On the convergence of Island particle models

C. Dubarry, P. Del Moral, E. Moulines

Institut Mines-Télécom, Télécom ParisTech/ Télécom SudParis, INRIA Bordeaux

June 14, 2012

In	۰	ro		5	۰	5	n

Outline

Introduction

2 Island bootstrap approximation

The double bootstrap algorithm

- Algorithm description
- Bias and variance of the double bootstrap
- Numerical application

4 Extensions

nfroduction				
	100	roc	шc	on

Outline

Introduction

2 Island bootstrap approximation

3 The double bootstrap algorithm

- Algorithm description
- Bias and variance of the double bootstrap
- Numerical application

4 Extensions

Introduction	Island bootstrap approximation	The double bootstrap algorithm 000000000	Extensions
Notations			

- $(\mathbb{X}_n,\mathcal{X}_n)_{n\geq 0}$ is a sequence of measurable sets.
- $\mathcal{B}_b(\mathbb{X}_n, \mathcal{X}_n)$ is the Banach space of all bounded and measurable functions on $(\mathbb{X}_n, \mathcal{X}_n)$.
- $(X_n)_{n\geq 0}$ is a non-homogenous Markov chain with initial distribution η_0 , and Markov kernels $(M_n)_{n\geq 1}$.
- Feynman-Kac flow

$$\eta_n(f_n) \stackrel{\text{def}}{=} \gamma_n(f_n) / \gamma_n(1) ,$$

$$\gamma_n(f_n) \stackrel{\text{def}}{=} \mathbb{E} \left[f_n(X_n) \prod_{0 \le p < n} g_p(X_p) \right] .$$

Feynman-Kac flow

- Define by $\mathcal{P}(\mathbb{X}_n, \mathcal{X}_n)$ the set of probabilities on $(\mathbb{X}_n, \mathcal{X}_n)$.
- The sequence of probabilities $(\eta_n)_{n\geq 0}$ satisfies the following recursion:

$$\eta_{n+1} = \Psi_n(\eta_n) M_{n+1} ,$$

where $\Psi_n: \mathcal{P}(\mathbb{X}_n, \mathcal{X}_n) \to \mathcal{P}(\mathbb{X}_n, \mathcal{X}_n)$ is defined by:

$$\Psi_n(\eta_n)(A_n) \stackrel{\text{def}}{=} \frac{1}{\eta_n(g_n)} \int_{A_n} g_n(x_n) \ \eta_n(\mathrm{d} x_n) \ , \quad A_n \in \mathcal{X}_n \ .$$

Outline

Introduction

2 Island bootstrap approximation

3 The double bootstrap algorithm

- Algorithm description
- Bias and variance of the double bootstrap
- Numerical application

4 Extensions

Introduction				
	Intro	ъdu	ctio	o n

Particle approximation

- Let N_1 be an integer. For any integer p we set $(\mathbf{X}_p, \mathcal{X}_p) \stackrel{\text{def}}{=} (\mathbb{X}_p^{N_1}, \mathcal{X}_p^{\otimes N_1}).$
- Define the Markov kernel M_{n+1} from (X_n, \mathcal{X}_n) to $(X_{n+1}, \mathcal{X}_{n+1})$ as the product measure

$$\boldsymbol{M}_{n+1}(\mathbf{x}_n, \mathbf{A}_{n+1}) \stackrel{\text{def}}{=} \prod_{1 \le i \le N_1} \Psi_n(\boldsymbol{m}(\mathbf{x}_n, \cdot)) \boldsymbol{M}_{n+1}(\boldsymbol{A}_{n+1}^i) ,$$

where $m(\mathbf{x}_n,\cdot)$ stands for the empirical measure of \mathbf{x}_n given for any $A_n\in\mathcal{X}_n$ by

$$m(\mathbf{x}_n, A_n) \stackrel{\text{def}}{=} \frac{1}{N_1} \sum_{i=1}^{N_1} \delta_{x_n^i}(A_n) .$$

• The particles are multinomially resampled with probabilities proportional to their potential $\{g_n(x_n^i)\}_{i=1}^{N_1}$; new particle positions are then sampled from the Markov kernel M_{n+1} .

Inf	ror	-	CT	10	5
			1		

Particle approximation

• Define a Markov chain $\{oldsymbol{X}_n\}_{n\geq 0}$ where for each $n\in\mathbb{N},$

$$oldsymbol{X}_n=(\xi_n^1,\ldots,\xi_n^{N_1})\in oldsymbol{X}_n$$

with initial distribution $\eta_0 \stackrel{\text{def}}{=} \eta_0^{\otimes N_1}$ and transition kernel M_{n+1} . • N_1 -particle approximations

$$\eta_n^{N_1}(f_n) \stackrel{\text{def}}{=} m(\boldsymbol{X}_n, f_n)$$

$$\gamma_n^{N_1}(f_n) \stackrel{\text{def}}{=} \eta_n^{N_1}(f_n) \prod_{0 \le p < n} \eta_p^{N_1}(g_p) .$$

Extensions

Unbiasedness of the particle approximation

Theorem (Del Moral, 199x)

For any $f_n \in \mathcal{B}_b(\mathbb{X}_n, \mathcal{X}_n)$, $\gamma_n^{N_1}(f_n)$ is an unbiased estimator of $\gamma_n(f_n)$:

$$\mathbb{E}\left[\gamma_n^{N_1}(f_n)\right] = \mathbb{E}\left[\eta_n^{N_1}(f_n) \prod_{0 \le p < n} \eta_p^{N_1}(g_p)\right]$$
$$= \mathbb{E}\left[f_n(X_n) \prod_{0 \le p < n} g_p(X_p)\right].$$

Extensions

The island Feynman-Kac model

• For $\mathbf{x}_n = (x_n^1, \cdots, x_n^{N_1}) \in \mathbb{X}_n^{N_1}$ define the sample averaged potential

$$\boldsymbol{g}_n(\mathbf{x}_n) \stackrel{\text{def}}{=} m(\mathbf{x}_n, g_n) = \frac{1}{N_1} \sum_{i=1}^{N_1} g_n(x_n^i) \; .$$

Feynman-Kac model

$$oldsymbol{\eta}_n(oldsymbol{f}_n) = oldsymbol{\gamma}_n(oldsymbol{f}_n) / oldsymbol{\gamma}_n(1)$$

 $oldsymbol{\gamma}_n(oldsymbol{f}_n) = \mathbb{E}\left[oldsymbol{f}_n(\mathbf{X}_n) \prod_{0 \leq p < n} oldsymbol{g}_p(\mathbf{X}_p)
ight],$

The island Feynman-Kac model

Since $\boldsymbol{g}_n(\boldsymbol{X}_p) = \eta_n^{N_1}(g_p)$, the unbiasedness property implies that for any \boldsymbol{f}_n of the form $\boldsymbol{f}_n(\mathbf{x}_n) = N_1^{-1} \sum_{i=1}^{N_1} f_n(x_n^i)$

$$\mathbb{E}\left[f_n(X_n) \prod_{0 \le p < n} g_p(X_p)\right] = \mathbb{E}\left[\boldsymbol{f}_n(\mathbf{X}_n) \prod_{0 \le p < n} \boldsymbol{g}_p(\mathbf{X}_p)\right],$$

or equivalently

$$oldsymbol{\gamma}_n(oldsymbol{f}_n) = \gamma_n(f_n) \quad ext{and} \quad oldsymbol{\eta}_n(oldsymbol{f}_n) = \eta_n(f_n) \; .$$

The island Feynman-Kac model

- From now on, a population of particles X_n is called an island.
- Idea: we may apply the interacting particle system approximation of the Feynman-Kac semigroups both within each island but also across island.
- To be more specific, we will now describe the so-called double bootstrap algorithm where the bootstrap algorithm is applied both within an island but also across the islands.
- Of course, many other options are available (more to come !)

Outline

Introduction

2 Island bootstrap approximation

The double bootstrap algorithm

- Algorithm description
- Bias and variance of the double bootstrap
- Numerical application

4 Extensions

Introduction	Island bootstrap approximation	The double bootstrap algorithm	Extensions
		• 000 00000	
Algorithm description			
Fevnman-Kac	at the island level		

- Define by $\mathcal{P}(\mathbf{X}_n, \boldsymbol{\mathcal{X}}_n)$ the set of probabilities measures on $(\mathbf{X}_n, \boldsymbol{\mathcal{X}}_n)$.
- ullet The sequence of measures $(oldsymbol{\eta}_n)_{n\geq 0}$ satisfies the following recursion

$$\boldsymbol{\eta}_{n+1} = \boldsymbol{\Psi}_n(\boldsymbol{\eta}_n) \boldsymbol{M}_{n+1} \; ,$$

where $\Psi_n:\mathcal{P}(X\!\!\!X_n, \mathcal{X}_n) o \mathcal{P}(X\!\!\!X_n, \mathcal{X}_n)$ is defined by

$$oldsymbol{\Psi}_n(oldsymbol{\eta}_n)(\mathbf{A}_n) \stackrel{ ext{def}}{=} rac{1}{oldsymbol{\eta}_n(oldsymbol{g}_n)} \int_{\mathbf{A}_n} oldsymbol{g}_n(\mathbf{x}) \,\,oldsymbol{\eta}_n(ext{d}\mathbf{x}) \,, \quad \mathbf{A}_n \in oldsymbol{\mathcal{X}}_n \,.$$

Introduction	Island bootstrap approximation	The double bootstrap algorithm ○●○○○○○○○	Extensions
Algorithm description			
The double bo	otstrap algorithm		

$$\left({{{f{\xi }}_{n}^{i}}} \right) \xrightarrow{{
m selection}} \left({{{{f{\hat \xi }}_{n}^{i}}}} \right) \xrightarrow{{
m mutation}} \left({{{f{\xi }}_{n+1}^{i}}}
ight)$$

- Let N_2 be the number of interacting islands.
- During the selection stage, we select randomly N_2 islands $(\widehat{\boldsymbol{\xi}}_n^i)_{1 \leq i \leq N_2}$ among the current islands $(\boldsymbol{\xi}_n^i)_{1 \leq i \leq N_2} \in \mathbf{X}_n^{N_2}$ with probability proportional to the empirical mean of the individuals in each island

$$\boldsymbol{g}_n(\boldsymbol{\xi}_n^i) = N_1^{-1} \sum_{j=1}^{N_1} g_n(\xi_n^{i,j}) , 1 \le i \le N_2 .$$

• During the mutation transition, selected islands $(\hat{\xi}_n^i)_{i=1}^{N_2}$ evolve randomly to a new configuration ξ_{n+1}^i according to the Markov transition M_{n+1} .

Introduction	Island bootstrap approximation	The double bootstrap algorithm	Extensions
		00000000	
Algorithm description	n		
The double	bootstrap		

• Define the Markov kernel $\mathbf{L}_{n+1}^{N_2}$ from $(\mathbf{X}_n^{N_2}, \boldsymbol{\mathcal{X}}_n^{\otimes N_2})$ to $(\mathbf{X}_{n+1}^{N_2}, \boldsymbol{\mathcal{X}}_{n+1}^{\otimes N_2})$ for any $(\mathbf{x}_n^1, \dots, \mathbf{x}_n^{N_2}) \in \mathbf{X}_n^{N_2}$ and $(\mathbf{A}_{n+1}^1, \dots, \mathbf{A}_{n+1}^{N_2}) \in \boldsymbol{\mathcal{X}}_n^{N_2}$ by

$$\mathbf{L}_{n+1}^{N_2}(\mathbf{x}_n^1,\ldots,\mathbf{x}_n^{N_2},\mathbf{A}_{n+1}^1 imes\cdots imes\mathbf{A}_{n+1}^{N_2}) \ \stackrel{ ext{def}}{=} \prod_{1\leq i\leq N_2} oldsymbol{\Psi}_n(oldsymbol{m}(\mathbf{x}_n^1,\ldots,\mathbf{x}_n^{N_2},\cdot))oldsymbol{M}_{n+1}(\mathbf{A}_{n+1}^i)\ ,$$

where $m(\mathbf{x}_n^1, \dots, \mathbf{x}_n^{N_2}, \cdot)$ stands for the empirical measure of the islands $(\mathbf{x}_n^1, \dots, \mathbf{x}_n^{N_2})$ given for any $\mathbf{A}_n \in \boldsymbol{\mathcal{X}}_n$ by

$$oldsymbol{m}(\mathbf{x}_n^1,\ldots,\mathbf{x}_n^{N_2},\mathbf{A}_n) \stackrel{ ext{def}}{=} rac{1}{N_2}\sum_{i=1}^{N_2} \delta_{\mathbf{x}_n^i}(\mathbf{A}_n) \ .$$

Island bootstrap approximation

The double bootstrap algorithm

Extensions

Algorithm description

The double bootstrap algorithm

1: for
$$p$$
 from 0 to $n - 1$ do
2: Sample $I_p = (I_p^i)_{i=1}^{N_2}$ multinomially with proba. prop. to
 $\left(\frac{1}{N_1}\sum_{j=1}^{N_1}g_p(\xi_p^{i,j})\right)_{i=1}^{N_2}$
3: for i from 1 to N_2 do
4: Sample $J_p^i = (J_p^{i,j})_{j=1}^{N_1}$ multinomially with proba. prop. to
 $\left(g_p(\xi_p^{I_p^i,j})\right)_{j=1}^{N_1}$
5: For $1 \le j \le N_1$, sample independently $\xi_{p+1}^{i,j}$ according to
 $M_{p+1}(\xi_p^{I_p^i,J_p^j}, \cdot)$.
6: end for
7: end for

Bias and variance of the double bootstrap

Bootstrap approximation: bias and variance

Theorem

For any time horizon $n \ge 0$ and any bounded function $f_n \in \mathcal{B}_b(\mathbb{X}_n, \mathcal{X}_n)$, we have

$$\lim_{N_1 \to \infty} N_1 \mathbb{E} \left[\eta_n^{N_1}(f_n) - \eta_n(f_n) \right] = B_n(f_n) ,$$
$$\lim_{N_1 \to \infty} N_1 \mathbb{V} \operatorname{ar} \left(\eta_n^{N_1}(f_n) \right) = V_n(f_n) ,$$

where $B_n(f_n)$ and $V_n(f_n)$ can be computed explicitly.

Bias and variance of the double bootstrap

Double bootstrap approximation: bias and variance

Theorem

For any time horizon $n \geq 0$ and any $f_n \in \mathcal{B}_b(\mathbb{X}_n, \mathcal{X}_n)$, we have

$$\begin{split} &\lim_{N_1 \to \infty} \lim_{N_2 \to \infty} N_1 N_2 \mathbb{E} \left[\boldsymbol{\eta}_n^{N_2}(m(\cdot, f_n)) - \boldsymbol{\eta}_n(m(\cdot, f_n)) \right] = B_n(f_n) + \widetilde{B}_n(f_n) ,\\ &\lim_{N_1 \to \infty} \lim_{N_2 \to \infty} N_1 N_2 \mathbb{V} \mathrm{ar} \left(\boldsymbol{\eta}_n^{N_2}(m(\cdot, f_n)) \right) = V_n(f_n) + \widetilde{V}_n(f_n) ,\\ &\text{where } B_n(f_n), \ \widetilde{B}_n(f_n), \ V_n(f_n), \ \widetilde{V}_n(f_n) \text{ can be computed explicitly.} \end{split}$$

- The rate of the interacting island (N_2 islands each with N_1 individuals) is the same as the one of the single island model with N_1N_2 particles.
- Even though the constant terms may be worst in the interacting island model, it allows to use parallel implementations.

Extensions

Bias and variance of the double bootstrap

Independent islands

Theorem

For any time horizon $n \ge 0$ and any $f_n \in \mathcal{B}_b(\mathbb{X}_n, \mathcal{X}_n)$, we have

$$\lim_{N_1 \to \infty} N_1 \left\{ \mathbb{E} \left[\widetilde{\boldsymbol{\eta}}_n^{N_2}(m(\cdot, f_n)) \right] - \eta_n(f_n) \right\} = B_n(f_n) ,$$
$$\lim_{N_1 \to \infty} N_1 N_2 \mathbb{V} \operatorname{ar} \left(\widetilde{\boldsymbol{\eta}}_n^{N_2}(m(\cdot, f_n)) \right) = V_n(f_n) ,$$

where $B_n(f_n)$ and $V_n(f_n)$ are the same than for the single island model.

Although the variance of the particle approximation is inversely proportional to N_1N_2 , the bias is independent of N_2 and is inversely proportional to N_1 .

Introduction	Island bootstrap approximation	The double bootstrap algorithm ○○○○○○●○○	Extensions
Bias and variance of the o	louble bootstrap		
Example			

Linear Gaussian Model

•
$$X_{p+1} = \phi X_p + \sigma_u U_p$$
,

•
$$Y_p = X_p + \sigma_v V_p$$

Computing the predictive distribution of the state X_n given the observations $Y_{0:n-1} = y_{0:n-1}$ up to time n-1 can be cast into the framework of Feynman-Kac model by setting for all $p \ge 0$

$$M_{p+1}(x_p, \mathrm{d}x_{p+1}) = \frac{1}{\sqrt{2\pi\sigma_u}} \exp\left[-(x_{p+1} - \phi x_p)^2 / (2\sigma_u^2)\right] \mathrm{d}x_{p+1} ,$$
$$g_p(x_p) = \frac{1}{\sqrt{2\pi\sigma_v}} \exp\left[-(y_p - x_p)^2 / (2\sigma_v^2)\right] .$$

Island bootstrap approximation

The double bootstrap algorithm

Extensions

Bias and variance of the double bootstrap

How to choose between interacting and independent islands?

	Independent islands	Interacting islands
Squared bias	$\frac{B_n(f_n)^2}{N_1^2}$	$\frac{\left(B_n(f_n) + \widetilde{B}_n(f_n)\right)^2}{N_1^2 N_2^2}$
Variance	$\frac{V_n(f_n)}{N_1 N_2}$	$\frac{V_n(f_n) + \widetilde{V}_n(f_n)}{N_1 N_2}$
Sum	$\frac{V_n(f_n)}{N_1 N_2} + \frac{B_n(f_n)^2}{N_1^2}$	$\frac{V_n(f_n) + \widetilde{V}_n(f_n)}{N_1 N_2}$
$\frac{(f_n)}{N_2} + \frac{B_n(f_n)^2}{N_1^2}$	$< \frac{V_n(f_n) + \widetilde{V}_n(f_n)}{N_1 N_2}$	$\Leftrightarrow N_1 > \frac{B_n(f_n)^2}{\widetilde{V}_n(f_n)} N_2$

Numerical application

Numerical application: Linear Gaussian Model

• The model is defined by

$$X_{p+1} = \phi X_p + \sigma_u U_p \;, \quad Y_p = X_p + \sigma_v V_p \;.$$

- n+1=11 observations were generated with $\phi=0.9, \ \sigma_u=0.6$ and $\sigma_v=1.$
- We have $\mathbb{E}\left[X_n|Y_{0:n-1}=y_{0:n-1}\right]=\eta_n(\mathrm{Id}).$
- We compare interacting to independent islands through

$$100 \times \frac{\mathbb{E}\left[\left(\boldsymbol{\eta}_{n}^{N_{2}}(\mathrm{Id})-\eta_{n}(\mathrm{Id})\right)^{2}\right]-\mathbb{E}\left[\left(\widetilde{\boldsymbol{\eta}}_{n}^{N_{2}}(\mathrm{Id})-\eta_{n}(\mathrm{Id})\right)^{2}\right]}{\mathbb{E}\left[\left(\widetilde{\boldsymbol{\eta}}_{n}^{N_{2}}(\mathrm{Id})-\eta_{n}(\mathrm{Id})\right)^{2}\right]}.$$

The double bootstrap algorithm ○○○○○○○●

Extensions

Numerical application

Results for the LGSS model

Figure: Interacting versus independent island renormalized estimators.

Outline

Introduction

2 Island bootstrap approximation

3 The double bootstrap algorithm

- Algorithm description
- Bias and variance of the double bootstrap
- Numerical application

4 Extensions

Extensions

Effective Sample Size Interaction

• Define

$$\Theta_{n,\alpha} = \left\{ \mathbf{x}_n = (x_n^1, w_n^1, \dots, x_n^{N_1}, w_n^{N_1}) \in \mathbf{X}_n \left| \frac{\left(\sum_{i=1}^{N_1} w_n^i g_n(x_n^i)\right)^2}{\sum_{i=1}^{N_1} (w_n^i g_n(x_n^i))^2} \ge \alpha N_1 \right\} \right\}$$

• Define $m(\mathbf{x}_n,\cdot)$ stands for the empirical measure of \mathbf{x}_n given for any $A_n\in\mathcal{X}_n$ by

$$m(\mathbf{x}_n, A_n) \stackrel{\text{def}}{=} \frac{1}{\sum_{i=1}^{N_1} w_n^i} \sum_{i=1}^{N_1} w_n^i \delta_{x_n^i}(A_n) ,$$

~) < (~

Extensions

Effective Sample Size Interaction

Consider the Markov kernel $oldsymbol{M}_{n+1}$

$$\begin{split} \boldsymbol{M}_{n+1}(\mathbf{x}_{n}, \mathbf{A}_{n+1}) &= \\ \begin{cases} \prod_{i=1}^{N_{1}} \delta_{w_{n}^{i} g_{n}(x_{n}^{i})}(B_{n+1}^{i}) M_{n+1}(x_{n}^{i}, A_{n+1}^{i}) & \mathbf{x}_{n} \in \Theta_{n,\alpha} \\ \prod_{i=1}^{N_{1}} \delta_{1}(B_{n+1}^{i}) \Psi_{n}(m(\mathbf{x}_{n}, \cdot)) M_{n+1}(A_{n+1}^{i}) & \mathbf{x}_{n} \notin \Theta_{n,\alpha} \end{cases} \end{split}$$

Define a Markov chain $\{\boldsymbol{X}_n\}_{n\geq 0}$ where for each $n\in\mathbb{N}$,

$$\boldsymbol{X}_n = \left[(\xi_n^1, \omega_n^1), \dots, (\xi_n^{N_1}, \omega_n^{N_1}) \right] \in \boldsymbol{\mathbb{X}}_n ,$$

Extensions

ESS: particle approximation

 $N_1\text{-}\mathsf{particle}$ approximations of the measures η_n and γ_n

$$\eta_n^{N_1}(f_n) \stackrel{\text{def}}{=} m(\boldsymbol{X}_n, f_n) = \frac{1}{\sum_{i=1}^{N_1} \omega_n^i} \sum_{i=1}^{N_1} \omega_n^i f_n\left(\boldsymbol{\xi}_n^i\right) ,$$
$$\gamma_n^{N_1}(f_n) \stackrel{\text{def}}{=} \eta_n^{N_1}(f_n) \prod_{0 \le p < n} \eta_p^{N_1}(g_p) .$$

Theorem

For any $f_n \in \mathcal{B}_b(\mathbb{X}_n, \mathcal{X}_n)$, $\gamma_n^{N_1}(f_n)$ is an unbiased estimator of $\gamma_n(f_n)$:

$$\mathbb{E}\left[\gamma_n^{N_1}(f_n)\right] = \mathbb{E}\left[\eta_n^{N_1}(f_n) \prod_{0 \le p < n} \eta_p^{N_1}(g_p)\right] = \mathbb{E}\left[f_n(X_n) \prod_{0 \le p < n} g_p(X_p)\right] .$$

Extensions

ESS: Feynman-Kac approximation

• For
$$\mathbf{x}_n = (x_n^1, w_n^1, \cdots, x_n^{N_1}, w_n^{N_1}) \in \mathbf{X}_n$$
 we set

$$\boldsymbol{g}_n(\mathbf{x}_n) \stackrel{\text{def}}{=} m(\mathbf{x}_n, g_n) = \frac{1}{\sum_{i=1}^{N_1} w_n^i} \sum_{i=1}^{N_1} w_n^i g_n\left(x_n^i\right) \ .$$

ullet The associated Feynman-Kac model $\{(oldsymbol{\eta}_n,oldsymbol{\gamma}_n)\}_{n\geq 0}$ is

$$oldsymbol{\eta}_n(oldsymbol{f}_n) = oldsymbol{\gamma}_n(oldsymbol{f}_n)/oldsymbol{\gamma}_n(1) \ oldsymbol{\gamma}_n(oldsymbol{f}_n) = \mathbb{E}\left[oldsymbol{f}_n(\mathbf{X}_n) \prod_{0 \leq p < n} oldsymbol{g}_p(\mathbf{X}_p)
ight] \;,$$

Extensions

ESS: Feynman-Kac approximation

Since
$$\boldsymbol{g}_n(\boldsymbol{X}_n) = \eta_n^{N_1}(g_n)$$
, for any \boldsymbol{f}_n of the form
 $\boldsymbol{f}_n(\mathbf{x}_n) = \left(\sum_{i=1}^{N_1} w_n^i\right)^{-1} \sum_{i=1}^{N_1} w_n^i f_n\left(x_n^i\right)$ where $f_n \in \mathcal{B}_b(\mathbb{X}_n, \mathcal{X}_n)$,
 $\mathbb{E}\left[f_n(X_n) \prod_{0 \le p < n} g_p(X_p)\right] = \mathbb{E}\left[\boldsymbol{f}_n(\mathbf{X}_n) \prod_{0 \le p < n} \boldsymbol{g}_p(\mathbf{X}_p)\right]$,

Therefore

$$\boldsymbol{\gamma}_n(\boldsymbol{f}_n) = \gamma_n(f_n)$$

 $\boldsymbol{\eta}_n(\boldsymbol{f}_n) = \eta_n(f_n) \; .$

1: for p from 0 to n-1 do 2 Selection step and weight actualization between islands $\mathbf{Set} \ N_2^{\mathrm{eff}} = \left(\sum_{i=1}^{N_2} \Omega_p^i \boldsymbol{g}_p(\boldsymbol{\xi}_p^i, \boldsymbol{\omega}_p^i) \right)^2 / \sum_{i=1}^{N_2} \left(\Omega_p^i \boldsymbol{g}_p(\boldsymbol{\xi}_p^i, \boldsymbol{\omega}_p^i) \right)^2.$ 3: if $N_2^{\text{eff}} \geq \alpha_{\text{Islands}} N_2$ then 4: 5 $\text{For } 1 \leq i \leq N_2, \text{ set } \Omega_{n+1}^i = \Omega_n^i \boldsymbol{g}_p(\boldsymbol{\xi}_n^i, \boldsymbol{\omega}_n^i).$ Set $I_p = (I_p^i)_{i=1}^{N_2} = (1, 2, \dots, N_2).$ 6: 7: else Set $\Omega_{p+1} = \left(\Omega_{p+1}^i\right)_{i=1}^{N_2} = (1, \ldots, 1).$ 8. Sample $I_p = (I_p^i)_{i=1}^{N_2}$ multinomially with probation property ($\Omega_n^i g_p(\xi_n^i, \omega_n^i)$) $_{i=1}^{N_2}$. 9: 10: end if 11: Island mutation step: 12 for i from 1 to N_2 do 13: Particle selection and weight actualization within each island 14 same husiness as usual 15: end for 16 end for

Extensions

Results for the ESS model

Number of interactions

Table: Number of interactions between islands for the ESS within ESS estimator as a percentage of the one the ESS within bootstrap estimator in the LGM.

N_2 N_1	100	250	500	1000
100	4.32	4.76	4.92	4.98
250	0.88	0.60	0.34	0.32
500	0.04	0.02	0	0
1000	0	0	0	0