Applications of SMC to the analysis of partially observed jump processes

and: the Entangled Monte Carlo algorithm

Alexandre Bouchard-Côté

University of British Columbia

Collaborators:
Seong-Hwan Jun, Bonnie Kirkpatrick, Liangliang Wang

Part I: Overview

- Problem: posterior inference on countably infinite Continuous Time Markov Chains (CTMCs)
- Motivations: phylogenetic inference under evolutionary models with random dependencies across sites
- Proposed method:
- Proposals based on supermartingales on combinatorial potentials
- Weights given by exponentiation of random matrices

Slipped strand mispairing (SSMs)

Normal pairing during DNA replication

SSM:
Example of insertion of an
extra TA repeat

Levinson '87

SSMs on a tree

String-valued branching process:

SSMs on a branch

SSMs and phylogenetic inference

- Potential of SSM in phylogenetics:
- Interactions between SSMs and point mutations adds constrains---this can help resolving trees and alignments
- Very frequent in neutral regions (e.g. plant introns)
- This potential has not been exploited yet
- Reason: inference is computationally challenging

Computational problem

- Our application (phylogenetic tree inference) requires SMC/PMCMC samplers...
- but the main ideas can be explained in a simpler setup:
- Computing a marginal transition probability,
- using importance sampling

Marginal transition probability

Marginal transition probability

$$
\mathbb{P}\left(X_{N}=y \mid X_{1}=x\right)
$$

Model

- Jump distribution: $X_{i+1} \mid X_{i} \sim \nu_{X_{i}}$
- Hold times: $H_{i} \sim \operatorname{Exp}(\cdot) ; \quad H_{i}=T_{i}-T_{i-1}$

Parameters: example

The rate of departing from $x: \lambda: \mathcal{X} \rightarrow(0, \infty)$

$$
\lambda(x)=n \theta_{s u b}+\lambda_{p t}+n \mu_{p t}+\lambda_{S S M}+f(x) \mu_{S S M}
$$

n : length of $x ; \quad f(x)$: the number of valid SSM deletion locations.
The jumping distribution: $\quad \nu: \mathcal{X} \times \mathcal{F}_{\mathcal{X}} \rightarrow[0,1]$
Mutation type from x to x^{\prime}

$$
\nu_{x}\left(\left\{x^{\prime}\right\}\right)=\frac{1}{\lambda(x)} \begin{cases}\theta_{s u b} & \text { Point substitution } \\ \frac{\lambda_{p t}}{n+1} & \text { Point insertion } \\ \mu_{p t} & \text { Point deletion } \\ \frac{\lambda_{s S M}}{f(x)} & \text { SSM insertion } \\ \mu_{S S M} & \text { SSM deletion }\end{cases}
$$

Parameters: example

The rate of departing from $x: \lambda: \mathcal{X} \rightarrow(0, \infty)$

$$
\lambda(x)=n \theta_{s u b}+\lambda_{p t}+n \mu_{p t}+\lambda_{S S M}+f(x) \mu_{S S M}
$$

n : length of $x ; \quad f(x)$: the number of valid SSM deletion locations.
The jumping distribution: $\quad \nu: \mathcal{X} \times \mathcal{F}_{\mathcal{X}} \rightarrow[0,1]$
Mutation type from x to x^{\prime}

$$
\nu_{x}\left(\left\{x^{\prime}\right\}\right)=\frac{1}{\lambda(x)}\left\{\begin{array}{l}
\theta_{\text {sub }} \\
\frac{\lambda_{p t}}{n+1} \\
\mu_{p t} \\
\frac{\lambda s s M}{f(x)} \\
\mu_{S S M}
\end{array}\right.
$$

Point substitution
Point insertion Point deletion
SSM insertion
SSM deletion,

Note: this is explosion free (always assumed today)

Parameters: exam

Note:

 unbounded rate functionThe rate of departing from $x: \lambda: \mathcal{X} \rightarrow(0, \infty)$

$$
\lambda(x)=n \theta_{s u b}+\lambda_{p t}+n \mu_{p t}+\lambda_{S S M}+f(x) \mu_{S S M}
$$

n : length of $x ; \quad f(x)$: the number of valid SSM deletion locations.
The jumping distribution: $\quad \nu: \mathcal{X} \times \mathcal{F}_{\mathcal{X}} \rightarrow[0,1]$
Mutation type from x to x^{\prime}

$$
\nu_{x}\left(\left\{x^{\prime}\right\}\right)=\frac{1}{\lambda(x)}\left\{\begin{array}{ll}
\theta_{s u b} & \text { Point substitution } \\
\frac{\lambda_{p t}}{n+1} & \text { Point insertion } \\
\mu_{p t} & \text { Point deletion } \\
\frac{\lambda_{S S M}}{f(x)} & \text { SSM insertion } \\
\mu_{S S M} & \text { SSM deletion, }
\end{array} \quad \begin{array}{c}
\text { Note: this is } \\
\text { explosion free } \\
\text { (always assumed } \\
\text { today) }
\end{array}\right.
$$

Related work

- Finite case: efficient exact and approximate exponentiation and estimation of rate matrices (Albert 1962; Asmussen et al 1996; Hobolth et al. 2005; Tataru et al. 2011; inter alia)
- When the rate function is bounded: Uniformization (Jensen 1953; Hobolth et al. 2009; inter alia), more recent jump-diffusion inference schemes using thinning for the discrete part (Casella et al. 2011, Murray Pollock's talk)
- MCMC approaches (Rao et al. 2011)
- Work on countable spaces based on forward simulation (Saeedi et al. 2011, Läubli 2011)
- Birth-death processes (Crawford et al. 2011; inter alia)

Proposed method: notation

State space: list of visited states between end points

$$
X=\left(X_{1}, X_{2}, \ldots, X_{N}\right)
$$

Marginalized: transition times

$$
T=\left(T_{1}, T_{2}, \ldots, T_{N}\right)
$$

Target distribution: $x^{*} \in \mathcal{X}^{*}$

$$
\pi\left(\left\{x^{*}\right\}\right)=\mathbb{P}\left(X=x^{*} \mid X_{1}=x, X_{N}=y\right)
$$

Obtaining the marginal transition probability

$$
\begin{aligned}
\pi\left(\left\{x^{*}\right\}\right) & =\mathbb{P}\left(X=x^{*} \mid X_{1}=x, X_{N}=y\right) \\
& \left.=\frac{\mathbb{P}\left(X=x^{*} \mid X_{1}=x\right)}{\mathbb{P}\left(X_{N}=y \mid X_{1}=x\right)}\right\} \begin{array}{l}
\gamma\left(x^{*}\right) \\
Z
\end{array}
\end{aligned}
$$

Marginal transition obtained from the estimator of Z

Proposal

Notation: $\tilde{\mathbb{P}}\left(X=x^{*}\right)$

Natural choice: Forward simulation

$$
\tilde{\mathbb{P}}\left(X=x^{*}\right)=\mathbb{P}\left(X=x^{*} \mid X_{1}=x\right)
$$

The space is infinite \Rightarrow positive probability of not reaching y

Solution: introduce potentials ρ^{y}

- Functions on the state space $\rho^{y}: \mathcal{X} \rightarrow \mathbb{N}$
- Assume: $\rho^{y}(x)=0$ iff $x=y$
- Dependency on the length to end point also possible

Example: Levenshtein edit distance
$\rho^{\prime}{ }^{\prime C T G}{ }^{\prime}\left({ }^{\prime} C G G^{\prime}\right)=$ min number of point insertion, deletion, subst.

$$
=2
$$

Using the potentials

- If for all $\mathrm{x} \neq \mathrm{y}: \mathbb{P}\left(\rho^{y}\left(X_{n+1}\right)<\rho^{y}(x) \mid X_{n}=x\right)>0$
- For $\rho=$ Levenshtein, this holds because for $\mathrm{x} \neq \mathrm{y}$ there is always a string z reached in one operation and closer (or equal) to y
- Then we can build $\tilde{\mathbb{P}}$ such that: $\tilde{\mathbb{P}}(N<\infty)=1$

Construction

Notation: Proposal restriced on states decreasing the potential:

$$
\nu_{x}^{\downarrow y}(A)=\nu_{x}\left(A \cap\left\{z: \rho^{y}(x)>\rho^{y}(z)\right\}\right)
$$

With α_{x}^{y} large enough, this yields a suitable $\tilde{\mathbb{P}}$:

$$
\tilde{\nu}_{x}=\alpha_{x}^{y} \frac{\nu_{x}^{\downarrow y}}{\nu_{x}^{\downarrow y}(\mathcal{X})}+\left(1-\alpha_{x}^{y}\right) \frac{\nu_{x}-\nu_{x}^{\downarrow y}}{1-\nu_{x}^{\downarrow y}(\mathcal{X})}
$$

Example: for $\rho=$ Levenshtein can pick

$$
\alpha_{x}^{y}=\max \left\{\alpha, \nu_{x}^{\downarrow y}(\mathcal{X})\right\}
$$

$$
\alpha>\frac{1}{2}
$$

Multiple excursions

Paths generated by $\tilde{\mathbb{P}}$ stop as soon as they hit y

This is not necessarily the case under \mathbb{P}

Solution: first sample a number of excursions E from a hyper-parameter distribution

$$
E \sim \operatorname{Geo}(\beta)
$$

Proposal hyper-parameters

- How to set α, β ?
- Optimal choice depends on the process and on t
- We use an ensemble of kernels with different combinations of α, β, ranging over several magnitudes
- The particles produced by the members of this ensemble compete; the weights and resampling naturally do selection
- Easy to justify with an auxiliary variable construction

Weights

Integrating the holding times:

$\underbrace{\int \ldots \int} \lambda\left(x_{1}^{*}\right) \exp \left(-h_{1} \lambda\left(x_{1}^{*}\right)\right) \ldots \lambda\left(x_{n-1}^{*}\right) \exp \left(h_{n-1} x_{n-1}^{*}\right)\left(1-\exp \left(h_{n} x_{n}^{*}\right)\right) \mathrm{d} h_{1} \ldots \mathrm{~d} h_{n}$ $n=\left|x^{*}\right|$ times

- High dimensional integral
- Results on convolution of exponential?
- Not directly applicable
- Expensive when rates have multiplicities

Reduction to a matrix exponential

Idea: construct a finite rate matrix Q on the fly, for each particle

For each state visited in
X, build an artificial state (with multiplicities)

Reduction to a matrix exponential

Idea: construct a finite rate matrix Q on the fly, for each particle

For each state visited in
X, build an artificial state (with multiplicities)

There will be positive rates only between consecutive artificial states

Reduction to a matrix exponential

Construct Q using the rate function parameter as follows:

$$
\left(\right)
$$

Reduction to a matrix exponential

Take the matrix exponential

Value of the integral: given by entry $M_{1, N-1}$

Numerical issues

- If all rates are distinct (in particular, same state not visited twice): exponentiation through diagonalisation is possible and fast
- Using sparsity: inversion is quadratic
- Can do the computation only for one entry of M
- If rates are not distinct: above method fails (Q does not have a complete set of linearly indep. eigenvectors)
- Can use Jordan-Chevalley decomposition (Q = A + N, A diag., N nilpotent)
- Simpler: Padé series + scaling \& squaring method

Experiments

- Numerical validations of consistency in \# of particles
- All the ideas presented today tested on 2 (of the rare) countably infinite CTMCs with closed form for the marginals
- Linear birth death process
- Poisson Indel Process
- Experiments on phylogenetic inference for the proposal presented today but without integrated holding times

Experiments

- Task: reconstruction of tree topologies and branch lengths (error measured using tree metrics)
- 10 taxa at the leaves
- Example of simulated data:
- Alignment not given

```
internal_0ICA--G---C---A--G-------------TG--A---
internal_1I-GAG-C---G-G------AA----GA----TGC-TGC
internal_2।--AG-CAG--CC------CG--C-GAC---TG
internal_3I-GAG-C---G-G------AA----GA----TGC----
internal_4|-GAG-C---G-G------AA----GA----TGC----
internal_5I-GAG-C---G-G------AA----GA----TGC----
internal_6I-GAG-C---G-G------AA----GA----TGC----
internal_7I-TAG-C---G-C------CA--C-GAC---TGC
internal_8|ATAG-C---G------C----A----G-C-GGCA---
leaf_0 ICA--G---C---A--G----C--A---G-TG--A---
leaf_1 I-GAG-C---G-G------AA----GT----TGC-TGC
leaf_2 I-GAG-C---G-G------AA----GA----TGC-TGC
leaf_3 I-GAG-C---G-G------AA----GA----TGC----
leaf_4 ICA--G---C---A--G--------------TG--A---
leaf_5 I-GAT-C---G-G------AA----GA----TGC----
leaf_6 I--AG-CAG--CC------CG--C-GAC---TG-----
leaf_7 I-GAG-C---G-G------AA----GA----TGC----
leaf_8 I--AG-CAG--CC-GC--CCG--C-GAC---CG-----
leaf_9 I-GAT-----G-G------GA----GT-----GC----
```

Setting: SSM length is $3 ; \theta_{\text {sub }}=0.03 ; \lambda_{p t}=0.05 ; \mu_{p t}=0.2 ; \lambda_{S S M}=2.0 ; \mu_{S S M}=2.0$

Preliminary results

Tree inference using correct parameters:

Number of particles

Number of particles

(replications on 10 random trees \& datasets)

Scaling up to large datasets

- Large number of particles needed
- Large phylogenetic trees
- Mixing proposals with different hyper-parameter values α, β
- Motivation for parallel architectures
- Revised Moore's law: parallel architectures
- Each particle is large
- particles are forests
- need to keep one string for each tree in forest
- 'worst' case: one string = one genome

Part II : Entangled Monte Carlo (EMC)

- Goal:
- Do parallelization in such as way that the result is equivalent to running everything on a (hypothetical) single machine
- Complementary approach: modify SMC
- Éric Moulines' talk on Island models from yesterday
- Pierre Jacob's talk on pairwise resampling scheme; this afternoon

Stochastic maps

- A way to decouple randomness and state dependencies
- Consider an arbitrary kernel: $T: \mathcal{S} \times \mathcal{F}_{\mathcal{S}} \rightarrow[0,1]$
- Stochastic map: $(\mathcal{S} \rightarrow \mathcal{S})$-valued r.v. F such that

$$
T(s, A)=\mathbb{P}(F(s) \in A)
$$

- Example: alternate view on MCMC
- Sample F_{1}, F_{2}, ... i.i.d.
- Pick x_{0} arbitrarily
- Return:

$$
F_{1} \circ \cdots \circ F_{n}\left(x_{0}\right)
$$

Overview

Sample a global collection of i.i.d. stochastic maps for both the proposal $\left\{F_{i}\right\}$ and resampling steps $\left\{G_{i}\right\}$

Assume the global collection is transmitted to all machines (O(1) if pseudo-random)

Overview

Sample a global collection of i.i.d. stochastic maps for both the proposal $\left\{F_{i}\right\}$ and resampling steps $\left\{G_{i}\right\}$

Assume the global collection is transmitted to all (O(1) if pseudo-random)

Each machine m is responsible of a subset of the particles

Overview

Sample a global collection of i.i.d. stochastic maps for both the proposal $\left\{F_{i}\right\}$ and resampling steps $\left\{G_{i}\right\}$

Assume the global collection is transmitted to all (O(1) if pseudo-random)

Each machine m is responsible of a subset of the particles

Consequence of resampling step: sometimes machine m needs a particles i outside of its subset

Overview

Sample a global collection of i.i.d. stochastic maps for both the proposal $\left\{F_{i}\right\}$ and resampling steps $\left\{G_{i}\right\}$

Assume the global collection is transmitted to all (O(1) if pseudo-random)

Each machine m
is responsible of a subset of the particles

Idea:
Reconstruct particle i using the stochastic maps

Consequence of resampling step: sometimes machine m needs a particles i outside of its subset

Distributed genealogy $s(i), \rho(i)$

Distributed genealogy $s(i), \rho(i)$

Assume
 w.l.o.g. there is always a shared common ancestor

Distributed genealogy $s(i), \rho(i)$

Current concrete particles: those explicitly stored in machine m $s(i) \neq$ nil

Assume
w.l.o.g. there is always a shared common ancestor

Distributed genealogy $s(i), \rho(i)$

Current concrete particles: those explicitly stored in machine m

$$
s(i) \neq \text { nil }
$$

Assume w.l.o.g. there is always a shared common ancestor

Current compact particles: only store id of the parent $\rho(i)$

$$
s(i)=\text { nil }
$$

Reconstruction of particle i

$$
\begin{aligned}
& \text { 1: } F \leftarrow I \\
& \text { 2: while }(s(i)=\text { nil }) \text { do } \\
& \text { 3: } \quad F \leftarrow F \circ F_{i} \\
& \text { 4: } \quad \leftarrow \rho(i) \\
& \text { 5: end while } \\
& \text { 6: return } F(s(i))
\end{aligned}
$$

Resampling

- At resampling, only transmit particle weights
- Genealogy can be updated efficiently from this information

Details

- See NIPS paper:
- Jun, Wang, Bouchard-Côté (2012) NIPS.
- Datastructures the stochastic maps
- Constant storage using pseudo-randomness
- Need random access to the random number: binary trees of xor'ing 2 streams of random numbers
- Allocations schemes: heuristics to minimize the amount of particle transmission

Experiments

- Setup:
- Phylogenetic inference
- 100 particles/EC2 instance
- Comparison:
- Particle transmission over network (red)
- EMC (blue)

Total run time of EMC versus Particle transfer

Future directions

- SMC algorithms for inference over countably infinite / combinatorial CTMCs
- Using these techniques to remove the bounded jump rate assumption in jump-diffusion methods
- New applications:

Future directions

- EMC
- Working on another version where only the sum of the particle weights is transmitted (using DHT methods)
- Better understanding of when and why the method works well

