field of perfect simulation [3]. We demonstrate
that using our algorithms, the computational cost involved in these reconstructions is negligible
compared to the corresponding gains obtained from parallelization. While we describe EMC in the
context of SMC simulation, it can accommodate any MCMC proposal. This is done by using the
construction of artificial backward kernels [4, 5], which we review in the next section.

There is a large literature on parallelization of both MCMC and SMC algorithms. For SMC, most
of the work has been on parallelization of the proposal steps [6], which is sufficient in setups such
as GPU parallelization where communication between computing units is fast and cheap. However
in generic clusters or peer-to-peer architectures, we argue that our more efficient parallelization of
the resampling step is advantageous. For MCMC, a large fraction of the literature assumes that
the kernel takes the form of local Gibbs update in a graphical model, and under certain conditions,
several blocks of variables can be updated in parallel. However the communication cost can be high
in highly connected graphical models as state information needs to be synchronized. Moreover, the
method is restricted to certain kinds of Gibbs kernel [7, 8, 9].

2 Background

We will denote the target distribution by π, which in a Bayesian problem would correspond to a
posterior distribution. The main goal is to compute the integral under π of one or more test functions
h, which we denote by π(h) for short. In a Bayesian problem, this arises as the posterior expectation
needed when computing a Bayes estimator. We will denote the state space by S , i.e. h : S → R,
π : FS → [0, 1], where (S,FS) is a probability space.

2.1 Stochastic maps

An important concept used in the construction of our algorithms is the idea of a stochastic map. We
start by reviewing stochastic maps in the context of a Markov chain, where it was first introduced to
design perfect simulation algorithms.

Let T : S × FS → [0, 1] denote the transition kernel of a Markov chain (generally constructed
by first proposing and then deciding whether to move or not using a Metropolis-Hastings (MH)
ratio). A stochastic map is an equivalent view of this chain, pushing the randomness into a list
of random transition functions. Formally, it is a (S → S)-valued random variable F such that
T (s,A) = P(F (s) ∈ A) for all state s ∈ S and event A ∈ FS . Concretely, these maps are
constructed by using the observation that T is typically defined as a transformation t(u, s) with
u ∈ [0, 1]. The most fundamental example is the case where t is based on the inverse cumulative
distribution method. We can then write F (s) = t(U, s) for a uniform random variable U on [0, 1].

With this notation, we get a non-standard, but useful way of formulating MCMC algorithms. First,
sample N stochastic maps F1, F2, . . . , FN , independently and identically. Second, to compute the
state of the chain after n transitions, simply return F1(F2(. . . (Fn(x0)) . . .)) = F1◦· · ·◦Fn(x0), for
an arbitrary start state x0 ∈ S, n ∈ {1, 2, . . . , N}. This representation decouples the dependencies
induced by random number generation from the dependencies induced by operations on the state
space. In MCMC, the latter are still not readily amenable to parallelization, and this is the motivation
for using SMC as the foundation of our method. We will show in Section 3 that SMC algorithms
can also be rewritten using stochastic maps.

2.2 SMC algorithms

Before going over our parallel version of SMC and to keep the exposition self-contained, we review
here the notation and description of standard, serial SMC algorithms from [10], which in turn is
based on the SMC framework of [11, 4, 5]. The samplers used in this paper are defined using
a proposal ν : S × FS → [0, 1]. Here, S can be an enlarged version of the target space, with

2

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

and challenging. In the case of the SMC sampler from [2], the cost of transmitting one particle is
proportional to the product of the number of species under study, times the number of sites in the
sequences, times the number of characters possible at each site.

We also introduce the algorithms needed to do these reconstructions efficiently while maintaining a
distributed representation of the particle genealogies. The main algorithm is based on an alternative
representation of simulation borrowed from the field of perfect simulation [3]. We demonstrate
that using our algorithms, the computational cost involved in these reconstructions is negligible
compared to the corresponding gains obtained from parallelization. While we describe EMC in the
context of SMC simulation, it can accommodate any MCMC proposal. This is done by using the
construction of artificial backward kernels [4, 5], which we review in the next section.

There is a large literature on parallelization of both MCMC and SMC algorithms. For SMC, most
of the work has been on parallelization of the proposal steps [6], which is sufficient in setups such
as GPU parallelization where communication between computing units is fast and cheap. However
in generic clusters or peer-to-peer architectures, we argue that our more efficient parallelization of
the resampling step is advantageous. For MCMC, a large fraction of the literature assumes that
the kernel takes the form of local Gibbs update in a graphical model, and under certain conditions,
several blocks of variables can be updated in parallel. However the communication cost can be high
in highly connected graphical models as state information needs to be synchronized. Moreover, the
method is restricted to certain kinds of Gibbs kernel [7, 8, 9].

2 Background

We will denote the target distribution by π, which in a Bayesian problem would correspond to a
posterior distribution. The main goal is to compute the integral under π of one or more test functions
h, which we denote by π(h) for short. In a Bayesian problem, this arises as the posterior expectation
needed when computing a Bayes estimator. We will denote the state space by S , i.e. h : S → R,
π : FS → [0, 1], where (S,FS) is a probability space.

2.1 Stochastic maps

An important concept used in the construction of our algorithms is the idea of a stochastic map. We
start by reviewing stochastic maps in the context of a Markov chain, where it was first introduced to
design perfect simulation algorithms.

Let T : S × FS → [0, 1] denote the transition kernel of a Markov chain (generally constructed
by first proposing and then deciding whether to move or not using a Metropolis-Hastings (MH)
ratio). A stochastic map is an equivalent view of this chain, pushing the randomness into a list
of random transition functions. Formally, it is a (S → S)-valued random variable F such that
T (s,A) = P(F (s) ∈ A) for all state s ∈ S and event A ∈ FS . Concretely, these maps are
constructed by using the observation that T is typically defined as a transformation t(u, s) with
u ∈ [0, 1]. The most fundamental example is the case where t is based on the inverse cumulative
distribution method. We can then write F (s) = t(U, s) for a uniform random variable U on [0, 1].

With this notation, we get a non-standard, but useful way of formulating MCMC algorithms. First,
sample N stochastic maps F1, F2, . . . , FN , independently and identically. Second, to compute the
state of the chain after n transitions, simply return F1(F2(. . . (Fn(x0)) . . .)) = F1◦· · ·◦Fn(x0), for
an arbitrary start state x0 ∈ S, n ∈ {1, 2, . . . , N}. This representation decouples the dependencies
induced by random number generation from the dependencies induced by operations on the state
space. In MCMC, the latter are still not readily amenable to parallelization, and this is the motivation
for using SMC as the foundation of our method. We will show in Section 3 that SMC algorithms
can also be rewritten using stochastic maps.

2.2 SMC algorithms

Before going over our parallel version of SMC and to keep the exposition self-contained, we review
here the notation and description of standard, serial SMC algorithms from [10], which in turn is
based on the SMC framework of [11, 4, 5]. The samplers used in this paper are defined using
a proposal ν : S × FS → [0, 1]. Here, S can be an enlarged version of the target space, with

2

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

and challenging. In the case of the SMC sampler from [2], the cost of transmitting one particle is
proportional to the product of the number of species under study, times the number of sites in the
sequences, times the number of characters possible at each site.

We also introduce the algorithms needed to do these reconstructions efficiently while maintaining a
distributed representation of the particle genealogies. The main algorithm is based on an alternative
representation of simulation borrowed from the field of perfect simulation [3]. We demonstrate
that using our algorithms, the computational cost involved in these reconstructions is negligible
compared to the corresponding gains obtained from parallelization. While we describe EMC in the
context of SMC simulation, it can accommodate any MCMC proposal. This is done by using the
construction of artificial backward kernels [4, 5], which we review in the next section.

There is a large literature on parallelization of both MCMC and SMC algorithms. For SMC, most
of the work has been on parallelization of the proposal steps [6], which is sufficient in setups such
as GPU parallelization where communication between computing units is fast and cheap. However
in generic clusters or peer-to-peer architectures, we argue that our more efficient parallelization of
the resampling step is advantageous. For MCMC, a large fraction of the literature assumes that
the kernel takes the form of local Gibbs update in a graphical model, and under certain conditions,
several blocks of variables can be updated in parallel. However the communication cost can be high
in highly connected graphical models as state information needs to be synchronized. Moreover, the
method is restricted to certain kinds of Gibbs kernel [7, 8, 9].

2 Background

We will denote the target distribution by π, which in a Bayesian problem would correspond to a
posterior distribution. The main goal is to compute the integral under π of one or more test functions
h, which we denote by π(h) for short. In a Bayesian problem, this arises as the posterior expectation
needed when computing a Bayes estimator. We will denote the state space by S , i.e. h : S → R,
π : FS → [0, 1], where (S,FS) is a probability space.

2.1 Stochastic maps

An important concept used in the construction of our algorithms is the idea of a stochastic map. We
start by reviewing stochastic maps in the context of a Markov chain, where it was first introduced to
design perfect simulation algorithms.

Let T : S × FS → [0, 1] denote the transition kernel of a Markov chain (generally constructed
by first proposing and then deciding whether to move or not using a Metropolis-Hastings (MH)
ratio). A stochastic map is an equivalent view of this chain, pushing the randomness into a list
of random transition functions. Formally, it is a (S → S)-valued random variable F such that
T (s,A) = P(F (s) ∈ A) for all state s ∈ S and event A ∈ FS . Concretely, these maps are
constructed by using the observation that T is typically defined as a transformation t(u, s) with
u ∈ [0, 1]. The most fundamental example is the case where t is based on the inverse cumulative
distribution method. We can then write F (s) = t(U, s) for a uniform random variable U on [0, 1].

With this notation, we get a non-standard, but useful way of formulating MCMC algorithms. First,
sample N stochastic maps F1, F2, . . . , FN , independently and identically. Second, to compute the
state of the chain after n transitions, simply return F1(F2(. . . (Fn(x0)) . . .)) = F1◦· · ·◦Fn(x0), for
an arbitrary start state x0 ∈ S, n ∈ {1, 2, . . . , N}. This representation decouples the dependencies
induced by random number generation from the dependencies induced by operations on the state
space. In MCMC, the latter are still not readily amenable to parallelization, and this is the motivation
for using SMC as the foundation of our method. We will show in Section 3 that SMC algorithms
can also be rewritten using stochastic maps.

2.2 SMC algorithms

Before going over our parallel version of SMC and to keep the exposition self-contained, we review
here the notation and description of standard, serial SMC algorithms from [10], which in turn is
based on the SMC framework of [11, 4, 5]. The samplers used in this paper are defined using
a proposal ν : S × FS → [0, 1]. Here, S can be an enlarged version of the target space, with

2

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

and challenging. In the case of the SMC sampler from [2], the cost of transmitting one particle is
proportional to the product of the number of species under study, times the number of sites in the
sequences, times the number of characters possible at each site.

We also introduce the algorithms needed to do these reconstructions efficiently while maintaining a
distributed representation of the particle genealogies. The main algorithm is based on an alternative
representation of simulation borrowed from the field of perfect simulation [3]. We demonstrate
that using our algorithms, the computational cost involved in these reconstructions is negligible
compared to the corresponding gains obtained from parallelization. While we describe EMC in the
context of SMC simulation, it can accommodate any MCMC proposal. This is done by using the
construction of artificial backward kernels [4, 5], which we review in the next section.

There is a large literature on parallelization of both MCMC and SMC algorithms. For SMC, most
of the work has been on parallelization of the proposal steps [6], which is sufficient in setups such
as GPU parallelization where communication between computing units is fast and cheap. However
in generic clusters or peer-to-peer architectures, we argue that our more efficient parallelization of
the resampling step is advantageous. For MCMC, a large fraction of the literature assumes that
the kernel takes the form of local Gibbs update in a graphical model, and under certain conditions,
several blocks of variables can be updated in parallel. However the communication cost can be high
in highly connected graphical models as state information needs to be synchronized. Moreover, the
method is restricted to certain kinds of Gibbs kernel [7, 8, 9].

2 Background

We will denote the target distribution by π, which in a Bayesian problem would correspond to a
posterior distribution. The main goal is to compute the integral under π of one or more test functions
h, which we denote by π(h) for short. In a Bayesian problem, this arises as the posterior expectation
needed when computing a Bayes estimator. We will denote the state space by S , i.e. h : S → R,
π : FS → [0, 1], where (S,FS) is a probability space.

2.1 Stochastic maps

An important concept used in the construction of our algorithms is the idea of a stochastic map. We
start by reviewing stochastic maps in the context of a Markov chain, where it was first introduced to
design perfect simulation algorithms.

Let T : S × FS → [0, 1] denote the transition kernel of a Markov chain (generally constructed
by first proposing and then deciding whether to move or not using a Metropolis-Hastings (MH)
ratio). A stochastic map is an equivalent view of this chain, pushing the randomness into a list
of random transition functions. Formally, it is a (S → S)-valued random variable F such that
T (s,A) = P(F (s) ∈ A) for all state s ∈ S and event A ∈ FS . Concretely, these maps are
constructed by using the observation that T is typically defined as a transformation t(u, s) with
u ∈ [0, 1]. The most fundamental example is the case where t is based on the inverse cumulative
distribution method. We can then write F (s) = t(U, s) for a uniform random variable U on [0, 1].

With this notation, we get a non-standard, but useful way of formulating MCMC algorithms. First,
sample N stochastic maps F1, F2, . . . , FN , independently and identically. Second, to compute the
state of the chain after n transitions, simply return F1(F2(. . . (Fn(x0)) . . .)) = F1◦· · ·◦Fn(x0), for
an arbitrary start state x0 ∈ S, n ∈ {1, 2, . . . , N}. This representation decouples the dependencies
induced by random number generation from the dependencies induced by operations on the state
space. In MCMC, the latter are still not readily amenable to parallelization, and this is the motivation
for using SMC as the foundation of our method. We will show in Section 3 that SMC algorithms
can also be rewritten using stochastic maps.

2.2 SMC algorithms

Before going over our parallel version of SMC and to keep the exposition self-contained, we review
here the notation and description of standard, serial SMC algorithms from [10], which in turn is
based on the SMC framework of [11, 4, 5]. The samplers used in this paper are defined using
a proposal ν : S × FS → [0, 1]. Here, S can be an enlarged version of the target space, with

2

samedi 22 septembre 2012

Overview

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Algorithm 1 : EMC(α, ν, h, I0)
1: (F ,G ,H) ← entangle(ν) {Section 3.3}
2: s ← empty-hashtable
3: ρ ← empty-genealogy
4: init(s, w)
5: for r ∈ {1, . . . , R} do
6: exchange(wr−1)
7: resample(wr−1, ρ, Ir−1,G) {Section B}
8: Ir ← allocate(ρ, Ir−1,H) {Section 3.1}
9: for i ∈ Ir do

10: s(i) ← reconstruct(s, ρ, i,F)
{Algorithm 2}

11: wr,k(i) ← α(s(ρ(i)), s(i))
12: end for
13: end for
14: process(s, w, h)

Algorithm 2 : reconstruct(s, ρ, i,F = {Fi : i ∈ I})
1: F ← I
2: while (s(i) = nil) do
3: F ← F ◦ Fi

4: i ← ρ(i)
5: end while
6: return F (s(i))

components decreases by one at every step. More precisely, we will build each

rooted X-tree t by proposing a sequence of X-forests s1, s2, . . . , sR = t, where

an X-forest sr = {(ti, Xi)} is a collection of rooted Xi-trees ti such that the

disjoint union of leaves of the trees in the forest is equal to the original set of

leaves, !iXi = X. Note that with this specific construction, a forest of rank r

has |X|− r trees.

The sets of partial states considered in this Section are assumed to satisfy

the following three conditions:

1. The sets of partial states of different ranks should be disjoint, i.e. Sr∩Ss

for all r $= s (in phylogenetics, this holds since a forest with r trees cannot

be a forest with s trees when r $= s).

2. The set of partial state of smallest rank should have a single element

denoted by ⊥, S1 = {⊥} (in phylogenetics, ⊥ is the disconnected graph

on X).

3. The set of partial states of rank R should coincide with the target space,

SR = X (in phylogenetics, at rank R = |X|−1, forests have a single tree

and are members of the target space X).

These conditions will be subsumed by the more general framework of Sec-

tion 4.5, but the more concrete conditions above help understanding the poset

framework.

In order to grow particles from one rank to the next, the user needs to

specify a proposal probability kernel ν+. Given an initial partial state s and

a set of destination partial states A, we denote the probability of proposing

an element in A from s by ν+
s (A). In the discrete case, we abuse the notation

14

r

1

2

3

Figure 2: Illustration of compact
particles (blue) and concrete parti-
cles (black).

avoiding communication. However, this rarely happens in practice. Instead, a small number of
particles is often resampled a large number of times while many others have no offsprings. This
means that Ir can radically change across iterations. This raises an important question: how can a
machine compute a proposal if the particle from which to propose was itself computed by a different
machine?

The naive approach would consist in transmitting the ‘missing’ particles over the network. However,
even if basic optimizations are used (for example sending particles with multiplicities only once),
we show in Section 4 that this transfer can be slow in practice. Instead, our approach relies on a
combination of the stochastic maps with the particle genealogy to reconstruct the particle. Let us
see what this means in more detail, by going over the key steps of EMC, shown Algorithm 1.

First, note that the resampling step in SMC algorithms induces a one-to-many relationship between
the particle in generation r and those in generation r − 1. This relationship is called the particle ge-
nealogy, illustrated in Figure 1. Formally, a genealogy is a directed graph where nodes are particles
sr,k, r ∈ {1, . . . , R}, k ∈ {1, . . . ,K}, and where node sr−1,k is deemed the parent of node sr,k′ if
the latter was obtained by resampling s̃r−1,k′ = sr−1,k followed by proposing sr,k′ from s̃r−1,k′ .

Suppose for now that each machine kept track of the full genealogy, in the form of a hashtable
ρ : I → I of parent pointers. Each machine also maintains a hashtable holding the particles held in
memory in the reference machine s : I → S ∪ {nil} (the value nil represent a particle not currently
represented explicitly in the reference machine). Algorithm 2 shows that this information, s, ρ,F , is
sufficient to instantiate any query particle (indexed by i in the pseudo-code). Note that the procedure
reconstruct is guaranteed to terminate: in the procedure init, we set s(i(0, k)) to ⊥, and the weights
uniformly, hence ⊥ is an ancestor of all particles.

This high-level description raises several questions. How can we efficiently store and retreive the
stochastic maps? Can we maintain a sparse view of the genealogical information ρ, s to keep space
requirements low? Finally, how can we do resampling and particle allocation in this distributed
framework? We will cover these issues in the remaining of this section, describing at the same time
how the procedures allocate, resample and exchange are implemented.

3.1 Allocation and resampling

In SMC algorithms, the weights are periodically used for resampling the particles, a step also known
as the bootstrapping stage and denoted by resample in Algorithm 4. This is the only stage where
EMC requires communication over the network to be done. In most cases of interest, each machine
can transmit all the individual weights of its particles and to communicate it with every other ma-

4

Sample a global collection of i.i.d. stochastic maps for both the
proposal { Fi } and resampling steps { Gi }

Assume the global collection is transmitted to all machines
(O(1) if pseudo-random)

samedi 22 septembre 2012

Overview

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Algorithm 1 : EMC(α, ν, h, I0)
1: (F ,G ,H) ← entangle(ν) {Section 3.3}
2: s ← empty-hashtable
3: ρ ← empty-genealogy
4: init(s, w)
5: for r ∈ {1, . . . , R} do
6: exchange(wr−1)
7: resample(wr−1, ρ, Ir−1,G) {Section B}
8: Ir ← allocate(ρ, Ir−1,H) {Section 3.1}
9: for i ∈ Ir do

10: s(i) ← reconstruct(s, ρ, i,F)
{Algorithm 2}

11: wr,k(i) ← α(s(ρ(i)), s(i))
12: end for
13: end for
14: process(s, w, h)

Algorithm 2 : reconstruct(s, ρ, i,F = {Fi : i ∈ I})
1: F ← I
2: while (s(i) = nil) do
3: F ← F ◦ Fi

4: i ← ρ(i)
5: end while
6: return F (s(i))

components decreases by one at every step. More precisely, we will build each

rooted X-tree t by proposing a sequence of X-forests s1, s2, . . . , sR = t, where

an X-forest sr = {(ti, Xi)} is a collection of rooted Xi-trees ti such that the

disjoint union of leaves of the trees in the forest is equal to the original set of

leaves, !iXi = X. Note that with this specific construction, a forest of rank r

has |X|− r trees.

The sets of partial states considered in this Section are assumed to satisfy

the following three conditions:

1. The sets of partial states of different ranks should be disjoint, i.e. Sr∩Ss

for all r $= s (in phylogenetics, this holds since a forest with r trees cannot

be a forest with s trees when r $= s).

2. The set of partial state of smallest rank should have a single element

denoted by ⊥, S1 = {⊥} (in phylogenetics, ⊥ is the disconnected graph

on X).

3. The set of partial states of rank R should coincide with the target space,

SR = X (in phylogenetics, at rank R = |X|−1, forests have a single tree

and are members of the target space X).

These conditions will be subsumed by the more general framework of Sec-

tion 4.5, but the more concrete conditions above help understanding the poset

framework.

In order to grow particles from one rank to the next, the user needs to

specify a proposal probability kernel ν+. Given an initial partial state s and

a set of destination partial states A, we denote the probability of proposing

an element in A from s by ν+
s (A). In the discrete case, we abuse the notation

14

r

1

2

3

Figure 2: Illustration of compact
particles (blue) and concrete parti-
cles (black).

avoiding communication. However, this rarely happens in practice. Instead, a small number of
particles is often resampled a large number of times while many others have no offsprings. This
means that Ir can radically change across iterations. This raises an important question: how can a
machine compute a proposal if the particle from which to propose was itself computed by a different
machine?

The naive approach would consist in transmitting the ‘missing’ particles over the network. However,
even if basic optimizations are used (for example sending particles with multiplicities only once),
we show in Section 4 that this transfer can be slow in practice. Instead, our approach relies on a
combination of the stochastic maps with the particle genealogy to reconstruct the particle. Let us
see what this means in more detail, by going over the key steps of EMC, shown Algorithm 1.

First, note that the resampling step in SMC algorithms induces a one-to-many relationship between
the particle in generation r and those in generation r − 1. This relationship is called the particle ge-
nealogy, illustrated in Figure 1. Formally, a genealogy is a directed graph where nodes are particles
sr,k, r ∈ {1, . . . , R}, k ∈ {1, . . . ,K}, and where node sr−1,k is deemed the parent of node sr,k′ if
the latter was obtained by resampling s̃r−1,k′ = sr−1,k followed by proposing sr,k′ from s̃r−1,k′ .

Suppose for now that each machine kept track of the full genealogy, in the form of a hashtable
ρ : I → I of parent pointers. Each machine also maintains a hashtable holding the particles held in
memory in the reference machine s : I → S ∪ {nil} (the value nil represent a particle not currently
represented explicitly in the reference machine). Algorithm 2 shows that this information, s, ρ,F , is
sufficient to instantiate any query particle (indexed by i in the pseudo-code). Note that the procedure
reconstruct is guaranteed to terminate: in the procedure init, we set s(i(0, k)) to ⊥, and the weights
uniformly, hence ⊥ is an ancestor of all particles.

This high-level description raises several questions. How can we efficiently store and retreive the
stochastic maps? Can we maintain a sparse view of the genealogical information ρ, s to keep space
requirements low? Finally, how can we do resampling and particle allocation in this distributed
framework? We will cover these issues in the remaining of this section, describing at the same time
how the procedures allocate, resample and exchange are implemented.

3.1 Allocation and resampling

In SMC algorithms, the weights are periodically used for resampling the particles, a step also known
as the bootstrapping stage and denoted by resample in Algorithm 4. This is the only stage where
EMC requires communication over the network to be done. In most cases of interest, each machine
can transmit all the individual weights of its particles and to communicate it with every other ma-

4

Sample a global collection of i.i.d. stochastic maps for both the
proposal { Fi } and resampling steps { Gi }

Assume the global collection is transmitted to all machines
(O(1) if pseudo-random)

Each machine m
is responsible of a

subset of the
particles

samedi 22 septembre 2012

Overview

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Algorithm 1 : EMC(α, ν, h, I0)
1: (F ,G ,H) ← entangle(ν) {Section 3.3}
2: s ← empty-hashtable
3: ρ ← empty-genealogy
4: init(s, w)
5: for r ∈ {1, . . . , R} do
6: exchange(wr−1)
7: resample(wr−1, ρ, Ir−1,G) {Section B}
8: Ir ← allocate(ρ, Ir−1,H) {Section 3.1}
9: for i ∈ Ir do

10: s(i) ← reconstruct(s, ρ, i,F)
{Algorithm 2}

11: wr,k(i) ← α(s(ρ(i)), s(i))
12: end for
13: end for
14: process(s, w, h)

Algorithm 2 : reconstruct(s, ρ, i,F = {Fi : i ∈ I})
1: F ← I
2: while (s(i) = nil) do
3: F ← F ◦ Fi

4: i ← ρ(i)
5: end while
6: return F (s(i))

components decreases by one at every step. More precisely, we will build each

rooted X-tree t by proposing a sequence of X-forests s1, s2, . . . , sR = t, where

an X-forest sr = {(ti, Xi)} is a collection of rooted Xi-trees ti such that the

disjoint union of leaves of the trees in the forest is equal to the original set of

leaves, !iXi = X. Note that with this specific construction, a forest of rank r

has |X|− r trees.

The sets of partial states considered in this Section are assumed to satisfy

the following three conditions:

1. The sets of partial states of different ranks should be disjoint, i.e. Sr∩Ss

for all r $= s (in phylogenetics, this holds since a forest with r trees cannot

be a forest with s trees when r $= s).

2. The set of partial state of smallest rank should have a single element

denoted by ⊥, S1 = {⊥} (in phylogenetics, ⊥ is the disconnected graph

on X).

3. The set of partial states of rank R should coincide with the target space,

SR = X (in phylogenetics, at rank R = |X|−1, forests have a single tree

and are members of the target space X).

These conditions will be subsumed by the more general framework of Sec-

tion 4.5, but the more concrete conditions above help understanding the poset

framework.

In order to grow particles from one rank to the next, the user needs to

specify a proposal probability kernel ν+. Given an initial partial state s and

a set of destination partial states A, we denote the probability of proposing

an element in A from s by ν+
s (A). In the discrete case, we abuse the notation

14

r

1

2

3

Figure 2: Illustration of compact
particles (blue) and concrete parti-
cles (black).

avoiding communication. However, this rarely happens in practice. Instead, a small number of
particles is often resampled a large number of times while many others have no offsprings. This
means that Ir can radically change across iterations. This raises an important question: how can a
machine compute a proposal if the particle from which to propose was itself computed by a different
machine?

The naive approach would consist in transmitting the ‘missing’ particles over the network. However,
even if basic optimizations are used (for example sending particles with multiplicities only once),
we show in Section 4 that this transfer can be slow in practice. Instead, our approach relies on a
combination of the stochastic maps with the particle genealogy to reconstruct the particle. Let us
see what this means in more detail, by going over the key steps of EMC, shown Algorithm 1.

First, note that the resampling step in SMC algorithms induces a one-to-many relationship between
the particle in generation r and those in generation r − 1. This relationship is called the particle ge-
nealogy, illustrated in Figure 1. Formally, a genealogy is a directed graph where nodes are particles
sr,k, r ∈ {1, . . . , R}, k ∈ {1, . . . ,K}, and where node sr−1,k is deemed the parent of node sr,k′ if
the latter was obtained by resampling s̃r−1,k′ = sr−1,k followed by proposing sr,k′ from s̃r−1,k′ .

Suppose for now that each machine kept track of the full genealogy, in the form of a hashtable
ρ : I → I of parent pointers. Each machine also maintains a hashtable holding the particles held in
memory in the reference machine s : I → S ∪ {nil} (the value nil represent a particle not currently
represented explicitly in the reference machine). Algorithm 2 shows that this information, s, ρ,F , is
sufficient to instantiate any query particle (indexed by i in the pseudo-code). Note that the procedure
reconstruct is guaranteed to terminate: in the procedure init, we set s(i(0, k)) to ⊥, and the weights
uniformly, hence ⊥ is an ancestor of all particles.

This high-level description raises several questions. How can we efficiently store and retreive the
stochastic maps? Can we maintain a sparse view of the genealogical information ρ, s to keep space
requirements low? Finally, how can we do resampling and particle allocation in this distributed
framework? We will cover these issues in the remaining of this section, describing at the same time
how the procedures allocate, resample and exchange are implemented.

3.1 Allocation and resampling

In SMC algorithms, the weights are periodically used for resampling the particles, a step also known
as the bootstrapping stage and denoted by resample in Algorithm 4. This is the only stage where
EMC requires communication over the network to be done. In most cases of interest, each machine
can transmit all the individual weights of its particles and to communicate it with every other ma-

4

Sample a global collection of i.i.d. stochastic maps for both the
proposal { Fi } and resampling steps { Gi }

Assume the global collection is transmitted to all machines
(O(1) if pseudo-random)

Each machine m
is responsible of a

subset of the
particles

Consequence of resampling
step: sometimes machine m
needs a particles i outside of

its subset
samedi 22 septembre 2012

Overview

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Algorithm 1 : EMC(α, ν, h, I0)
1: (F ,G ,H) ← entangle(ν) {Section 3.3}
2: s ← empty-hashtable
3: ρ ← empty-genealogy
4: init(s, w)
5: for r ∈ {1, . . . , R} do
6: exchange(wr−1)
7: resample(wr−1, ρ, Ir−1,G) {Section B}
8: Ir ← allocate(ρ, Ir−1,H) {Section 3.1}
9: for i ∈ Ir do

10: s(i) ← reconstruct(s, ρ, i,F)
{Algorithm 2}

11: wr,k(i) ← α(s(ρ(i)), s(i))
12: end for
13: end for
14: process(s, w, h)

Algorithm 2 : reconstruct(s, ρ, i,F = {Fi : i ∈ I})
1: F ← I
2: while (s(i) = nil) do
3: F ← F ◦ Fi

4: i ← ρ(i)
5: end while
6: return F (s(i))

components decreases by one at every step. More precisely, we will build each

rooted X-tree t by proposing a sequence of X-forests s1, s2, . . . , sR = t, where

an X-forest sr = {(ti, Xi)} is a collection of rooted Xi-trees ti such that the

disjoint union of leaves of the trees in the forest is equal to the original set of

leaves, !iXi = X. Note that with this specific construction, a forest of rank r

has |X|− r trees.

The sets of partial states considered in this Section are assumed to satisfy

the following three conditions:

1. The sets of partial states of different ranks should be disjoint, i.e. Sr∩Ss

for all r $= s (in phylogenetics, this holds since a forest with r trees cannot

be a forest with s trees when r $= s).

2. The set of partial state of smallest rank should have a single element

denoted by ⊥, S1 = {⊥} (in phylogenetics, ⊥ is the disconnected graph

on X).

3. The set of partial states of rank R should coincide with the target space,

SR = X (in phylogenetics, at rank R = |X|−1, forests have a single tree

and are members of the target space X).

These conditions will be subsumed by the more general framework of Sec-

tion 4.5, but the more concrete conditions above help understanding the poset

framework.

In order to grow particles from one rank to the next, the user needs to

specify a proposal probability kernel ν+. Given an initial partial state s and

a set of destination partial states A, we denote the probability of proposing

an element in A from s by ν+
s (A). In the discrete case, we abuse the notation

14

r

1

2

3

Figure 2: Illustration of compact
particles (blue) and concrete parti-
cles (black).

avoiding communication. However, this rarely happens in practice. Instead, a small number of
particles is often resampled a large number of times while many others have no offsprings. This
means that Ir can radically change across iterations. This raises an important question: how can a
machine compute a proposal if the particle from which to propose was itself computed by a different
machine?

The naive approach would consist in transmitting the ‘missing’ particles over the network. However,
even if basic optimizations are used (for example sending particles with multiplicities only once),
we show in Section 4 that this transfer can be slow in practice. Instead, our approach relies on a
combination of the stochastic maps with the particle genealogy to reconstruct the particle. Let us
see what this means in more detail, by going over the key steps of EMC, shown Algorithm 1.

First, note that the resampling step in SMC algorithms induces a one-to-many relationship between
the particle in generation r and those in generation r − 1. This relationship is called the particle ge-
nealogy, illustrated in Figure 1. Formally, a genealogy is a directed graph where nodes are particles
sr,k, r ∈ {1, . . . , R}, k ∈ {1, . . . ,K}, and where node sr−1,k is deemed the parent of node sr,k′ if
the latter was obtained by resampling s̃r−1,k′ = sr−1,k followed by proposing sr,k′ from s̃r−1,k′ .

Suppose for now that each machine kept track of the full genealogy, in the form of a hashtable
ρ : I → I of parent pointers. Each machine also maintains a hashtable holding the particles held in
memory in the reference machine s : I → S ∪ {nil} (the value nil represent a particle not currently
represented explicitly in the reference machine). Algorithm 2 shows that this information, s, ρ,F , is
sufficient to instantiate any query particle (indexed by i in the pseudo-code). Note that the procedure
reconstruct is guaranteed to terminate: in the procedure init, we set s(i(0, k)) to ⊥, and the weights
uniformly, hence ⊥ is an ancestor of all particles.

This high-level description raises several questions. How can we efficiently store and retreive the
stochastic maps? Can we maintain a sparse view of the genealogical information ρ, s to keep space
requirements low? Finally, how can we do resampling and particle allocation in this distributed
framework? We will cover these issues in the remaining of this section, describing at the same time
how the procedures allocate, resample and exchange are implemented.

3.1 Allocation and resampling

In SMC algorithms, the weights are periodically used for resampling the particles, a step also known
as the bootstrapping stage and denoted by resample in Algorithm 4. This is the only stage where
EMC requires communication over the network to be done. In most cases of interest, each machine
can transmit all the individual weights of its particles and to communicate it with every other ma-

4

Sample a global collection of i.i.d. stochastic maps for both the
proposal { Fi } and resampling steps { Gi }

Assume the global collection is transmitted to all machines
(O(1) if pseudo-random)

Each machine m
is responsible of a

subset of the
particles

Consequence of resampling
step: sometimes machine m
needs a particles i outside of

its subset

Idea:
Reconstruct

particle i
using the
stochastic

maps

samedi 22 septembre 2012

Distributed genealogy s(i), ρ(i)

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Algorithm 1 : EMC(α, ν, h, I0)
1: (F ,G ,H) ← entangle(ν) {Section 3.3}
2: s ← empty-hashtable
3: ρ ← empty-genealogy
4: init(s, w)
5: for r ∈ {1, . . . , R} do
6: exchange(wr−1)
7: resample(wr−1, ρ, Ir−1,G) {Section B}
8: Ir ← allocate(ρ, Ir−1,H) {Section 3.1}
9: for i ∈ Ir do

10: s(i) ← reconstruct(s, ρ, i,F)
{Algorithm 2}

11: wr,k(i) ← α(s(ρ(i)), s(i))
12: end for
13: end for
14: process(s, w, h)

Algorithm 2 : reconstruct(s, ρ, i,F = {Fi : i ∈ I})
1: F ← I
2: while (s(i) = nil) do
3: F ← F ◦ Fi

4: i ← ρ(i)
5: end while
6: return F (s(i))

components decreases by one at every step. More precisely, we will build each

rooted X-tree t by proposing a sequence of X-forests s1, s2, . . . , sR = t, where

an X-forest sr = {(ti, Xi)} is a collection of rooted Xi-trees ti such that the

disjoint union of leaves of the trees in the forest is equal to the original set of

leaves, !iXi = X. Note that with this specific construction, a forest of rank r

has |X|− r trees.

The sets of partial states considered in this Section are assumed to satisfy

the following three conditions:

1. The sets of partial states of different ranks should be disjoint, i.e. Sr∩Ss

for all r $= s (in phylogenetics, this holds since a forest with r trees cannot

be a forest with s trees when r $= s).

2. The set of partial state of smallest rank should have a single element

denoted by ⊥, S1 = {⊥} (in phylogenetics, ⊥ is the disconnected graph

on X).

3. The set of partial states of rank R should coincide with the target space,

SR = X (in phylogenetics, at rank R = |X|−1, forests have a single tree

and are members of the target space X).

These conditions will be subsumed by the more general framework of Sec-

tion 4.5, but the more concrete conditions above help understanding the poset

framework.

In order to grow particles from one rank to the next, the user needs to

specify a proposal probability kernel ν+. Given an initial partial state s and

a set of destination partial states A, we denote the probability of proposing

an element in A from s by ν+
s (A). In the discrete case, we abuse the notation

14

r

1

2

3

Figure 2: Illustration of compact
particles (blue) and concrete parti-
cles (black).

avoiding communication. However, this rarely happens in practice. Instead, a small number of
particles is often resampled a large number of times while many others have no offsprings. This
means that Ir can radically change across iterations. This raises an important question: how can a
machine compute a proposal if the particle from which to propose was itself computed by a different
machine?

The naive approach would consist in transmitting the ‘missing’ particles over the network. However,
even if basic optimizations are used (for example sending particles with multiplicities only once),
we show in Section 4 that this transfer can be slow in practice. Instead, our approach relies on a
combination of the stochastic maps with the particle genealogy to reconstruct the particle. Let us
see what this means in more detail, by going over the key steps of EMC, shown Algorithm 1.

First, note that the resampling step in SMC algorithms induces a one-to-many relationship between
the particle in generation r and those in generation r − 1. This relationship is called the particle ge-
nealogy, illustrated in Figure 1. Formally, a genealogy is a directed graph where nodes are particles
sr,k, r ∈ {1, . . . , R}, k ∈ {1, . . . ,K}, and where node sr−1,k is deemed the parent of node sr,k′ if
the latter was obtained by resampling s̃r−1,k′ = sr−1,k followed by proposing sr,k′ from s̃r−1,k′ .

Suppose for now that each machine kept track of the full genealogy, in the form of a hashtable
ρ : I → I of parent pointers. Each machine also maintains a hashtable holding the particles held in
memory in the reference machine s : I → S ∪ {nil} (the value nil represent a particle not currently
represented explicitly in the reference machine). Algorithm 2 shows that this information, s, ρ,F , is
sufficient to instantiate any query particle (indexed by i in the pseudo-code). Note that the procedure
reconstruct is guaranteed to terminate: in the procedure init, we set s(i(0, k)) to ⊥, and the weights
uniformly, hence ⊥ is an ancestor of all particles.

This high-level description raises several questions. How can we efficiently store and retreive the
stochastic maps? Can we maintain a sparse view of the genealogical information ρ, s to keep space
requirements low? Finally, how can we do resampling and particle allocation in this distributed
framework? We will cover these issues in the remaining of this section, describing at the same time
how the procedures allocate, resample and exchange are implemented.

3.1 Allocation and resampling

In SMC algorithms, the weights are periodically used for resampling the particles, a step also known
as the bootstrapping stage and denoted by resample in Algorithm 4. This is the only stage where
EMC requires communication over the network to be done. In most cases of interest, each machine
can transmit all the individual weights of its particles and to communicate it with every other ma-

4

samedi 22 septembre 2012

Distributed genealogy s(i), ρ(i)

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Algorithm 1 : EMC(α, ν, h, I0)
1: (F ,G ,H) ← entangle(ν) {Section 3.3}
2: s ← empty-hashtable
3: ρ ← empty-genealogy
4: init(s, w)
5: for r ∈ {1, . . . , R} do
6: exchange(wr−1)
7: resample(wr−1, ρ, Ir−1,G) {Section B}
8: Ir ← allocate(ρ, Ir−1,H) {Section 3.1}
9: for i ∈ Ir do

10: s(i) ← reconstruct(s, ρ, i,F)
{Algorithm 2}

11: wr,k(i) ← α(s(ρ(i)), s(i))
12: end for
13: end for
14: process(s, w, h)

Algorithm 2 : reconstruct(s, ρ, i,F = {Fi : i ∈ I})
1: F ← I
2: while (s(i) = nil) do
3: F ← F ◦ Fi

4: i ← ρ(i)
5: end while
6: return F (s(i))

components decreases by one at every step. More precisely, we will build each

rooted X-tree t by proposing a sequence of X-forests s1, s2, . . . , sR = t, where

an X-forest sr = {(ti, Xi)} is a collection of rooted Xi-trees ti such that the

disjoint union of leaves of the trees in the forest is equal to the original set of

leaves, !iXi = X. Note that with this specific construction, a forest of rank r

has |X|− r trees.

The sets of partial states considered in this Section are assumed to satisfy

the following three conditions:

1. The sets of partial states of different ranks should be disjoint, i.e. Sr∩Ss

for all r $= s (in phylogenetics, this holds since a forest with r trees cannot

be a forest with s trees when r $= s).

2. The set of partial state of smallest rank should have a single element

denoted by ⊥, S1 = {⊥} (in phylogenetics, ⊥ is the disconnected graph

on X).

3. The set of partial states of rank R should coincide with the target space,

SR = X (in phylogenetics, at rank R = |X|−1, forests have a single tree

and are members of the target space X).

These conditions will be subsumed by the more general framework of Sec-

tion 4.5, but the more concrete conditions above help understanding the poset

framework.

In order to grow particles from one rank to the next, the user needs to

specify a proposal probability kernel ν+. Given an initial partial state s and

a set of destination partial states A, we denote the probability of proposing

an element in A from s by ν+
s (A). In the discrete case, we abuse the notation

14

r

1

2

3

Figure 2: Illustration of compact
particles (blue) and concrete parti-
cles (black).

avoiding communication. However, this rarely happens in practice. Instead, a small number of
particles is often resampled a large number of times while many others have no offsprings. This
means that Ir can radically change across iterations. This raises an important question: how can a
machine compute a proposal if the particle from which to propose was itself computed by a different
machine?

The naive approach would consist in transmitting the ‘missing’ particles over the network. However,
even if basic optimizations are used (for example sending particles with multiplicities only once),
we show in Section 4 that this transfer can be slow in practice. Instead, our approach relies on a
combination of the stochastic maps with the particle genealogy to reconstruct the particle. Let us
see what this means in more detail, by going over the key steps of EMC, shown Algorithm 1.

First, note that the resampling step in SMC algorithms induces a one-to-many relationship between
the particle in generation r and those in generation r − 1. This relationship is called the particle ge-
nealogy, illustrated in Figure 1. Formally, a genealogy is a directed graph where nodes are particles
sr,k, r ∈ {1, . . . , R}, k ∈ {1, . . . ,K}, and where node sr−1,k is deemed the parent of node sr,k′ if
the latter was obtained by resampling s̃r−1,k′ = sr−1,k followed by proposing sr,k′ from s̃r−1,k′ .

Suppose for now that each machine kept track of the full genealogy, in the form of a hashtable
ρ : I → I of parent pointers. Each machine also maintains a hashtable holding the particles held in
memory in the reference machine s : I → S ∪ {nil} (the value nil represent a particle not currently
represented explicitly in the reference machine). Algorithm 2 shows that this information, s, ρ,F , is
sufficient to instantiate any query particle (indexed by i in the pseudo-code). Note that the procedure
reconstruct is guaranteed to terminate: in the procedure init, we set s(i(0, k)) to ⊥, and the weights
uniformly, hence ⊥ is an ancestor of all particles.

This high-level description raises several questions. How can we efficiently store and retreive the
stochastic maps? Can we maintain a sparse view of the genealogical information ρ, s to keep space
requirements low? Finally, how can we do resampling and particle allocation in this distributed
framework? We will cover these issues in the remaining of this section, describing at the same time
how the procedures allocate, resample and exchange are implemented.

3.1 Allocation and resampling

In SMC algorithms, the weights are periodically used for resampling the particles, a step also known
as the bootstrapping stage and denoted by resample in Algorithm 4. This is the only stage where
EMC requires communication over the network to be done. In most cases of interest, each machine
can transmit all the individual weights of its particles and to communicate it with every other ma-

4

Assume
w.l.o.g. there
is always a

shared
common
ancestor

samedi 22 septembre 2012

Distributed genealogy s(i), ρ(i)

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Algorithm 1 : EMC(α, ν, h, I0)
1: (F ,G ,H) ← entangle(ν) {Section 3.3}
2: s ← empty-hashtable
3: ρ ← empty-genealogy
4: init(s, w)
5: for r ∈ {1, . . . , R} do
6: exchange(wr−1)
7: resample(wr−1, ρ, Ir−1,G) {Section B}
8: Ir ← allocate(ρ, Ir−1,H) {Section 3.1}
9: for i ∈ Ir do

10: s(i) ← reconstruct(s, ρ, i,F)
{Algorithm 2}

11: wr,k(i) ← α(s(ρ(i)), s(i))
12: end for
13: end for
14: process(s, w, h)

Algorithm 2 : reconstruct(s, ρ, i,F = {Fi : i ∈ I})
1: F ← I
2: while (s(i) = nil) do
3: F ← F ◦ Fi

4: i ← ρ(i)
5: end while
6: return F (s(i))

components decreases by one at every step. More precisely, we will build each

rooted X-tree t by proposing a sequence of X-forests s1, s2, . . . , sR = t, where

an X-forest sr = {(ti, Xi)} is a collection of rooted Xi-trees ti such that the

disjoint union of leaves of the trees in the forest is equal to the original set of

leaves, !iXi = X. Note that with this specific construction, a forest of rank r

has |X|− r trees.

The sets of partial states considered in this Section are assumed to satisfy

the following three conditions:

1. The sets of partial states of different ranks should be disjoint, i.e. Sr∩Ss

for all r $= s (in phylogenetics, this holds since a forest with r trees cannot

be a forest with s trees when r $= s).

2. The set of partial state of smallest rank should have a single element

denoted by ⊥, S1 = {⊥} (in phylogenetics, ⊥ is the disconnected graph

on X).

3. The set of partial states of rank R should coincide with the target space,

SR = X (in phylogenetics, at rank R = |X|−1, forests have a single tree

and are members of the target space X).

These conditions will be subsumed by the more general framework of Sec-

tion 4.5, but the more concrete conditions above help understanding the poset

framework.

In order to grow particles from one rank to the next, the user needs to

specify a proposal probability kernel ν+. Given an initial partial state s and

a set of destination partial states A, we denote the probability of proposing

an element in A from s by ν+
s (A). In the discrete case, we abuse the notation

14

r

1

2

3

Figure 2: Illustration of compact
particles (blue) and concrete parti-
cles (black).

avoiding communication. However, this rarely happens in practice. Instead, a small number of
particles is often resampled a large number of times while many others have no offsprings. This
means that Ir can radically change across iterations. This raises an important question: how can a
machine compute a proposal if the particle from which to propose was itself computed by a different
machine?

The naive approach would consist in transmitting the ‘missing’ particles over the network. However,
even if basic optimizations are used (for example sending particles with multiplicities only once),
we show in Section 4 that this transfer can be slow in practice. Instead, our approach relies on a
combination of the stochastic maps with the particle genealogy to reconstruct the particle. Let us
see what this means in more detail, by going over the key steps of EMC, shown Algorithm 1.

First, note that the resampling step in SMC algorithms induces a one-to-many relationship between
the particle in generation r and those in generation r − 1. This relationship is called the particle ge-
nealogy, illustrated in Figure 1. Formally, a genealogy is a directed graph where nodes are particles
sr,k, r ∈ {1, . . . , R}, k ∈ {1, . . . ,K}, and where node sr−1,k is deemed the parent of node sr,k′ if
the latter was obtained by resampling s̃r−1,k′ = sr−1,k followed by proposing sr,k′ from s̃r−1,k′ .

Suppose for now that each machine kept track of the full genealogy, in the form of a hashtable
ρ : I → I of parent pointers. Each machine also maintains a hashtable holding the particles held in
memory in the reference machine s : I → S ∪ {nil} (the value nil represent a particle not currently
represented explicitly in the reference machine). Algorithm 2 shows that this information, s, ρ,F , is
sufficient to instantiate any query particle (indexed by i in the pseudo-code). Note that the procedure
reconstruct is guaranteed to terminate: in the procedure init, we set s(i(0, k)) to ⊥, and the weights
uniformly, hence ⊥ is an ancestor of all particles.

This high-level description raises several questions. How can we efficiently store and retreive the
stochastic maps? Can we maintain a sparse view of the genealogical information ρ, s to keep space
requirements low? Finally, how can we do resampling and particle allocation in this distributed
framework? We will cover these issues in the remaining of this section, describing at the same time
how the procedures allocate, resample and exchange are implemented.

3.1 Allocation and resampling

In SMC algorithms, the weights are periodically used for resampling the particles, a step also known
as the bootstrapping stage and denoted by resample in Algorithm 4. This is the only stage where
EMC requires communication over the network to be done. In most cases of interest, each machine
can transmit all the individual weights of its particles and to communicate it with every other ma-

4

Assume
w.l.o.g. there
is always a

shared
common
ancestor

Current concrete particles: those explicitly stored in machine m
s(i) ≠ nil

samedi 22 septembre 2012

Distributed genealogy s(i), ρ(i)

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Algorithm 1 : EMC(α, ν, h, I0)
1: (F ,G ,H) ← entangle(ν) {Section 3.3}
2: s ← empty-hashtable
3: ρ ← empty-genealogy
4: init(s, w)
5: for r ∈ {1, . . . , R} do
6: exchange(wr−1)
7: resample(wr−1, ρ, Ir−1,G) {Section B}
8: Ir ← allocate(ρ, Ir−1,H) {Section 3.1}
9: for i ∈ Ir do

10: s(i) ← reconstruct(s, ρ, i,F)
{Algorithm 2}

11: wr,k(i) ← α(s(ρ(i)), s(i))
12: end for
13: end for
14: process(s, w, h)

Algorithm 2 : reconstruct(s, ρ, i,F = {Fi : i ∈ I})
1: F ← I
2: while (s(i) = nil) do
3: F ← F ◦ Fi

4: i ← ρ(i)
5: end while
6: return F (s(i))

components decreases by one at every step. More precisely, we will build each

rooted X-tree t by proposing a sequence of X-forests s1, s2, . . . , sR = t, where

an X-forest sr = {(ti, Xi)} is a collection of rooted Xi-trees ti such that the

disjoint union of leaves of the trees in the forest is equal to the original set of

leaves, !iXi = X. Note that with this specific construction, a forest of rank r

has |X|− r trees.

The sets of partial states considered in this Section are assumed to satisfy

the following three conditions:

1. The sets of partial states of different ranks should be disjoint, i.e. Sr∩Ss

for all r $= s (in phylogenetics, this holds since a forest with r trees cannot

be a forest with s trees when r $= s).

2. The set of partial state of smallest rank should have a single element

denoted by ⊥, S1 = {⊥} (in phylogenetics, ⊥ is the disconnected graph

on X).

3. The set of partial states of rank R should coincide with the target space,

SR = X (in phylogenetics, at rank R = |X|−1, forests have a single tree

and are members of the target space X).

These conditions will be subsumed by the more general framework of Sec-

tion 4.5, but the more concrete conditions above help understanding the poset

framework.

In order to grow particles from one rank to the next, the user needs to

specify a proposal probability kernel ν+. Given an initial partial state s and

a set of destination partial states A, we denote the probability of proposing

an element in A from s by ν+
s (A). In the discrete case, we abuse the notation

14

r

1

2

3

Figure 2: Illustration of compact
particles (blue) and concrete parti-
cles (black).

avoiding communication. However, this rarely happens in practice. Instead, a small number of
particles is often resampled a large number of times while many others have no offsprings. This
means that Ir can radically change across iterations. This raises an important question: how can a
machine compute a proposal if the particle from which to propose was itself computed by a different
machine?

The naive approach would consist in transmitting the ‘missing’ particles over the network. However,
even if basic optimizations are used (for example sending particles with multiplicities only once),
we show in Section 4 that this transfer can be slow in practice. Instead, our approach relies on a
combination of the stochastic maps with the particle genealogy to reconstruct the particle. Let us
see what this means in more detail, by going over the key steps of EMC, shown Algorithm 1.

First, note that the resampling step in SMC algorithms induces a one-to-many relationship between
the particle in generation r and those in generation r − 1. This relationship is called the particle ge-
nealogy, illustrated in Figure 1. Formally, a genealogy is a directed graph where nodes are particles
sr,k, r ∈ {1, . . . , R}, k ∈ {1, . . . ,K}, and where node sr−1,k is deemed the parent of node sr,k′ if
the latter was obtained by resampling s̃r−1,k′ = sr−1,k followed by proposing sr,k′ from s̃r−1,k′ .

Suppose for now that each machine kept track of the full genealogy, in the form of a hashtable
ρ : I → I of parent pointers. Each machine also maintains a hashtable holding the particles held in
memory in the reference machine s : I → S ∪ {nil} (the value nil represent a particle not currently
represented explicitly in the reference machine). Algorithm 2 shows that this information, s, ρ,F , is
sufficient to instantiate any query particle (indexed by i in the pseudo-code). Note that the procedure
reconstruct is guaranteed to terminate: in the procedure init, we set s(i(0, k)) to ⊥, and the weights
uniformly, hence ⊥ is an ancestor of all particles.

This high-level description raises several questions. How can we efficiently store and retreive the
stochastic maps? Can we maintain a sparse view of the genealogical information ρ, s to keep space
requirements low? Finally, how can we do resampling and particle allocation in this distributed
framework? We will cover these issues in the remaining of this section, describing at the same time
how the procedures allocate, resample and exchange are implemented.

3.1 Allocation and resampling

In SMC algorithms, the weights are periodically used for resampling the particles, a step also known
as the bootstrapping stage and denoted by resample in Algorithm 4. This is the only stage where
EMC requires communication over the network to be done. In most cases of interest, each machine
can transmit all the individual weights of its particles and to communicate it with every other ma-

4

Assume
w.l.o.g. there
is always a

shared
common
ancestor

Current concrete particles: those explicitly stored in machine m
s(i) ≠ nil

Current compact particles: only store id of the parent ρ(i)
s(i) = nil

samedi 22 septembre 2012

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Algorithm 1 : EMC(α, ν, h, I0)
1: (F ,G ,H) ← entangle(ν) {Section 3.3}
2: s ← empty-hashtable
3: ρ ← empty-genealogy
4: init(s, w)
5: for r ∈ {1, . . . , R} do
6: exchange(wr−1)
7: resample(wr−1, ρ, Ir−1,G) {Section B}
8: Ir ← allocate(ρ, Ir−1,H) {Section 3.1}
9: for i ∈ Ir do

10: s(i) ← reconstruct(s, ρ, i,F)
{Algorithm 2}

11: wr,k(i) ← α(s(ρ(i)), s(i))
12: end for
13: end for
14: process(s, w, h)

Algorithm 2 : reconstruct(s, ρ, i,F = {Fi : i ∈ I})
1: F ← I
2: while (s(i) = nil) do
3: F ← F ◦ Fi

4: i ← ρ(i)
5: end while
6: return F (s(i))

components decreases by one at every step. More precisely, we will build each

rooted X-tree t by proposing a sequence of X-forests s1, s2, . . . , sR = t, where

an X-forest sr = {(ti, Xi)} is a collection of rooted Xi-trees ti such that the

disjoint union of leaves of the trees in the forest is equal to the original set of

leaves, !iXi = X. Note that with this specific construction, a forest of rank r

has |X|− r trees.

The sets of partial states considered in this Section are assumed to satisfy

the following three conditions:

1. The sets of partial states of different ranks should be disjoint, i.e. Sr∩Ss

for all r $= s (in phylogenetics, this holds since a forest with r trees cannot

be a forest with s trees when r $= s).

2. The set of partial state of smallest rank should have a single element

denoted by ⊥, S1 = {⊥} (in phylogenetics, ⊥ is the disconnected graph

on X).

3. The set of partial states of rank R should coincide with the target space,

SR = X (in phylogenetics, at rank R = |X|−1, forests have a single tree

and are members of the target space X).

These conditions will be subsumed by the more general framework of Sec-

tion 4.5, but the more concrete conditions above help understanding the poset

framework.

In order to grow particles from one rank to the next, the user needs to

specify a proposal probability kernel ν+. Given an initial partial state s and

a set of destination partial states A, we denote the probability of proposing

an element in A from s by ν+
s (A). In the discrete case, we abuse the notation

14

r

1

2

3

Figure 2: Illustration of compact
particles (blue) and concrete parti-
cles (black).

avoiding communication. However, this rarely happens in practice. Instead, a small number of
particles is often resampled a large number of times while many others have no offsprings. This
means that Ir can radically change across iterations. This raises an important question: how can a
machine compute a proposal if the particle from which to propose was itself computed by a different
machine?

The naive approach would consist in transmitting the ‘missing’ particles over the network. However,
even if basic optimizations are used (for example sending particles with multiplicities only once),
we show in Section 4 that this transfer can be slow in practice. Instead, our approach relies on a
combination of the stochastic maps with the particle genealogy to reconstruct the particle. Let us
see what this means in more detail, by going over the key steps of EMC, shown Algorithm 1.

First, note that the resampling step in SMC algorithms induces a one-to-many relationship between
the particle in generation r and those in generation r − 1. This relationship is called the particle ge-
nealogy, illustrated in Figure 1. Formally, a genealogy is a directed graph where nodes are particles
sr,k, r ∈ {1, . . . , R}, k ∈ {1, . . . ,K}, and where node sr−1,k is deemed the parent of node sr,k′ if
the latter was obtained by resampling s̃r−1,k′ = sr−1,k followed by proposing sr,k′ from s̃r−1,k′ .

Suppose for now that each machine kept track of the full genealogy, in the form of a hashtable
ρ : I → I of parent pointers. Each machine also maintains a hashtable holding the particles held in
memory in the reference machine s : I → S ∪ {nil} (the value nil represent a particle not currently
represented explicitly in the reference machine). Algorithm 2 shows that this information, s, ρ,F , is
sufficient to instantiate any query particle (indexed by i in the pseudo-code). Note that the procedure
reconstruct is guaranteed to terminate: in the procedure init, we set s(i(0, k)) to ⊥, and the weights
uniformly, hence ⊥ is an ancestor of all particles.

This high-level description raises several questions. How can we efficiently store and retreive the
stochastic maps? Can we maintain a sparse view of the genealogical information ρ, s to keep space
requirements low? Finally, how can we do resampling and particle allocation in this distributed
framework? We will cover these issues in the remaining of this section, describing at the same time
how the procedures allocate, resample and exchange are implemented.

3.1 Allocation and resampling

In SMC algorithms, the weights are periodically used for resampling the particles, a step also known
as the bootstrapping stage and denoted by resample in Algorithm 4. This is the only stage where
EMC requires communication over the network to be done. In most cases of interest, each machine
can transmit all the individual weights of its particles and to communicate it with every other ma-

4

Reconstruction of particle i
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Algorithm 1 : EMC(α, ν, h, I0)
1: (F ,G ,H) ← entangle(ν) {Section 3.3}
2: s ← empty-hashtable
3: ρ ← empty-genealogy
4: init(s, w)
5: for r ∈ {1, . . . , R} do
6: exchange(wr−1)
7: resample(wr−1, ρ, Ir−1,G) {Section B}
8: Ir ← allocate(ρ, Ir−1,H) {Section 3.1}
9: for i ∈ Ir do

10: s(i) ← reconstruct(s, ρ, i,F)
{Algorithm 2}

11: wr,k(i) ← α(s(ρ(i)), s(i))
12: end for
13: end for
14: process(s, w, h)

Algorithm 2 : reconstruct(s, ρ, i,F = {Fi : i ∈ I})
1: F ← I
2: while (s(i) = nil) do
3: F ← F ◦ Fi

4: i ← ρ(i)
5: end while
6: return F (s(i))

components decreases by one at every step. More precisely, we will build each

rooted X-tree t by proposing a sequence of X-forests s1, s2, . . . , sR = t, where

an X-forest sr = {(ti, Xi)} is a collection of rooted Xi-trees ti such that the

disjoint union of leaves of the trees in the forest is equal to the original set of

leaves, !iXi = X. Note that with this specific construction, a forest of rank r

has |X|− r trees.

The sets of partial states considered in this Section are assumed to satisfy

the following three conditions:

1. The sets of partial states of different ranks should be disjoint, i.e. Sr∩Ss

for all r $= s (in phylogenetics, this holds since a forest with r trees cannot

be a forest with s trees when r $= s).

2. The set of partial state of smallest rank should have a single element

denoted by ⊥, S1 = {⊥} (in phylogenetics, ⊥ is the disconnected graph

on X).

3. The set of partial states of rank R should coincide with the target space,

SR = X (in phylogenetics, at rank R = |X|−1, forests have a single tree

and are members of the target space X).

These conditions will be subsumed by the more general framework of Sec-

tion 4.5, but the more concrete conditions above help understanding the poset

framework.

In order to grow particles from one rank to the next, the user needs to

specify a proposal probability kernel ν+. Given an initial partial state s and

a set of destination partial states A, we denote the probability of proposing

an element in A from s by ν+
s (A). In the discrete case, we abuse the notation

14

r

1

2

3

Figure 2: Illustration of compact
particles (blue) and concrete parti-
cles (black).

avoiding communication. However, this rarely happens in practice. Instead, a small number of
particles is often resampled a large number of times while many others have no offsprings. This
means that Ir can radically change across iterations. This raises an important question: how can a
machine compute a proposal if the particle from which to propose was itself computed by a different
machine?

The naive approach would consist in transmitting the ‘missing’ particles over the network. However,
even if basic optimizations are used (for example sending particles with multiplicities only once),
we show in Section 4 that this transfer can be slow in practice. Instead, our approach relies on a
combination of the stochastic maps with the particle genealogy to reconstruct the particle. Let us
see what this means in more detail, by going over the key steps of EMC, shown Algorithm 1.

First, note that the resampling step in SMC algorithms induces a one-to-many relationship between
the particle in generation r and those in generation r − 1. This relationship is called the particle ge-
nealogy, illustrated in Figure 1. Formally, a genealogy is a directed graph where nodes are particles
sr,k, r ∈ {1, . . . , R}, k ∈ {1, . . . ,K}, and where node sr−1,k is deemed the parent of node sr,k′ if
the latter was obtained by resampling s̃r−1,k′ = sr−1,k followed by proposing sr,k′ from s̃r−1,k′ .

Suppose for now that each machine kept track of the full genealogy, in the form of a hashtable
ρ : I → I of parent pointers. Each machine also maintains a hashtable holding the particles held in
memory in the reference machine s : I → S ∪ {nil} (the value nil represent a particle not currently
represented explicitly in the reference machine). Algorithm 2 shows that this information, s, ρ,F , is
sufficient to instantiate any query particle (indexed by i in the pseudo-code). Note that the procedure
reconstruct is guaranteed to terminate: in the procedure init, we set s(i(0, k)) to ⊥, and the weights
uniformly, hence ⊥ is an ancestor of all particles.

This high-level description raises several questions. How can we efficiently store and retreive the
stochastic maps? Can we maintain a sparse view of the genealogical information ρ, s to keep space
requirements low? Finally, how can we do resampling and particle allocation in this distributed
framework? We will cover these issues in the remaining of this section, describing at the same time
how the procedures allocate, resample and exchange are implemented.

3.1 Allocation and resampling

In SMC algorithms, the weights are periodically used for resampling the particles, a step also known
as the bootstrapping stage and denoted by resample in Algorithm 4. This is the only stage where
EMC requires communication over the network to be done. In most cases of interest, each machine
can transmit all the individual weights of its particles and to communicate it with every other ma-

4

samedi 22 septembre 2012

Resampling

 At resampling, only transmit particle weights

 Genealogy can be updated efficiently from this
information

samedi 22 septembre 2012

Details

 See NIPS paper:
 Jun, Wang, Bouchard-Côté (2012) NIPS.

 Datastructures the stochastic maps
 Constant storage using pseudo-randomness
 Need random access to the random number: binary trees of

xor’ing 2 streams of random numbers

 Allocations schemes: heuristics to minimize the
amount of particle transmission

samedi 22 septembre 2012

Experiments

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

S
p

ee
d

u
p

Number of Machines

16S actinobacteria dataset with 100 taxa

Number of Machines

S
p

ee
d

u
p

5S proteobacteria dataset with 100 taxa

S
p

ee
d

u
p

Number of Machines

Chaos experiment with 20 taxa

(a) (b) (c)

Figure 3: (a) The speedup factor for the 16S actinobacteria dataset with 100 taxa. (b) The speedup
factor for the 5S actinobacteria dataset with 100 taxa. (c) The speedup factor for the uniform weight
synthetic experiment (see text).

500 1000 1500 2000 2500 3000

0
2
0
0
0
0
0
4
0
0
0
0
0
6
0
0
0
0
0
8
0
0
0
0
0

1
2
0
0
0
0
0

Total run time of EMC versus Particle transfer

of particles

T
im

e
 (

m
ill

is
e

c
o

n
d

s
)

0 20 40 60 80 100

0
1
0
0
0
0

2
0
0
0
0

3
0
0
0
0

4
0
0
0
0

5
0
0
0
0

6
0
0
0
0

Run time elapsed per generation

Generation

T
im

e
 (

m
ill

is
e

c
o

n
d

s
)

(a) (b)

Figure 4: (a) Total time for particle transfer (in red), total time for EMC (in blue). (b) Sample
generation time including reconstruction time (in black), reconstruction time (in blue), and particle
transfer time (in red) isolated by generation.

The timing results in this section builds on the results from Section 4.3 where we showed that NM

is small compared to N1. Here, we ran SMC algorithm for 100 generations and measured the total
runtime of the EMC algorithm and an SMC algorithm parallelized via explicit particle transfer—
see Figure 4 (a). We fixed the number of particles per machine at 100 and produced a sequence of
experiments by doubling the number of machines and hence the number of particles at each step.
In Figure 4 (b), we focused on the reconstruction time, sample generation time (which includes the
reconstruction time), and the particle transmission time by generation. As expected, the particle
transmission was the bottleneck to the SMC algorithm whereas the reconstruction time was stable,
which verifies that the reconstruction algorithm rarely traced deep.

The total timing result in Figure 4 (a) shows that the overhead arising from increasing the number of
particles (or increasing the number of machines) is much smaller compared to the particle transmis-
sion method. The breakdown time by generation in Figure 4 (b) shows that the particle transmission
time is volatile as it depends on the network latency and throughput. The reconstruction time is
stable as it relies only on the CPU cycles.

5 Discussion

We have introduced EMC, a method to parallelize an SMC algorithm over multiple nodes. The new
method is scalalable over large numbers of machines because it requires only a small amount of data
communication over the network, of size per particle independent of the scale of the inference prob-
lem. We have shown that the algorithm performs very well in practice on a Bayesian phylogenetic
example and our open source Java implementation is available for download at [anonymized].

8

 Setup:
 Phylogenetic

inference
 100 particles/EC2

instance

 Comparison:
 Particle

transmission over
network (red)

 EMC (blue)

samedi 22 septembre 2012

Future directions

 SMC algorithms for inference over countably infinite /
combinatorial CTMCs

 Using these techniques to remove the bounded jump rate
assumption in jump-diffusion methods

 New applications:

Model: String-valued Continuous Time Markov Chain

Evolution of strings is denoted by M
Branch length is T = T6.
Strings {Xt : 0 ≤ t ≤ T}; Xt has a countable infinite domain of all possible
molecular sequences.

0 T
1

T
2

T
3

Branch length

Strings

TA CGx
1

TA Cx
2

TG Cx
3

TG CTGx
4

TG CTG Ax
5

CTG Ax
6

T
4

T
5

T
6

L. Wang and A. Bouchard-Côté (UBC) Harnessing Non-Local Evolutionary Events for Tree Infer. June 25, 2012 6 / 16

Time

Structures

Model: String-valued Continuous Time Markov Chain

Evolution of strings is denoted by M
Branch length is T = T6.
Strings {Xt : 0 ≤ t ≤ T}; Xt has a countable infinite domain of all possible
molecular sequences.

0 T
1

T
2

T
3

Branch length

Strings

TA CGx
1

TA Cx
2

TG Cx
3

TG CTGx
4

TG CTG Ax
5

CTG Ax
6

T
4

T
5

T
6

L. Wang and A. Bouchard-Côté (UBC) Harnessing Non-Local Evolutionary Events for Tree Infer. June 25, 2012 6 / 16

Time

Latent
states

1

2

3
4

...

RNA strand
following its

folding pathway

Bayesian
non-parametric

model
samedi 22 septembre 2012

Future directions

 EMC

 Working on another version where only the sum of the
particle weights is transmitted (using DHT methods)

 Better understanding of when and why the method works
well

samedi 22 septembre 2012

