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• Metropolis-Hastings algorithms in Rd, d large

• Sequential Monte Carlo Samplers in high dimensions

• Coupling approach ! Convergence in Wasserstein distance

• Functional inequalities ! Convergence in Lp sense



1 INTRODUCTION

U(x) =
1
2
|x|2 + V (x) , x ∈ Rd, V ∈ C4(Rd),

µ(dx) =
1
Z

e−U(x) λd(dx) =
(2π)d/2

Z
e−V (x) γd(dx),

γd = N(0, Id) standard normal distribution in Rd.

AIM :

• Approximate Sampling and MC integral estimation w.r.t. µ.

• Rigorous error and complexity estimates, d →∞.



A PROTOTYPICAL EXAMPLE: TRANSITION PATH SAMPLING

dYt = dBt −∇H(Yt) dt , Y0 = y0 ∈ Rn,

µ = conditional distribution on C([0, T ],Rn) of (Yt)t∈[0,T ] given YT = yT .

By Girsanov‘s Theorem:

µ(dy) = Z−1 exp(−V (y)) γ(dy),

γ = distribution of Brownian bridge from y0 to yT ,

V (y) =
∫ T

0

(
1
2
∆H(yt) + |∇H(yt)|2

)
dt.

Finite dimensional approx. via Karhunen-Loève or Wiener-Lévy expansion:

γ(dy) → γd(dx) , V (y) → Vd(x) Ã setup above



POSSIBLE APPROACHES:

• Metropolis-Hastings, Gibbs Sampler

• Parallel Tempering, Equi-Energy Sampler

• Sequential Monte Carlo Sampler



2 Metropolis-Hastings methods with Gaussian
proposals

MARKOV CHAIN MONTE CARLO APPROACH

• Simulate an ergodic Markov process (Xn) with stationary distribution µ.

• n large: P ◦X−1
n ≈ µ

• Continuous time: (over-damped) Langevin diffusion

dXt = −1
2
Xt dt− 1

2
∇V (Xt) dt + dBt

• Discrete time: Metropolis-Hastings Algorithms



METROPOLIS-HASTINGS ALGORITHM
(Metropolis et al 1953, Hastings 1970)

µ(x) := Z−1 exp(−U(x)) density of µ w.r.t. λd,

p(x, y) stochastic kernel on Rd proposal density, > 0,

ALGORITHM

1. Choose an initial state X0.

2. For n := 0, 1, 2, . . . do

• Sample Yn ∼ p(Xn, y)dy, Un ∼ Unif(0, 1) independently.

• If Un < α(Xn, Yn) then accept the proposal and set Xn+1 := Yn;
else reject the proposal and set Xn+1 := Xn.



METROPOLIS-HASTINGS ACCEPTANCE PROBABILITY

α(x, y) = min
(

µ(y)p(y, x)
µ(x)p(x, y)

, 1
)

= exp (−G(x, y)+), x, y ∈ Rd,

G(x, y) = log
µ(x)p(x, y)
µ(y)p(y, x)

= U(y)−U(x)+log
p(x, y)
p(y, x)

= V (y)−V (x)+log
γd(x)p(x, y)
γd(y)p(y, x)

• (Xn) is a time-homogeneous Markov chain with transition kernel

q(x, dy) = α(x, y)p(x, y)dy + q(x)δx(dy), q(x) = 1− q(x,Rd \ {x}).

• Detailed Balance:

µ(dx) q(x, dy) = µ(dy) q(y, dx).



PROPOSAL DISTRIBUTIONS FOR METROPOLIS-HASTINGS

x 7→ Yh(x) proposed move, h > 0 step size,

ph(x, dy) = P [Yh(x) ∈ dy] proposal distribution,
αh(x, y) = exp(−Gh(x, y)+) acceptance probability.

• Random Walk Proposals (Ã Random Walk Metropolis)

Yh(x) = x +
√

h · Z, Z ∼ γd,

ph(x, dy) = N(x, h · Id),
Gh(x, y) = U(y)− U(x).

• Ornstein-Uhlenbeck Proposals (Ã Preconditioned RWM)

Yh(x) =
(

1− h

2

)
x +

√
h− h2

4
· Z, Z ∼ γd,

ph(x, dy) = N((1− h/2)x, (h− h2/4) · Id), det. balance w.r.t. γd

Gh(x, y) = V (y)− V (x).



• Euler Proposals (Ã Metropolis Adjusted Langevin Algorithm)

Yh(x) =
(

1− h

2

)
x− h

2
∇V (x) +

√
h · Z, Z ∼ γd.

(Euler step for Langevin equation dXt = − 1
2Xt dt− 1

2∇V (Xt) dt + dBt)

ph(x, dy) = N((1− h

2
)x− h

2
∇V (x), h · Id),

Gh(x, y) = V (y)− V (x)− (y − x) · (∇V (y) +∇V (x))/2
+h(|∇U(y)|2 − |∇U(x)|2)/4.

REMARK. Even for V ≡ 0, γd is not a stationary distribution for pEuler
h .

Stationarity only holds asymptotically as h → 0. This causes substantial
problems in high dimensions.



• Semi-implicit Euler Proposals (Ã Preconditioned MALA)
[Beskos,Roberts, Stuart, Voss 2008]

Yh(x) =
(

1− h

2

)
x− h

2
∇V (x) +

√
h− h2

4
· Z, Z ∼ γd,

ph(x, dy) = N((1− h

2
)x− h

2
∇V (x), (h− h2

4
) · Id) ( = pOU

h if V ≡ 0 )

Gh(x, y) = V (y)− V (x)− (y − x) · (∇V (y) +∇V (x))/2

+
h

8− 2h

(
(y + x) · (∇V (y)−∇V (x)) + |∇V (y)|2 − |∇V (x)|2) .



KNOWN RESULTS FOR METROPOLIS-HASTINGS IN HIGH DIMENSIONS

• Scaling of acceptance probabilities and mean square jumps as d →∞
• Diffusion limits as d →∞
• Ergodicity, Geometric Ergodicity

• Quantitative bounds for mixing times, rigorous complexity estimates



Optimal Scaling and diffusion limits as d →∞
• Roberts, Gelman, Gilks 1997: Diffusion limit for RWM with product tar-

get, h = O(d−1)

• Roberts, Rosenthal 1998: Diffusion limit for MALA with product target,
h = O(d−1/3)

• Beskos, Roberts, Stuart, Voss 2008: Preconditioned MALA applied to
Transition Path Sampling, Scaling h = O(1)

• Mattingly, Pillai, Stuart 2010: Diffusion limit for RWM with non-product
target, h = O(d−1)

• Pillai, Stuart, Thiéry 2011a: Diffusion limit for MALA with non-product
target, h = O(d−1/3)

• Pillai, Stuart, Thiéry 2011b: Preconditioned RWM, Scaling h = O(1),
Diffusion limit as h ↓ 0 independent of the dimension



Geometric ergodicity for MALA in Rd (d fixed)

• Roberts, Tweedie 1996: Geometric convergence holds if ∇U is globally
Lipschitz but fails in general

• Bou Rabee, van den Eijnden 2009: Strong accuracy for truncated MALA

• Bou Rabee, Hairer, van den Eijnden 2010: Convergence to equilibrium
for MALA at exponential rate up to term exponentially small in time step
size



BOUNDS FOR MIXING TIME, COMPLEXITY

Metropolis with ball walk proposals

• Dyer, Frieze, Kannan 1991: µ = Unif(K), K ⊂ Rd convex
⇒ Total variation mixing time is polynomial in d and diam(K)

• Applegate, Kannan 1991, ... , Lovasz, Vempala 2006: U : K → R
concave, K ⊂ Rd convex
⇒ Total variation mixing time is polynomial in d and diam(K)



Langevin diffusions

• If µ is strictly log-concave, i.e.,

∃ κ > 0 : ∂2U(x) ≥ κ · Id ∀ x ∈ Rd

then Wasserstein contractivity holds:

W( law(Xt) , µ ) ≤ e−κtW( law(X0) , µ ),

where W(ν, µ) = infX∼µ,Y∼ν E[d(X, Y )] is L1 Wasserstein distance.

• Bound is independent of dimension, sharp !

• Under additional conditions, a corresponding result holds for the Euler
discretization.

• Extension to non log-concave measures: A.E., Reflection coupling and
Wasserstein contractivity without convexity, C.R.Acad.Sci.Paris 2011.

• These results suggest that comparable bounds might hold for MALA, or
even for Ornstein-Uhlenbeck proposals.



Metropolis-Hastings with Ornstein-Uhlenbeck proposals

• Hairer, Stuart, Vollmer 2011: Dimension independent contractivity in
modified Wasserstein distance

Metropolis-adjusted Langevin algorithm

• No rigorous complexity estimates so far



3 Quantitative Wasserstein bounds for
preconditioned MALA

A.E., Metropolis-Hastings algorithms for perturbations of Gaussian measures
in high dimensions: Contraction properties and error bounds in the log-concave
case, Preprint 2012.

Preconditioned MALA: Coupling of proposal distributions ph(x, dy), x ∈ Rd:

Yh(x) =
(

1− h

2

)
x− h

2
∇V (x) +

√
h− h2

4
· Z, Z ∼ γd, h > 0,

Ã Coupling of MALA transition kernels qh(x, dy), x ∈ Rd:

Wh(x) =

{
Yh(x) if U ≤ αh(x, Yh(x))
x if U > αh(x, Yh(x))

, U ∼ Unif(0, 1) independent of Z,



We fix a radius R ∈ (0,∞) and a norm ‖ · ‖− = 〈·, ·〉1/2 on Rd such that

‖x‖− ≤ |x| for any x ∈ Rd,

and we set

dR(x, x̃) := min(‖x− x̃‖−, 2R), B−
R := {x ∈ Rd : ‖x‖− < R}.

EXAMPLE: Transition Path Sampling

• |x|Rd is finite dimensional projection of Cameron-Martin norm/ H1 norm

|x|CM =

(∫ T

0

∣∣∣∣
dx

dt

∣∣∣∣
2

dt

)1/2

.

• ‖x‖− is finite dimensional approximation of Hα norm, α ∈ (0, 1/2).



ASSUMPTIONS:
(A1) There exist finite constants Cn, pn ∈ [0,∞) such that

|(∂n
ξ1,...,ξn

V )(x)| ≤ Cn max(1, ‖x‖−)pn‖ξ1‖− · · · ‖ξn‖−
for any x ∈ Rd, ξ1, . . . , ξn ∈ Rd, and n = 2, 3, 4.

(A2) There exists a constant K > 0 such that

〈η,∇2U(x) · η〉 ≥ K 〈η, η〉 ∀x ∈ B−
R , η ∈ Rd.

THEOREM (AE 2012). If (A1) and (A2) are satisfied then

E [‖Wh(x)−Wh(x̃)‖−] ≤
(

1− 1
2
Kh + C(R)h3/2

)
‖x−x̃‖− ∀ x, x̃ ∈ B−

R , h ∈ (0, 1)

with an explicit constant C(R) ∈ (0,∞) that does depend on the dimension
only through the moments

mk :=
∫

Rd

‖x‖k
− γd(dx) , k ∈ N.



REMARKS.

• h ↓ 0: approaches optimal contraction rate 1−Kh/2

• h−1 = O(Rq): contraction rate ≥ 1−Kh/4

• For Ornstein-Uhlenbeck proposals, the contraction term is O(h) instead
of O(h3/2)

• The corresponding bounds for standard MALA and RWM are dimension
dependent.



CONTRACTIVITY IN WASSERSTEIN DISTANCE

qh = transition kernel of preconditioned MALA

COROLLARY. If (A1) and (A2) are satisfied, then there exist explicit con-
stants C,D, q ∈ (0,∞) that do not depend on the dimension such that

W2R(πqn
h , νqn

h) ≤ (1− K

4
h)nW2R(π, ν) + DR exp(−KR2/8) nh

for any n ∈ N, h, R ∈ (0,∞) such that h−1 ≥ C(1 + R)q, and for any initial
distributions π, ν with support in B−

R .



Approximation of quasi-stationary distribution

µR(A) := µ(A|B−
R ).

COROLLARY. If (A1) and (A2) are satisfied, then there exist explicit con-
stants C, D̄, q ∈ (0,∞) that do not depend on the dimension such that

W2R(νqn
h , µR) ≤ 58 R(1− K

4
h)n + D̄R exp(−KR2/33)nh

whenever h−1 ≥ C(1+R)q and the initial distribution ν has support in B−
R/2.

REMARK.

• To attain a given error bound ε for the Wasserstein distance, h has to
be chosen sufficiently small (roughly h−1 ∼ O((log ε−1)q/2), but in a
dimension-independent way!

• There is a best possible error bound ε > 0 that can be attained, since
after a long time the chain will exit from the metastable state B−

R .



KEY INGREDIENTS IN PROOF:

Dimension independent bounds that quantify

• Rejection probabilities

• Dependence of rejection event on the current state

THEOREM. Suppose that Assumption (A1) is satisfied. Then there exist
polynomials P : R2 → R+ of degree max(p3 + 3, 2p2 + 2) and Q : R2 → R+ of
degree max(p4 + 2, p3 + p2 + 2, 3p2 + 1) such that

E[1− αh(x, Yh(x))] ≤ E[Gh(x, Yh(x))+] ≤ P(‖x‖−, ‖∇U(x)‖−) · h3/2

E
[‖∇xGh(x, Yh(x))‖+

] ≤ Q(‖x‖−, ‖∇U(x)‖−) · h3/2

for all x ∈ Rd, h ∈ (0, 2), where

‖η‖+ := sup{ξ · η : ‖ξ‖− ≤ 1}.



REMARK.

• The polynomials P and Q are explicit. They depend only on the values
C2, C3, C4, p2, p3, p4 and on the moments

mk = E[‖Z‖k
−]

but they do not depend on the dimension d.

• For MALA with explicit Euler proposals, corresponding estimates hold
with mk replaced by m̃k = E[|Z|k]. Note, however, that m̃k → ∞ as
d →∞.



4 Sequential MCMC, SMC Sampler

A.E., C. Marinelli, Quantitative approximations of evolving probability mea-
sures and sequential MCMC methods, PTRF 2012, Online First.

µt(dx) = Z−1
t exp (−Ut(x)) γ(dx), t ∈ [0, t0], µt0 = µ

probability measures on state space S.

Ht(x) := − ∂

∂t
log

dµt

dγ
(x) =

∂

∂t
Ut(x)−

〈
∂

∂t
Ut, µt

〉
.

µt(dx) ∝ exp
(
−

∫ t

0

Hs(x) ds

)
γ(dx)

Let Lt, t ≥ 0, be generators of a time-inhomogeneous Markov process on S
such that Lt satisfies the detailed balance condition w.r.t. µt. In particular,

L∗t µt = 0 (infinitesimal stationarity).

Fix constants λt ≥ 0.



SMC SAMPLER IN CONTINUOUS TIME

XN
t = (XN

t,1, . . . , X
N
t,N ) Markov process on SN with generator

LN
t ϕ(x1, . . . , xN ) = λt

N∑

i=1

L(i)
t ϕ(x1, . . . , xN )

+
1
N

N∑

i,j=1

(Ht(xi)−Ht(xj))
+ · (ϕ(xi→j)− ϕ(x)

)
,

L(i)
t action of Lt on i th component.

• Independent Markov chain moves with generator λt · Lt

• XN
t,i replaced by XN

t,j with rate 1
N (Ht(XN

t,i)−Ht(XN
t,j))

+



ESTIMATORS FOR µt: XN
0,i i.i.d. ∼ µ0

ηN
t :=

1
N

N∑

i=1

δXN
t,i

, νN
t := exp

(
−

∫ t

0

〈Hs, η
N
s 〉 ds

)
ηN

t .

PERFORMANCE IN HIGH DIMENSIONS ?

Possible test cases:

1. Product models

2. Models with dimension-independent global mixing properties

3. Disconnected unions of such models

4. Models with a disconnectivity tree structure

5. Models with a phase transition

6. Disordered systems



5 Quantitative error bounds and
dimension dependence

εN,p
t := sup

{
E

[∣∣〈f, νN
s 〉 − 〈f, µs〉

∣∣2
]

: s ∈ [0, t], ‖f‖Lp(µs) ≤ 1
}

, p ∈ [2,∞].

GOAL:

• Bounds for εN,p
t for a fixed number N of replicas.

• Explicit dependence on the dimension for test models.



ERROR BOUNDS AND DIMENSION DEPENDENCE UNDER
GLOBAL MIXING CONDITIONS

Fix t0 ∈ (0,∞) (length of time interval), p ∈ (6,∞), q ∈ (p,∞), and let

ω = sup
t∈[0,t0]

osc(Ht) ; Kt =
∫ t

0

‖Hs‖Lq(µs) ds

Ct = sup
〈f,µt〉=0

∫
f2 dµt

Et(f, f)
Poincaré constant (inverse spectral gap)

γt = sup
〈f2,µt〉=1

∫
f2 log |f | dµt

Et(f, f)
Log-Sobolev constant

where
Et(f, f) = −(f,Ltf)L2(µt)

is the Dirichlet form of Lt on L2(µt).



THEOREM (A.E., C. Marinelli 2012) Suppose that

N ≥ 40 ·max (Kt0 , 1) , and

λt ≥ ω ·max
(

p

4
·
(

1 + t · p + 3
4

)
· Ct , a(p, q) · γt

)
∀t ∈ [0, t0].

Then

εN,p
t ≤ 2 + 8 Kt

N
·
(

1 +
16 Kt

N

)
∀ t ∈ [0, t0].

Here a(p, q) is an explicit constant depending only on p and q.



EXAMPLE 1: Product measures

S =
d∏

k=1

Sk , µt =
d⊗

k=1

µ
(k)
t

⇒ Ht(x) = − d

dt
log µt(x) =

d∑

k=1

H
(k)
t (xk)

⇒ ω = sup
t,x,y

|Ht(x)−Ht(y)| ≤
d∑

k=1

ω(k) .

Lt(x, y) =
d∑

k=1

L(k)
t (x, y) product dynamics

⇒ Ct = max
k

C
(k)
t , γt = max

k
γ

(k)
t .



EXAMPLE 1: Product measures

S =
d∏

k=1

Sk , µt =
d⊗

k=1

µ
(k)
t

Assumption:

ω(k) ≤ 1 ∀ k, C
(k)
t , γ

(k)
t independent of k.

⇒ ω = O(d), Ct = O(1), γt = O(1)
⇒ N = O(d1/2) and λs = O(d) are sufficient for a given precision
⇒ total effort of order O(d3) (resp. O(d2.5)) is sufficient



EXAMPLE 1: Product measures
Bound independent of d holds provided there are

• O(d) resampling steps

• O(d) MCMC steps between each resampling step

• O(d1/2) particles

EXAMPLE 2: Log Sobolev and spectral gap independent of the dimension
Ã similar bounds as in Example 1.

REMARK. [Beskos, Crisan, Jasra, Whiteley 2011]

• In the product case, O(1) resampling steps are sufficient.

• This holds true because strong mixing properties make up even for
huge errors and degeneracy due to resampling.

• One can not expect equally strong results in more general scenarios.



ERROR BOUNDS AND DIMENSION DEPENDENCE
WITHOUT GLOBAL MIXING



NON-ASYMPTOTIC BOUNDS FOR DISCONNECTED UNIONS

S =
⋃

Si disjoint decomposition of state space. Suppose that

Lt(x, y) = 0 ∀ t ≥ 0, x ∈ Si, y ∈ Sj (i 6= j), and let
µi

t = µt( · |Si), ‖f‖∼Lp(µt)
:= max

i
‖f‖Lp(µi

t)
,

ε̃N,p
t := sup

{
E

[∣∣〈f, νN
s 〉 − 〈f, µs〉

∣∣2
]

: s ∈ [0, t], ‖f‖∼Lp(µs) ≤ 1
}

.

THEOREM. Suppose conditions as above hold with Ct, γt replaced by

C̃t = max
i

Ci
t , γ̃t = max

i
γi

t .

Then

ε̃N,p
t ≤ 2 + 8 Kt M̃2

t

N
·
(

1 +
16 K̃t M̃2

t

N

)

where
M̃t = max

i
sup

0≤r≤s≤t

µs(Si)
µr(Si)

.



EXAMPLE 3: Disjoint union of i.i.d. product models

Dimension dependence as above holds in particular if

lim inf
d→∞

min
i

µ0(Si) > 0.

EXAMPLE 4: Disconnectivity tree

see talk of Nikolaus Schweizer


