Quantitative bounds for Markov chain based Monte Carlo methods in high dimensions

Andreas Eberle

September 18, 2012

- Metropolis-Hastings algorithms in \mathbb{R}^{d}, d large
- Sequential Monte Carlo Samplers in high dimensions
- Coupling approach $u \rightsquigarrow$ Convergence in Wasserstein distance
- Functional inequalities $\rightsquigarrow>$ Convergence in L^{p} sense

1 INTRODUCTION

$$
\begin{aligned}
& U(x)=\frac{1}{2}|x|^{2}+V(x), \quad x \in \mathbb{R}^{d}, \quad V \in C^{4}\left(\mathbb{R}^{d}\right), \\
& \mu(d x)=\frac{1}{Z} e^{-U(x)} \lambda^{d}(d x)=\frac{(2 \pi)^{d / 2}}{Z} e^{-V(x)} \gamma^{d}(d x)
\end{aligned}
$$

$\gamma_{d}=N\left(0, I_{d}\right)$ standard normal distribution in \mathbb{R}^{d}.

AIM :

- Approximate Sampling and MC integral estimation w.r.t. μ.
- Rigorous error and complexity estimates, $d \rightarrow \infty$.

A PROTOTYPICAL EXAMPLE: TRANSITION PATH SAMPLING

$$
d Y_{t}=d B_{t}-\nabla H\left(Y_{t}\right) d t, \quad Y_{0}=y_{0} \in \mathbb{R}^{n}
$$

$\mu=$ conditional distribution on $C\left([0, T], \mathbb{R}^{n}\right)$ of $\left(Y_{t}\right)_{t \in[0, T]}$ given $Y_{T}=y_{T}$.
By Girsanov's Theorem:

$$
\mu(d y)=Z^{-1} \exp (-V(y)) \gamma(d y)
$$

$\gamma=$ distribution of Brownian bridge from y_{0} to y_{T},

$$
V(y)=\int_{0}^{T}\left(\frac{1}{2} \Delta H\left(y_{t}\right)+\left|\nabla H\left(y_{t}\right)\right|^{2}\right) d t
$$

Finite dimensional approx. via Karhunen-Loève or Wiener-Lévy expansion:

$$
\gamma(d y) \rightarrow \gamma^{d}(d x), \quad V(y) \rightarrow V_{d}(x) \quad \rightsquigarrow \text { setup above }
$$

POSSIBLE APPROACHES:

- Metropolis-Hastings, Gibbs Sampler
- Parallel Tempering, Equi-Energy Sampler
- Sequential Monte Carlo Sampler

2 Metropolis-Hastings methods with Gaussian proposals

MARKOV CHAIN MONTE CARLO APPROACH

- Simulate an ergodic Markov process $\left(X_{n}\right)$ with stationary distribution μ.
- n large: $P \circ X_{n}^{-1} \approx \mu$
- Continuous time: (over-damped) Langevin diffusion

$$
d X_{t}=-\frac{1}{2} X_{t} d t-\frac{1}{2} \nabla V\left(X_{t}\right) d t+d B_{t}
$$

- Discrete time: Metropolis-Hastings Algorithms

METROPOLIS-HASTINGS ALGORITHM

(Metropolis et al 1953, Hastings 1970)

$$
\begin{gathered}
\mu(x):=Z^{-1} \exp (-U(x)) \quad \text { density of } \mu \text { w.r.t. } \lambda^{d}, \\
p(x, y) \text { stochastic kernel on } \mathbb{R}^{d} \quad \text { proposal density, }>0,
\end{gathered}
$$

ALGORITHM

1. Choose an initial state X_{0}.
2. For $n:=0,1,2, \ldots$ do

- Sample $Y_{n} \sim p\left(X_{n}, y\right) d y, U_{n} \sim \operatorname{Unif}(0,1)$ independently.
- If $U_{n}<\alpha\left(X_{n}, Y_{n}\right)$ then accept the proposal and set $X_{n+1}:=Y_{n}$; else reject the proposal and set $X_{n+1}:=X_{n}$.

METROPOLIS-HASTINGS ACCEPTANCE PROBABILITY

$$
\begin{gathered}
\alpha(x, y)=\min \left(\frac{\mu(y) p(y, x)}{\mu(x) p(x, y)}, 1\right)=\exp \left(-G(x, y)^{+}\right), \quad x, y \in \mathbb{R}^{d} \\
G(x, y)=\log \frac{\mu(x) p(x, y)}{\mu(y) p(y, x)}=U(y)-U(x)+\log \frac{p(x, y)}{p(y, x)}=V(y)-V(x)+\log \frac{\gamma^{d}(x) p(x, y)}{\gamma^{d}(y) p(y, x)}
\end{gathered}
$$

- $\left(X_{n}\right)$ is a time-homogeneous Markov chain with transition kernel

$$
q(x, d y)=\alpha(x, y) p(x, y) d y+q(x) \delta_{x}(d y), \quad q(x)=1-q\left(x, \mathbb{R}^{d} \backslash\{x\}\right)
$$

- Detailed Balance:

$$
\mu(d x) q(x, d y)=\mu(d y) q(y, d x)
$$

PROPOSAL DISTRIBUTIONS FOR METROPOLIS-HASTINGS

$$
\begin{gathered}
x \mapsto Y_{h}(x) \text { proposed move, } \quad h>0 \text { step size, } \\
p_{h}(x, d y)=P\left[Y_{h}(x) \in d y\right] \text { proposal distribution, } \\
\alpha_{h}(x, y)=\exp \left(-G_{h}(x, y)^{+}\right) \text {acceptance probability. }
\end{gathered}
$$

- Random Walk Proposals (\rightsquigarrow Random Walk Metropolis)

$$
\begin{aligned}
Y_{h}(x) & =x+\sqrt{h} \cdot Z, \quad Z \sim \gamma^{d}, \\
p_{h}(x, d y) & =N\left(x, h \cdot I_{d}\right) \\
G_{h}(x, y) & =U(y)-U(x) .
\end{aligned}
$$

- Ornstein-Uhlenbeck Proposals (\rightsquigarrow Preconditioned $\mathbb{R W M}$)

$$
\begin{aligned}
Y_{h}(x) & =\left(1-\frac{h}{2}\right) x+\sqrt{h-\frac{h^{2}}{4}} \cdot Z, \quad Z \sim \gamma^{d}, \\
p_{h}(x, d y) & =N\left((1-h / 2) x,\left(h-h^{2} / 4\right) \cdot I_{d}\right), \quad \text { det. balance w.r.t. } \gamma^{d} \\
G_{h}(x, y) & =V(y)-V(x)
\end{aligned}
$$

- Euler Proposals (\rightsquigarrow Metropolis Adjusted Langevin Algorithm)

$$
Y_{h}(x)=\left(1-\frac{h}{2}\right) x-\frac{h}{2} \nabla V(x)+\sqrt{h} \cdot Z, \quad Z \sim \gamma^{d} .
$$

(Euler step for Langevin equation $d X_{t}=-\frac{1}{2} X_{t} d t-\frac{1}{2} \nabla V\left(X_{t}\right) d t+d B_{t}$)

$$
\begin{aligned}
p_{h}(x, d y)= & N\left(\left(1-\frac{h}{2}\right) x-\frac{h}{2} \nabla V(x), h \cdot I_{d}\right) \\
G_{h}(x, y)= & V(y)-V(x)-(y-x) \cdot(\nabla V(y)+\nabla V(x)) / 2 \\
& +h\left(|\nabla U(y)|^{2}-|\nabla U(x)|^{2}\right) / 4
\end{aligned}
$$

REMARK. Even for $V \equiv 0, \gamma^{d}$ is not a stationary distribution for $p_{h}^{\text {Euler }}$. Stationarity only holds asymptotically as $h \rightarrow 0$. This causes substantial problems in high dimensions.

- Semi-implicit Euler Proposals (\rightsquigarrow Preconditioned MALA)
[Beskos,Roberts, Stuart, Voss 2008]

$$
\begin{aligned}
Y_{h}(x)= & \left(1-\frac{h}{2}\right) x-\frac{h}{2} \nabla V(x)+\sqrt{h-\frac{h^{2}}{4}} \cdot Z, \quad Z \sim \gamma^{d}, \\
p_{h}(x, d y)= & N\left(\left(1-\frac{h}{2}\right) x-\frac{h}{2} \nabla V(x),\left(h-\frac{h^{2}}{4}\right) \cdot I_{d}\right) \quad\left(=p_{h}^{O U} \text { if } V \equiv 0\right) \\
G_{h}(x, y)= & V(y)-V(x)-(y-x) \cdot(\nabla V(y)+\nabla V(x)) / 2 \\
& +\frac{h}{8-2 h}\left((y+x) \cdot(\nabla V(y)-\nabla V(x))+|\nabla V(y)|^{2}-|\nabla V(x)|^{2}\right) .
\end{aligned}
$$

KNOWN RESULTS FOR METROPOLIS-HASTINGS IN HIGH DIMENSIONS

- Scaling of acceptance probabilities and mean square jumps as $d \rightarrow \infty$
- Diffusion limits as $d \rightarrow \infty$
- Ergodicity, Geometric Ergodicity
- Quantitative bounds for mixing times, rigorous complexity estimates

Optimal Scaling and diffusion limits as $d \rightarrow \infty$

- Roberts, Gelman, Gilks 1997: Diffusion limit for RWM with product target, $h=O\left(d^{-1}\right)$
- Roberts, Rosenthal 1998: Diffusion limit for MALA with product target, $h=O\left(d^{-1 / 3}\right)$
- Beskos, Roberts, Stuart, Voss 2008: Preconditioned MALA applied to Transition Path Sampling, Scaling $h=O(1)$
- Mattingly, Pillai, Stuart 2010: Diffusion limit for RWM with non-product target, $h=O\left(d^{-1}\right)$
- Pillai, Stuart, Thiéry 2011a: Diffusion limit for MALA with non-product target, $h=O\left(d^{-1 / 3}\right)$
- Pillai, Stuart, Thiéry 2011b: Preconditioned RWM, Scaling $h=O(1)$, Diffusion limit as $h \downarrow 0$ independent of the dimension

Geometric ergodicity for MALA in \mathbb{R}^{d} (d fixed)

- Roberts, Tweedie 1996: Geometric convergence holds if ∇U is globally Lipschitz but fails in general
- Bou Rabee, van den Eijnden 2009: Strong accuracy for truncated MALA
- Bou Rabee, Hairer, van den Eijnden 2010: Convergence to equilibrium for MALA at exponential rate up to term exponentially small in time step size

BOUNDS FOR MIXING TIME, COMPLEXITY

Metropolis with ball walk proposals

- Dyer, Frieze, Kannan 1991: $\mu=\operatorname{Unif}(K), K \subset \mathbb{R}^{d}$ convex
\Rightarrow Total variation mixing time is polynomial in d and $\operatorname{diam}(K)$
- Applegate, Kannan 1991, ... , Lovasz, Vempala 2006: $U: K \rightarrow \mathbb{R}$ concave, $K \subset \mathbb{R}^{d}$ convex
\Rightarrow Total variation mixing time is polynomial in d and $\operatorname{diam}(K)$

Langevin diffusions

- If μ is strictly log-concave, i.e.,

$$
\exists \kappa>0: \quad \partial^{2} U(x) \geq \kappa \cdot I_{d} \quad \forall x \in \mathbb{R}^{d}
$$

then Wasserstein contractivity holds:

$$
\mathcal{W}\left(\operatorname{law}\left(X_{t}\right), \mu\right) \leq e^{-\kappa t} \mathcal{W}\left(\operatorname{law}\left(X_{0}\right), \mu\right)
$$

where $\mathcal{W}(\nu, \mu)=\inf _{X \sim \mu, Y \sim \nu} \mathbb{E}[d(X, Y)]$ is L^{1} Wasserstein distance.

- Bound is independent of dimension, sharp !
- Under additional conditions, a corresponding result holds for the Euler discretization.
- Extension to non log-concave measures: A.E., Reflection coupling and Wasserstein contractivity without convexity, C.R.Acad.Sci.Paris 2011.
- These results suggest that comparable bounds might hold for MALA, or even for Ornstein-Uhlenbeck proposals.

Metropolis-Hastings with Ornstein-Uhlenbeck proposals

- Hairer, Stuart, Vollmer 2011: Dimension independent contractivity in modified Wasserstein distance

Metropolis-adjusted Langevin algorithm

- No rigorous complexity estimates so far

3 Quantitative Wasserstein bounds for preconditioned MALA

A.E., Metropolis-Hastings algorithms for perturbations of Gaussian measures in high dimensions: Contraction properties and error bounds in the log-concave case, Preprint 2012.

Preconditioned MALA: Coupling of proposal distributions $p_{h}(x, d y), x \in \mathbb{R}^{d}$:

$$
Y_{h}(x)=\left(1-\frac{h}{2}\right) x-\frac{h}{2} \nabla V(x)+\sqrt{h-\frac{h^{2}}{4}} \cdot Z, \quad Z \sim \gamma^{d}, h>0,
$$

\rightsquigarrow Coupling of MALA transition kernels $q_{h}(x, d y), x \in \mathbb{R}^{d}$:

$$
W_{h}(x)=\left\{\begin{array}{ll}
Y_{h}(x) & \text { if } U \leq \alpha_{h}\left(x, Y_{h}(x)\right) \\
x & \text { if } U>\alpha_{h}\left(x, Y_{h}(x)\right)
\end{array}, \quad U \sim U n i f(0,1) \text { independent of } Z,\right.
$$

We fix a radius $R \in(0, \infty)$ and a norm $\|\cdot\|_{-}=\langle\cdot, \cdot\rangle^{1 / 2}$ on \mathbb{R}^{d} such that

$$
\|x\|_{-} \leq|x| \quad \text { for any } x \in \mathbb{R}^{d},
$$

and we set

$$
d_{R}(x, \tilde{x}):=\min \left(\|x-\tilde{x}\|_{-}, 2 R\right), \quad B_{R}^{-}:=\left\{x \in \mathbb{R}^{d}:\|x\|_{-}<R\right\} .
$$

EXAMPLE: Transition Path Sampling

- $|x|_{\mathbb{R}^{d}}$ is finite dimensional projection of Cameron-Martin norm/ H^{1} norm

$$
|x|_{C M}=\left(\int_{0}^{T}\left|\frac{d x}{d t}\right|^{2} d t\right)^{1 / 2} .
$$

- $\|x\|_{-}$is finite dimensional approximation of H^{α} norm, $\alpha \in(0,1 / 2)$.

ASSUMPTIONS:

(A1) There exist finite constants $C_{n}, p_{n} \in[0, \infty)$ such that

$$
\left|\left(\partial_{\xi_{1}, \ldots, \xi_{n}}^{n} V\right)(x)\right| \leq C_{n} \max \left(1,\|x\|_{-}\right)^{p_{n}}\left\|\xi_{1}\right\|_{-} \cdots\left\|\xi_{n}\right\|_{-}
$$

for any $x \in \mathbb{R}^{d}, \xi_{1}, \ldots, \xi_{n} \in \mathbb{R}^{d}$, and $n=2,3,4$.
(A2) There exists a constant $K>0$ such that

$$
\left\langle\eta, \nabla^{2} U(x) \cdot \eta\right\rangle \geq K\langle\eta, \eta\rangle \quad \forall x \in B_{R}^{-}, \eta \in \mathbb{R}^{d} .
$$

THEOREM (AE 2012). If (A1) and (A2) are satisfied then
$E\left[\left\|W_{h}(x)-W_{h}(\tilde{x})\right\|_{-}\right] \leq\left(1-\frac{1}{2} K h+C(R) h^{3 / 2}\right)\|x-\tilde{x}\|_{-} \quad \forall x, \tilde{x} \in B_{R}^{-}, h \in(0,1)$
with an explicit constant $C(R) \in(0, \infty)$ that does depend on the dimension only through the moments

$$
m_{k}:=\int_{\mathbb{R}^{d}}\|x\|_{-}^{k} \gamma^{d}(d x), \quad k \in \mathbb{N}
$$

REMARKS.

- $h \downarrow 0$: approaches optimal contraction rate $1-K h / 2$
- $h^{-1}=O\left(R^{q}\right)$: contraction rate $\geq 1-K h / 4$
- For Ornstein-Uhlenbeck proposals, the contraction term is $O(h)$ instead of $O\left(h^{3 / 2}\right)$
- The corresponding bounds for standard MALA and RWM are dimension dependent.

CONTRACTIVITY IN WASSERSTEIN DISTANCE

$q_{h}=$ transition kernel of preconditioned MALA
COROLLARY. If (A1) and (A2) are satisfied, then there exist explicit constants $C, D, q \in(0, \infty)$ that do not depend on the dimension such that

$$
\mathcal{W}_{2 R}\left(\pi q_{h}^{n}, \nu q_{h}^{n}\right) \leq\left(1-\frac{K}{4} h\right)^{n} \mathcal{W}_{2 R}(\pi, \nu)+D R \exp \left(-K R^{2} / 8\right) n h
$$

for any $n \in \mathbb{N}, h, R \in(0, \infty)$ such that $h^{-1} \geq C(1+R)^{q}$, and for any initial distributions π, ν with support in B_{R}^{-}.

Approximation of quasi-stationary distribution

$\mu_{R}(A):=\mu\left(A \mid B_{R}^{-}\right)$.
COROLLARY. If (A1) and (A2) are satisfied, then there exist explicit constants $C, \bar{D}, q \in(0, \infty)$ that do not depend on the dimension such that

$$
\mathcal{W}_{2 R}\left(\nu q_{h}^{n}, \mu_{R}\right) \leq 58 R\left(1-\frac{K}{4} h\right)^{n}+\bar{D} R \exp \left(-K R^{2} / 33\right) n h
$$

whenever $h^{-1} \geq C(1+R)^{q}$ and the initial distribution ν has support in $B_{R / 2}^{-}$.

REMARK.

- To attain a given error bound ε for the Wasserstein distance, h has to be chosen sufficiently small (roughly $h^{-1} \sim O\left(\left(\log \varepsilon^{-1}\right)^{q / 2}\right)$, but in a dimension-independent way!
- There is a best possible error bound $\varepsilon>0$ that can be attained, since after a long time the chain will exit from the metastable state B_{R}^{-}.

KEY INGREDIENTS IN PROOF:

Dimension independent bounds that quantify

- Rejection probabilities
- Dependence of rejection event on the current state

THEOREM. Suppose that Assumption (A1) is satisfied. Then there exist polynomials $\mathcal{P}: \mathbb{R}^{2} \rightarrow \mathbb{R}_{+}$of degree $\max \left(p_{3}+3,2 p_{2}+2\right)$ and $\mathcal{Q}: \mathbb{R}^{2} \rightarrow \mathbb{R}_{+}$of degree $\max \left(p_{4}+2, p_{3}+p_{2}+2,3 p_{2}+1\right)$ such that

$$
\begin{gathered}
E\left[1-\alpha_{h}\left(x, Y_{h}(x)\right)\right] \leq E\left[G_{h}\left(x, Y_{h}(x)\right)^{+}\right] \leq \mathcal{P}\left(\|x\|_{-},\|\nabla U(x)\|_{-}\right) \cdot h^{3 / 2} \\
E\left[\left\|\nabla_{x} G_{h}\left(x, Y_{h}(x)\right)\right\|_{+}\right] \leq \mathcal{Q}\left(\|x\|_{-},\|\nabla U(x)\|_{-}\right) \cdot h^{3 / 2}
\end{gathered}
$$

for all $x \in \mathbb{R}^{d}, h \in(0,2)$, where

$$
\|\eta\|_{+}:=\sup \left\{\xi \cdot \eta:\|\xi\|_{-} \leq 1\right\} .
$$

REMARK.

- The polynomials \mathcal{P} and \mathcal{Q} are explicit. They depend only on the values $C_{2}, C_{3}, C_{4}, p_{2}, p_{3}, p_{4}$ and on the moments

$$
m_{k}=E\left[\|Z\|_{-}^{k}\right]
$$

but they do not depend on the dimension d.

- For MALA with explicit Euler proposals, corresponding estimates hold with m_{k} replaced by $\tilde{m}_{k}=E\left[|Z|^{k}\right]$. Note, however, that $\tilde{m}_{k} \rightarrow \infty$ as $d \rightarrow \infty$.

4 Sequential MCMC, SMC Sampler

A.E., C. Marinelli, Quantitative approximations of evolving probability measures and sequential MCMC methods, PTRF 2012, Online First.

$$
\mu_{t}(d x)=Z_{t}^{-1} \exp \left(-U_{t}(x)\right) \gamma(d x), \quad t \in\left[0, t_{0}\right], \quad \mu_{t_{0}}=\mu
$$

probability measures on state space S.

$$
\begin{gathered}
H_{t}(x):=-\frac{\partial}{\partial t} \log \frac{d \mu_{t}}{d \gamma}(x)=\frac{\partial}{\partial t} U_{t}(x)-\left\langle\frac{\partial}{\partial t} U_{t}, \mu_{t}\right\rangle . \\
\mu_{t}(d x) \propto \exp \left(-\int_{0}^{t} H_{s}(x) d s\right) \gamma(d x)
\end{gathered}
$$

Let $\mathcal{L}_{t}, t \geq 0$, be generators of a time-inhomogeneous Markov process on S such that \mathcal{L}_{t} satisfies the detailed balance condition w.r.t. μ_{t}. In particular,

$$
\mathcal{L}_{t}^{*} \mu_{t}=0 \quad \text { (infinitesimal stationarity). }
$$

Fix constants $\lambda_{t} \geq 0$.

SMC SAMPLER IN CONTINUOUS TIME

$X_{t}^{N}=\left(X_{t, 1}^{N}, \ldots, X_{t, N}^{N}\right)$ Markov process on S^{N} with generator

$$
\begin{aligned}
\mathcal{L}_{t}^{N} \varphi\left(x_{1}, \ldots, x_{N}\right)= & \lambda_{t} \sum_{i=1}^{N} \mathcal{L}_{t}^{(i)} \varphi\left(x_{1}, \ldots, x_{N}\right) \\
& +\frac{1}{N} \sum_{i, j=1}^{N}\left(H_{t}\left(x_{i}\right)-H_{t}\left(x_{j}\right)\right)^{+} \cdot\left(\varphi\left(x^{i \rightarrow j}\right)-\varphi(x)\right)
\end{aligned}
$$

$\mathcal{L}_{t}^{(i)}$ action of \mathcal{L}_{t} on i th component.

- Independent Markov chain moves with generator $\lambda_{t} \cdot \mathcal{L}_{t}$
- $X_{t, i}^{N}$ replaced by $X_{t, j}^{N}$ with rate $\frac{1}{N}\left(H_{t}\left(X_{t, i}^{N}\right)-H_{t}\left(X_{t, j}^{N}\right)\right)^{+}$

ESTIMATORS FOR $\mu_{t}: \quad X_{0, i}^{N}$ i.i.d. $\sim \mu_{0}$

$$
\eta_{t}^{N}:=\frac{1}{N} \sum_{i=1}^{N} \delta_{X_{t, i}^{N}}, \quad \nu_{t}^{N}:=\exp \left(-\int_{0}^{t}\left\langle H_{s}, \eta_{s}^{N}\right\rangle d s\right) \eta_{t}^{N} .
$$

PERFORMANCE IN HIGH DIMENSIONS?

Possible test cases:

1. Product models
2. Models with dimension-independent global mixing properties
3. Disconnected unions of such models
4. Models with a disconnectivity tree structure
5. Models with a phase transition
6. Disordered systems

5 Quantitative error bounds and dimension dependence

$\varepsilon_{t}^{N, p}:=\sup \left\{\mathbb{E}\left[\left|\left\langle f, \nu_{s}^{N}\right\rangle-\left\langle f, \mu_{s}\right\rangle\right|^{2}\right]: s \in[0, t],\|f\|_{L^{p}\left(\mu_{s}\right)} \leq 1\right\}, p \in[2, \infty]$.

GOAL:

- Bounds for $\varepsilon_{t}^{N, p}$ for a fixed number N of replicas.
- Explicit dependence on the dimension for test models.

ERROR BOUNDS AND DIMENSION DEPENDENCE UNDER GLOBAL MIXING CONDITIONS

Fix $t_{0} \in(0, \infty)$ (length of time interval), $p \in(6, \infty), q \in(p, \infty)$, and let

$$
\begin{aligned}
\omega & =\sup _{t \in\left[0, t_{0}\right]} \operatorname{osc}\left(H_{t}\right) ; \quad K_{t}=\int_{0}^{t}\left\|H_{s}\right\|_{L^{q}\left(\mu_{s}\right)} d s \\
C_{t} & =\sup _{\left\langle f, \mu_{t}\right\rangle=0} \frac{\int f^{2} d \mu_{t}}{\mathcal{E}_{t}(f, f)} \quad \text { Poincaré constant (inverse spectral gap) } \\
\gamma_{t} & =\sup _{\left\langle f^{2}, \mu_{t}\right\rangle=1} \frac{\int f^{2} \log |f| d \mu_{t}}{\mathcal{E}_{t}(f, f)} \quad \text { Log-Sobolev constant }
\end{aligned}
$$

where

$$
\mathcal{E}_{t}(f, f)=-\left(f, \mathcal{L}_{t} f\right)_{L^{2}\left(\mu_{t}\right)}
$$

is the Dirichlet form of \mathcal{L}_{t} on $L^{2}\left(\mu_{t}\right)$.

THEOREM (A.E., C. Marinelli 2012) Suppose that

$$
\begin{aligned}
& N \geq 40 \cdot \max \left(K_{t_{0}}, 1\right), \quad \text { and } \\
& \lambda_{t} \geq \omega \cdot \max \left(\frac{p}{4} \cdot\left(1+t \cdot \frac{p+3}{4}\right) \cdot C_{t}, a(p, q) \cdot \gamma_{t}\right) \quad \forall t \in\left[0, t_{0}\right]
\end{aligned}
$$

Then

$$
\varepsilon_{t}^{N, p} \leq \frac{2+8 K_{t}}{N} \cdot\left(1+\frac{16 K_{t}}{N}\right) \quad \forall t \in\left[0, t_{0}\right]
$$

Here $a(p, q)$ is an explicit constant depending only on p and q.

EXAMPLE 1: Product measures

$$
\begin{gathered}
S=\prod_{k=1}^{d} S_{k}, \quad \mu_{t}=\bigotimes_{k=1}^{d} \mu_{t}^{(k)} \\
\Rightarrow \quad H_{t}(x)=-\frac{d}{d t} \log \mu_{t}(x)=\sum_{k=1}^{d} H_{t}^{(k)}\left(x_{k}\right) \\
\Rightarrow \quad \omega=\sup _{t, x, y}\left|H_{t}(x)-H_{t}(y)\right| \leq \sum_{k=1}^{d} \omega^{(k)} . \\
\mathcal{L}_{t}(x, y)=\sum_{k=1}^{d} \mathcal{L}_{t}^{(k)}(x, y) \quad \text { product dynamics } \\
\Rightarrow \quad C_{t}=\max _{k} C_{t}^{(k)}, \quad \gamma_{t}=\max _{k} \gamma_{t}^{(k)} .
\end{gathered}
$$

EXAMPLE 1: Product measures

$$
S=\prod_{k=1}^{d} S_{k}, \quad \mu_{t}=\bigotimes_{k=1}^{d} \mu_{t}^{(k)}
$$

Assumption:

$$
\begin{aligned}
& \quad \omega^{(k)} \leq 1 \forall k, \quad C_{t}^{(k)}, \gamma_{t}^{(k)} \text { independent of } k . \\
& \Rightarrow \quad \omega=O(d), C_{t}=O(1), \gamma_{t}=O(1) \\
& \Rightarrow \quad N=O\left(d^{1 / 2}\right) \text { and } \lambda_{s}=O(d) \text { are sufficient for a given precision } \\
& \Rightarrow \quad \text { total effort of order } O\left(d^{3}\right)\left(\text { resp. } O\left(d^{2.5}\right)\right) \text { is sufficient }
\end{aligned}
$$

EXAMPLE 1: Product measures

Bound independent of d holds provided there are

- $O(d)$ resampling steps
- $O(d)$ MCMC steps between each resampling step
- $O\left(d^{1 / 2}\right)$ particles

EXAMPLE 2: Log Sobolev and spectral gap independent of the dimension
\rightsquigarrow similar bounds as in Example 1.
REMARK. [Beskos, Crisan, Jasra, Whiteley 2011]

- In the product case, $O(1)$ resampling steps are sufficient.
- This holds true because strong mixing properties make up even for huge errors and degeneracy due to resampling.
- One can not expect equally strong results in more general scenarios.

ERROR BOUNDS AND DIMENSION DEPENDENCE WITHOUT GLOBAL MIXING

NON-ASYMPTOTIC BOUNDS FOR DISCONNECTED UNIONS

$S=\bigcup S_{i}$ disjoint decomposition of state space. Suppose that

$$
\begin{aligned}
\mathcal{L}_{t}(x, y) & =0 \forall t \geq 0, x \in S_{i}, y \in S_{j}(i \neq j), \text { and let } \\
\mu_{t}^{i} & =\mu_{t}\left(\cdot \mid S_{i}\right), \quad\|f\|_{L^{p}\left(\mu_{t}\right)}:=\max _{i}\|f\|_{L^{p}\left(\mu_{t}^{i}\right)} \\
\tilde{\varepsilon}_{t}^{N, p} & :=\sup \left\{\mathbb{E}\left[\left|\left\langle f, \nu_{s}^{N}\right\rangle-\left\langle f, \mu_{s}\right\rangle\right|^{2}\right]: s \in[0, t],\|f\|_{L^{p}\left(\mu_{s}\right)} \leq 1\right\} .
\end{aligned}
$$

THEOREM. Suppose conditions as above hold with C_{t}, γ_{t} replaced by

$$
\tilde{C}_{t}=\max _{i} C_{t}^{i}, \quad \tilde{\gamma}_{t}=\max _{i} \gamma_{t}^{i}
$$

Then

$$
\tilde{\varepsilon}_{t}^{N, p} \leq \frac{2+8 K_{t} \tilde{M}_{t}^{2}}{N} \cdot\left(1+\frac{16 \tilde{K}_{t} \tilde{M}_{t}^{2}}{N}\right)
$$

where

$$
\tilde{M}_{t}=\max _{i} \sup _{0 \leq r \leq s \leq t} \frac{\mu_{s}\left(S_{i}\right)}{\mu_{r}\left(S_{i}\right)}
$$

EXAMPLE 3: Disjoint union of i.i.d. product models
Dimension dependence as above holds in particular if

$$
\liminf _{d \rightarrow \infty} \min _{i} \mu_{0}\left(S_{i}\right)>0 .
$$

EXAMPLE 4: Disconnectivity tree
see talk of Nikolaus Schweizer

