

Quantitative bounds for Markov chain based Monte Carlo methods in high dimensions

Andreas Eberle

September 18, 2012

- Metropolis-Hastings algorithms in \mathbb{R}^d , d large
- Sequential Monte Carlo Samplers in high dimensions

- Coupling approach <---> Convergence in Wasserstein distance
- Functional inequalities $\leftrightarrow \rightarrow$ Convergence in L^p sense

1 INTRODUCTION

$$U(x) = \frac{1}{2} |x|^2 + V(x), \qquad x \in \mathbb{R}^d, \qquad V \in C^4(\mathbb{R}^d),$$
$$\mu(dx) = \frac{1}{Z} e^{-U(x)} \lambda^d(dx) = \frac{(2\pi)^{d/2}}{Z} e^{-V(x)} \gamma^d(dx),$$

 $\gamma_d = N(0, I_d)$ standard normal distribution in \mathbb{R}^d .

AIM :

- Approximate Sampling and MC integral estimation w.r.t. μ .
- Rigorous error and complexity estimates, $d \rightarrow \infty$.

A PROTOTYPICAL EXAMPLE: TRANSITION PATH SAMPLING

 $dY_t = dB_t - \nabla H(Y_t) dt, \qquad Y_0 = y_0 \in \mathbb{R}^n,$

 μ = conditional distribution on $C([0,T], \mathbb{R}^n)$ of $(Y_t)_{t \in [0,T]}$ given $Y_T = y_T$. By Girsanov's Theorem:

 $\mu(dy) = Z^{-1} \exp(-V(y)) \gamma(dy),$

 $\gamma =$ distribution of Brownian bridge from y_0 to y_T ,

$$V(y) = \int_0^T \left(\frac{1}{2}\Delta H(y_t) + |\nabla H(y_t)|^2\right) dt.$$

Finite dimensional approx. via Karhunen-Loève or Wiener-Lévy expansion:

$$\gamma(dy) \rightarrow \gamma^d(dx), \qquad V(y) \rightarrow V_d(x) \qquad \rightsquigarrow \text{ setup above}$$

POSSIBLE APPROACHES:

- *Metropolis-Hastings*, Gibbs Sampler
- Parallel Tempering, Equi-Energy Sampler
- Sequential Monte Carlo Sampler

2 Metropolis-Hastings methods with Gaussian proposals

MARKOV CHAIN MONTE CARLO APPROACH

- Simulate an ergodic Markov process (X_n) with stationary distribution μ .
- *n* large: $P \circ X_n^{-1} \approx \mu$
- Continuous time: (over-damped) Langevin diffusion

$$dX_t = -\frac{1}{2}X_t \, dt - \frac{1}{2}\nabla V(X_t) \, dt + dB_t$$

• Discrete time: Metropolis-Hastings Algorithms

METROPOLIS-HASTINGS ALGORITHM

(Metropolis et al 1953, Hastings 1970)

 $\mu(x) := Z^{-1} \exp(-U(x))$ density of μ w.r.t. λ^d ,

p(x,y) stochastic kernel on \mathbb{R}^d

proposal density, > 0,

ALGORITHM

- 1. Choose an initial state X_0 .
- 2. For $n := 0, 1, 2, \dots$ do
 - Sample $Y_n \sim p(X_n, y) dy$, $U_n \sim \text{Unif}(0, 1)$ independently.
 - If $U_n < \alpha(X_n, Y_n)$ then accept the proposal and set $X_{n+1} := Y_n$; else reject the proposal and set $X_{n+1} := X_n$.

METROPOLIS-HASTINGS ACCEPTANCE PROBABILITY

$$\alpha(x,y) = \min\left(\frac{\mu(y)p(y,x)}{\mu(x)p(x,y)},1\right) = \exp\left(-G(x,y)^+\right), \quad x,y \in \mathbb{R}^d,$$

$$G(x,y) = \log \frac{\mu(x)p(x,y)}{\mu(y)p(y,x)} = U(y) - U(x) + \log \frac{p(x,y)}{p(y,x)} = V(y) - V(x) + \log \frac{\gamma^d(x)p(x,y)}{\gamma^d(y)p(y,x)} + \log \frac{\gamma^d(x)p(x,y)}$$

- (X_n) is a time-homogeneous Markov chain with transition kernel $q(x, dy) = \alpha(x, y)p(x, y)dy + q(x)\delta_x(dy), \quad q(x) = 1 - q(x, \mathbb{R}^d \setminus \{x\}).$
- Detailed Balance:

$$\mu(dx) q(x, dy) = \mu(dy) q(y, dx).$$

PROPOSAL DISTRIBUTIONS FOR METROPOLIS-HASTINGS

 $x \mapsto Y_h(x)$ proposed move, h > 0 step size, $p_h(x, dy) = P[Y_h(x) \in dy]$ proposal distribution, $\alpha_h(x, y) = \exp(-G_h(x, y)^+)$ acceptance probability.

• Random Walk Proposals (~> Random Walk Metropolis)

$$Y_h(x) = x + \sqrt{h} \cdot Z, \qquad Z \sim \gamma^d,$$

$$p_h(x, dy) = N(x, h \cdot I_d),$$

$$G_h(x, y) = U(y) - U(x).$$

• Ornstein-Uhlenbeck Proposals (~> Preconditioned RWM)

$$\begin{split} Y_h(x) &= \left(1 - \frac{h}{2}\right) x + \sqrt{h - \frac{h^2}{4}} \cdot Z, \qquad Z \sim \gamma^d, \\ p_h(x, dy) &= N((1 - h/2)x, (h - h^2/4) \cdot I_d), \quad \text{det. balance w.r.t. } \gamma^d \\ G_h(x, y) &= V(y) - V(x). \end{split}$$

• Euler Proposals (~> Metropolis Adjusted Langevin Algorithm)

$$Y_h(x) = \left(1 - \frac{h}{2}\right)x - \frac{h}{2}\nabla V(x) + \sqrt{h} \cdot Z, \qquad Z \sim \gamma^d.$$

(Euler step for Langevin equation $dX_t = -\frac{1}{2}X_t dt - \frac{1}{2}\nabla V(X_t) dt + dB_t$)

$$p_h(x, dy) = N((1 - \frac{h}{2})x - \frac{h}{2}\nabla V(x), h \cdot I_d),$$

$$G_h(x, y) = V(y) - V(x) - (y - x) \cdot (\nabla V(y) + \nabla V(x))/2$$

$$+h(|\nabla U(y)|^2 - |\nabla U(x)|^2)/4.$$

REMARK. Even for $V \equiv 0$, γ^d is not a stationary distribution for p_h^{Euler} . Stationarity only holds asymptotically as $h \to 0$. This causes substantial problems in high dimensions. Semi-implicit Euler Proposals (~~ Preconditioned MALA) [Beskos, Roberts, Stuart, Voss 2008]

$$Y_{h}(x) = \left(1 - \frac{h}{2}\right)x - \frac{h}{2}\nabla V(x) + \sqrt{h - \frac{h^{2}}{4}} \cdot Z, \qquad Z \sim \gamma^{d},$$

$$p_{h}(x, dy) = N((1 - \frac{h}{2})x - \frac{h}{2}\nabla V(x), (h - \frac{h^{2}}{4}) \cdot I_{d}) \qquad (= p_{h}^{OU} \text{ if } V \equiv 0)$$

$$G_{h}(x, y) = V(y) - V(x) - (y - x) \cdot (\nabla V(y) + \nabla V(x))/2 + \frac{h}{8 - 2h} \left((y + x) \cdot (\nabla V(y) - \nabla V(x)) + |\nabla V(y)|^{2} - |\nabla V(x)|^{2}\right)$$

KNOWN RESULTS FOR METROPOLIS-HASTINGS IN HIGH DIMENSIONS

- Scaling of acceptance probabilities and mean square jumps as $d \to \infty$
- Diffusion limits as $d \to \infty$
- Ergodicity, Geometric Ergodicity
- Quantitative bounds for mixing times, rigorous complexity estimates

Optimal Scaling and diffusion limits as $d \to \infty$

- Roberts, Gelman, Gilks 1997: Diffusion limit for RWM with product target, $h = O(d^{-1})$
- Roberts, Rosenthal 1998: Diffusion limit for MALA with product target, $h = O(d^{-1/3})$
- Beskos, Roberts, Stuart, Voss 2008: Preconditioned MALA applied to Transition Path Sampling, Scaling h = O(1)
- *Mattingly, Pillai, Stuart 2010*: Diffusion limit for RWM with non-product target, $h = O(d^{-1})$
- *Pillai, Stuart, Thiéry 2011a*: Diffusion limit for MALA with non-product target, $h = O(d^{-1/3})$
- *Pillai, Stuart, Thiéry 2011b*: Preconditioned RWM, Scaling h = O(1), Diffusion limit as $h \downarrow 0$ independent of the dimension

Geometric ergodicity for MALA in \mathbb{R}^d (*d* fixed)

- Roberts, Tweedie 1996: Geometric convergence holds if ∇U is globally Lipschitz but fails in general
- Bou Rabee, van den Eijnden 2009: Strong accuracy for truncated MALA
- *Bou Rabee, Hairer, van den Eijnden 2010*: Convergence to equilibrium for MALA at exponential rate up to term exponentially small in time step size

BOUNDS FOR MIXING TIME, COMPLEXITY

Metropolis with ball walk proposals

- Dyer, Frieze, Kannan 1991: $\mu = Unif(K)$, $K \subset \mathbb{R}^d$ convex \Rightarrow Total variation mixing time is polynomial in d and diam(K)
- Applegate, Kannan 1991, ..., Lovasz, Vempala 2006: $U: K \to \mathbb{R}$ concave, $K \subset \mathbb{R}^d$ convex
 - \Rightarrow Total variation mixing time is polynomial in d and diam(K)

Langevin diffusions

• If μ is strictly log-concave, i.e.,

 $\exists \kappa > 0 : \ \partial^2 U(x) \ge \kappa \cdot I_d \qquad \forall x \in \mathbb{R}^d$

then Wasserstein contractivity holds:

 $\mathcal{W}(\operatorname{\mathsf{law}}(X_t), \mu) \leq e^{-\kappa t} \mathcal{W}(\operatorname{\mathsf{law}}(X_0), \mu),$

where $\mathcal{W}(\nu,\mu) = \inf_{X \sim \mu, Y \sim \nu} \mathbb{E}[d(X,Y)]$ is L^1 Wasserstein distance.

- Bound is independent of dimension, sharp !
- Under additional conditions, a corresponding result holds for the Euler discretization.
- Extension to non log-concave measures: A.E., Reflection coupling and Wasserstein contractivity without convexity, C.R.Acad.Sci.Paris 2011.
- These results suggest that comparable bounds might hold for MALA, or even for Ornstein-Uhlenbeck proposals.

Metropolis-Hastings with Ornstein-Uhlenbeck proposals

• *Hairer, Stuart, Vollmer 2011:* Dimension independent contractivity in modified Wasserstein distance

Metropolis-adjusted Langevin algorithm

• No rigorous complexity estimates so far

3 Quantitative Wasserstein bounds for preconditioned MALA

A.E., Metropolis-Hastings algorithms for perturbations of Gaussian measures in high dimensions: Contraction properties and error bounds in the log-concave case, Preprint 2012.

Preconditioned MALA: Coupling of proposal distributions $p_h(x, dy)$, $x \in \mathbb{R}^d$:

$$Y_h(x) = \left(1 - \frac{h}{2}\right) x - \frac{h}{2} \nabla V(x) + \sqrt{h - \frac{h^2}{4}} \cdot Z, \qquad Z \sim \gamma^d, \ h > 0,$$

 \rightsquigarrow Coupling of MALA transition kernels $q_h(x, dy)$, $x \in \mathbb{R}^d$:

 $W_h(x) = \begin{cases} Y_h(x) & \text{if } U \le \alpha_h(x, Y_h(x)) \\ x & \text{if } U > \alpha_h(x, Y_h(x)) \end{cases}, \quad U \sim Unif(0, 1) \text{ independent of } Z, \end{cases}$

We fix a radius $R \in (0, \infty)$ and a norm $\|\cdot\|_{-} = \langle \cdot, \cdot \rangle^{1/2}$ on \mathbb{R}^d such that $\|x\|_{-} \le |x|$ for any $x \in \mathbb{R}^d$,

and we set

 $d_R(x, \tilde{x}) := \min(\|x - \tilde{x}\|_{-}, 2R), \qquad B_R^- := \{x \in \mathbb{R}^d : \|x\|_{-} < R\}.$

EXAMPLE: Transition Path Sampling

• $|x|_{\mathbb{R}^d}$ is finite dimensional projection of Cameron-Martin norm/ H^1 norm

$$|x|_{CM} = \left(\int_0^T \left|\frac{dx}{dt}\right|^2 dt\right)^{1/2}$$

• $||x||_{-}$ is finite dimensional approximation of H^{α} norm, $\alpha \in (0, 1/2)$.

ASSUMPTIONS:

(A1) There exist finite constants $C_n, p_n \in [0, \infty)$ such that

 $\begin{aligned} |(\partial_{\xi_1,\dots,\xi_n}^n V)(x)| &\leq C_n \max(1, ||x||_{-})^{p_n} ||\xi_1||_{-} \cdots ||\xi_n||_{-} \\ \text{for any } x \in \mathbb{R}^d, \, \xi_1,\dots,\xi_n \in \mathbb{R}^d, \, \text{and } n = 2, 3, 4. \end{aligned}$ (A2) There exists a constant K > 0 such that $\langle \eta, \nabla^2 U(x) \cdot \eta \rangle \geq K \langle \eta, \eta \rangle \quad \forall x \in B_R^-, \, \eta \in \mathbb{R}^d. \end{aligned}$

THEOREM (AE 2012). If (A1) and (A2) are satisfied then

$$E\left[\|W_h(x) - W_h(\tilde{x})\|_{-}\right] \le \left(1 - \frac{1}{2}Kh + C(R)h^{3/2}\right) \|x - \tilde{x}\|_{-} \quad \forall x, \tilde{x} \in B_R^-, h \in (0, 1)$$

with an explicit constant $C(R) \in (0, \infty)$ that does depend on the dimension only through the moments

$$m_k := \int_{\mathbb{R}^d} \|x\|_{-}^k \gamma^d(dx), \qquad k \in \mathbb{N}.$$

REMARKS.

- $h \downarrow 0$: approaches optimal contraction rate 1 Kh/2
- $h^{-1} = O(R^q)$: contraction rate $\geq 1 Kh/4$
- For Ornstein-Uhlenbeck proposals, the contraction term is O(h) instead of $O(h^{3/2})$
- The corresponding bounds for standard MALA and RWM are dimension dependent.

CONTRACTIVITY IN WASSERSTEIN DISTANCE

 q_h = transition kernel of preconditioned MALA

COROLLARY. If (A1) and (A2) are satisfied, then there exist explicit constants $C, D, q \in (0, \infty)$ that do not depend on the dimension such that

$$\mathcal{W}_{2R}(\pi q_h^n, \nu q_h^n) \leq (1 - \frac{K}{4}h)^n \mathcal{W}_{2R}(\pi, \nu) + DR \exp(-KR^2/8) nh$$

for any $n \in \mathbb{N}, h, R \in (0, \infty)$ such that $h^{-1} \ge C(1+R)^q$, and for any initial distributions π, ν with support in B_R^- .

Approximation of quasi-stationary distribution

 $\mu_R(A) := \mu(A|B_R^-).$

COROLLARY. If (A1) and (A2) are satisfied, then there exist explicit constants $C, \overline{D}, q \in (0, \infty)$ that do not depend on the dimension such that

$$\mathcal{W}_{2R}(\nu q_h^n, \mu_R) \leq 58 R(1 - \frac{K}{4}h)^n + \bar{D}R \exp(-KR^2/33) nh$$

whenever $h^{-1} \ge C(1+R)^q$ and the initial distribution ν has support in $B^-_{R/2}$.

REMARK.

- To attain a given error bound ε for the Wasserstein distance, h has to be chosen sufficiently small (roughly $h^{-1} \sim O((\log \varepsilon^{-1})^{q/2})$, but in a dimension-independent way!
- There is a best possible error bound $\varepsilon > 0$ that can be attained, since after a long time the chain will exit from the metastable state B_R^- .

KEY INGREDIENTS IN PROOF:

Dimension independent bounds that quantify

- Rejection probabilities
- Dependence of rejection event on the current state

THEOREM. Suppose that Assumption (A1) is satisfied. Then there exist polynomials $\mathcal{P}: \mathbb{R}^2 \to \mathbb{R}_+$ of degree $\max(p_3 + 3, 2p_2 + 2)$ and $\mathcal{Q}: \mathbb{R}^2 \to \mathbb{R}_+$ of degree $\max(p_4 + 2, p_3 + p_2 + 2, 3p_2 + 1)$ such that

 $E[1 - \alpha_h(x, Y_h(x))] \leq E[G_h(x, Y_h(x))^+] \leq \mathcal{P}(\|x\|_{-}, \|\nabla U(x)\|_{-}) \cdot h^{3/2}$

 $E\left[\|\nabla_x G_h(x, Y_h(x))\|_+\right] \leq \mathcal{Q}(\|x\|_-, \|\nabla U(x)\|_-) \cdot h^{3/2}$

for all $x \in \mathbb{R}^d$, $h \in (0, 2)$, where

 $\|\eta\|_{+} := \sup\{\xi \cdot \eta : \|\xi\|_{-} \le 1\}.$

REMARK.

• The polynomials \mathcal{P} and \mathcal{Q} are explicit. They depend only on the values $C_2, C_3, C_4, p_2, p_3, p_4$ and on the moments

$$m_k = E[||Z||_{-}^k]$$

but they do not depend on the dimension d.

 For MALA with explicit Euler proposals, corresponding estimates hold with m_k replaced by m̃_k = E[|Z|^k]. Note, however, that m̃_k → ∞ as d→∞.

4 Sequential MCMC, SMC Sampler

A.E., C. Marinelli, Quantitative approximations of evolving probability measures and sequential MCMC methods, PTRF 2012, Online First.

 $\mu_t(dx) = Z_t^{-1} \exp\left(-U_t(x)\right) \gamma(dx), \qquad t \in [0, t_0], \qquad \mu_{t_0} = \mu$ probability measures on state space *S*.

$$H_t(x) := -\frac{\partial}{\partial t} \log \frac{d\mu_t}{d\gamma}(x) = \frac{\partial}{\partial t} U_t(x) - \left\langle \frac{\partial}{\partial t} U_t, \mu_t \right\rangle.$$
$$\mu_t(dx) \propto \exp\left(-\int_0^t H_s(x) \, ds\right) \, \gamma(dx)$$

Let \mathcal{L}_t , $t \ge 0$, be generators of a time-inhomogeneous Markov process on S such that \mathcal{L}_t satisfies the detailed balance condition w.r.t. μ_t . In particular,

 $\mathcal{L}_t^* \mu_t = 0$ (infinitesimal stationarity).

Fix constants $\lambda_t \geq 0$.

SMC SAMPLER IN CONTINUOUS TIME

 $X_t^N = (X_{t,1}^N, \dots, X_{t,N}^N)$ Markov process on S^N with generator

$$\mathcal{L}_t^N \varphi(x_1, \dots, x_N) = \lambda_t \sum_{i=1}^N \mathcal{L}_t^{(i)} \varphi(x_1, \dots, x_N) + \frac{1}{N} \sum_{i,j=1}^N \left(H_t(x_i) - H_t(x_j) \right)^+ \cdot \left(\varphi(x^{i \to j}) - \varphi(x) \right),$$

 $\mathcal{L}_t^{(i)}$ action of \mathcal{L}_t on *i* th component.

- Independent Markov chain moves with generator $\lambda_t \cdot \mathcal{L}_t$
- $X_{t,i}^N$ replaced by $X_{t,j}^N$ with rate $\frac{1}{N}(H_t(X_{t,i}^N) H_t(X_{t,j}^N))^+$

ESTIMATORS FOR μ_t : $X_{0,i}^N$ i.i.d. $\sim \mu_0$

$$\eta_t^N := \frac{1}{N} \sum_{i=1}^N \delta_{X_{t,i}^N}, \qquad \nu_t^N := \exp\left(-\int_0^t \langle H_s, \eta_s^N \rangle \, ds\right) \, \eta_t^N \, .$$

PERFORMANCE IN HIGH DIMENSIONS ?

Possible test cases:

- 1. Product models
- 2. Models with dimension-independent global mixing properties
- 3. Disconnected unions of such models
- 4. Models with a disconnectivity tree structure
- 5. Models with a phase transition
- 6. Disordered systems

5 Quantitative error bounds and dimension dependence

 $\varepsilon_t^{N,p} := \sup\left\{ \mathbb{E}\left[\left| \langle f, \nu_s^N \rangle - \langle f, \mu_s \rangle \right|^2 \right] : s \in [0,t], \|f\|_{L^p(\mu_s)} \le 1 \right\}, \ p \in [2,\infty].$

GOAL:

- Bounds for $\varepsilon_t^{N,p}$ for a fixed number N of replicas.
- Explicit dependence on the dimension for test models.

ERROR BOUNDS AND DIMENSION DEPENDENCE UNDER GLOBAL MIXING CONDITIONS

Fix $t_0 \in (0,\infty)$ (length of time interval), $p \in (6,\infty)$, $q \in (p,\infty)$, and let

$$\omega = \sup_{t \in [0,t_0]} \operatorname{osc}(H_t); \quad K_t = \int_0^t \|H_s\|_{L^q(\mu_s)} \, ds$$

$$C_t = \sup_{\langle f,\mu_t \rangle = 0} \frac{\int f^2 \, d\mu_t}{\mathcal{E}_t(f,f)} \qquad \text{Poincaré constant (inverse spectral gap)}$$

$$\gamma_t = \sup_{\langle f^2,\mu_t \rangle = 1} \frac{\int f^2 \log |f| \, d\mu_t}{\mathcal{E}_t(f,f)} \qquad \text{Log-Sobolev constant}$$

where

$$\mathcal{E}_t(f,f) = -(f,\mathcal{L}_t f)_{L^2(\mu_t)}$$

is the *Dirichlet form* of \mathcal{L}_t on $L^2(\mu_t)$.

THEOREM (A.E., C. Marinelli 2012) Suppose that

$$N \geq 40 \cdot \max(K_{t_0}, 1), \quad \text{and}$$

$$\lambda_t \geq \omega \cdot \max\left(\frac{p}{4} \cdot \left(1 + t \cdot \frac{p+3}{4}\right) \cdot C_t, \ a(p,q) \cdot \gamma_t\right) \quad \forall t \in [0, t_0].$$

Then

$$\varepsilon_t^{N,p} \leq \frac{2+8K_t}{N} \cdot \left(1+\frac{16K_t}{N}\right) \qquad \forall t \in [0,t_0].$$

Here a(p,q) is an explicit constant depending only on p and q.

EXAMPLE 1: Product measures

$$S = \prod_{k=1}^{d} S_k, \qquad \mu_t = \bigotimes_{k=1}^{d} \mu_t^{(k)}$$

$$\Rightarrow \quad H_t(x) = -\frac{d}{dt} \log \mu_t(x) = \sum_{k=1}^{d} H_t^{(k)}(x_k)$$

$$\Rightarrow \quad \omega = \sup_{t,x,y} |H_t(x) - H_t(y)| \le \sum_{k=1}^{d} \omega^{(k)}.$$

$$\mathcal{L}_t(x,y) = \sum_{k=1}^d \mathcal{L}_t^{(k)}(x,y)$$
 product dynamics

$$\Rightarrow C_t = \max_k C_t^{(k)}, \ \gamma_t = \max_k \gamma_t^{(k)}.$$

EXAMPLE 1: Product measures

$$S = \prod_{k=1}^{d} S_k, \qquad \mu_t = \bigotimes_{k=1}^{d} \mu_t^{(k)}$$

Assumption:

$$\omega^{(k)} \leq 1 \quad \forall k, \qquad C_t^{(k)}, \ \gamma_t^{(k)} \text{ independent of } k.$$

$$\Rightarrow \quad \omega = O(d), \quad C_t = O(1), \quad \gamma_t = O(1)$$

 \Rightarrow $N = O(d^{1/2})$ and $\lambda_s = O(d)$ are sufficient for a given precision

 \Rightarrow total effort of order $O(d^3)$ (resp. $O(d^{2.5})$) is sufficient

EXAMPLE 1: Product measures

Bound independent of d holds provided there are

- O(d) resampling steps
- O(d) MCMC steps between each resampling step
- $O(d^{1/2})$ particles

EXAMPLE 2: Log Sobolev and spectral gap independent of the dimension \rightsquigarrow similar bounds as in Example 1.

REMARK. [Beskos, Crisan, Jasra, Whiteley 2011]

- In the product case, O(1) resampling steps are sufficient.
- This holds true because strong mixing properties make up even for huge errors and degeneracy due to resampling.
- One can not expect equally strong results in more general scenarios.

ERROR BOUNDS AND DIMENSION DEPENDENCE WITHOUT GLOBAL MIXING

NON-ASYMPTOTIC BOUNDS FOR DISCONNECTED UNIONS $S = \bigcup S_i$ disjoint decomposition of state space. Suppose that

$$\mathcal{L}_{t}(x,y) = 0 \ \forall \ t \geq 0, \ x \in S_{i}, \ y \in S_{j} \ (i \neq j), \ \text{and let}$$

$$\mu_{t}^{i} = \mu_{t}(\cdot | S_{i}), \qquad \|f\|_{L^{p}(\mu_{t})}^{\sim} := \max_{i} \|f\|_{L^{p}(\mu_{t}^{i})},$$

$$\tilde{\varepsilon}_{t}^{N,p} := \sup \left\{ \mathbb{E} \left[\left| \langle f, \nu_{s}^{N} \rangle - \langle f, \mu_{s} \rangle \right|^{2} \right] : \ s \in [0,t], \ \|f\|_{L^{p}(\mu_{s})}^{\sim} \leq 1 \right\}$$

THEOREM. Suppose conditions as above hold with C_t , γ_t replaced by

$$\tilde{C}_t = \max_i C_t^i, \qquad \tilde{\gamma}_t = \max_i \gamma_t^i.$$

Then

$$\tilde{\varepsilon}_t^{N,p} \leq \frac{2 + 8 K_t \tilde{M}_t^2}{N} \cdot \left(1 + \frac{16 \tilde{K}_t \tilde{M}_t^2}{N}\right)$$

where

$$\tilde{M}_t = \max_i \sup_{0 \le r \le s \le t} \frac{\mu_s(S_i)}{\mu_r(S_i)} \, .$$

EXAMPLE 3: Disjoint union of i.i.d. product models

Dimension dependence as above holds in particular if

 $\liminf_{d\to\infty}\min_i\mu_0(S_i) > 0.$

EXAMPLE 4: Disconnectivity tree

see talk of Nikolaus Schweizer