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Notations

(Xn,Xn)n≥0 is a sequence of measurable sets.

Bb(Xn,Xn) is the Banach space of all bounded and measurable functions
on (Xn,Xn).

(Xn)n≥0 is a non-homogenous Markov chain with initial distribution η0,
and Markov kernels (Mn)n≥1.

Feynman-Kac �ow

ηn(fn)
def
= γn(fn)/γn(1) ,

γn(fn)
def
= E

fn(Xn)
∏

0≤p<n

gp(Xp)

 .

C. Dubarry, P. Del Moral, E. Moulines 3/32



Introduction Island bootstrap approximation The double bootstrap algorithm Extensions

Feynman-Kac �ow

De�ne by P(Xn,Xn) the set of probabilities on (Xn,Xn).

The sequence of probabilities (ηn)n≥0 satis�es the following recursion:

ηn+1 = Ψn(ηn)Mn+1 ,

where Ψn : P(Xn,Xn)→ P(Xn,Xn) is de�ned by:

Ψn(ηn)(An)
def
=

1

ηn(gn)

∫
An

gn(xn) ηn(dxn) , An ∈ Xn .
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Particle approximation

Let N1 be an integer. For any integer p we set (XXXp,X p)
def
= (XN1

p ,X⊗N1
p ).

De�ne the Markov kernel Mn+1 from (XXXn,Xn) to (XXXn+1,Xn+1) as the
product measure

Mn+1(xn,An+1)
def
=

∏
1≤i≤N1

Ψn(m(xn, ·))Mn+1(Ain+1) ,

where m(xn, ·) stands for the empirical measure of xn given for any
An ∈ Xn by

m(xn, An)
def
=

1

N1

N1∑
i=1

δxin(An) .

The particles are multinomially resampled with probabilities proportional
to their potential {gn(xin)}N1

i=1; new particle positions are then sampled
from the Markov kernel Mn+1.
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Particle approximation

De�ne a Markov chain {Xn}n≥0 where for each n ∈ N,

Xn = (ξ1n, . . . , ξ
N1
n ) ∈ XXXn

with initial distribution η0
def
= η⊗N1

0 and transition kernel Mn+1.

N1-particle approximations

ηN1
n (fn)

def
= m(Xn, fn)

γN1
n (fn)

def
= ηN1

n (fn)
∏

0≤p<n

ηN1
p (gp) .
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Unbiasedness of the particle approximation

Theorem (Del Moral, 199x)

For any fn ∈ Bb(Xn,Xn), γN1
n (fn) is an unbiased estimator of γn(fn):

E
[
γN1
n (fn)

]
= E

ηN1
n (fn)

∏
0≤p<n

ηN1
p (gp)


= E

fn(Xn)
∏

0≤p<n

gp(Xp)

 .
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The island Feynman-Kac model

For xn = (x1n, · · · , xN1
n ) ∈ XN1

n de�ne the sample averaged potential

gn(xn)
def
= m(xn, gn) =

1

N1

N1∑
i=1

gn(xin) .

Feynman-Kac model

ηn(fn) = γγγn(fn)/γγγn(1)

γγγn(fn) = E

fn(Xn)
∏

0≤p<n

gp(Xp)

 ,
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The island Feynman-Kac model

Since gn(Xp) = ηN1
n (gp), the unbiasedness property implies that for any fn of

the form fn(xn) = N−1
1

∑N1
i=1 fn(xin)

E

fn(Xn)
∏

0≤p<n

gp(Xp)

 = E

fn(Xn)
∏

0≤p<n

gp(Xp)

 ,

or equivalently

γγγn(fn) = γn(fn) and ηn(fn) = ηn(fn) .
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The island Feynman-Kac model

From now on, a population of particles Xn is called an island.

Idea: we may apply the interacting particle system approximation of the
Feynman-Kac semigroups both within each island but also across island.

To be more speci�c, we will now describe the so-called double bootstrap
algorithm where the bootstrap algorithm is applied both within an island
but also across the islands.

Of course, many other options are available (more to come !)
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Algorithm description

Feynman-Kac at the island level

De�ne by P(XXXn,Xn) the set of probabilities measures on (XXXn,Xn).

The sequence of measures (ηn)n≥0 satis�es the following recursion

ηn+1 = Ψn(ηn)Mn+1 ,

where Ψn : P(XXXn,Xn)→ P(XXXn,Xn) is de�ned by

Ψn(ηn)(An)
def
=

1

ηn(gn)

∫
An

gn(x) ηn(dx) , An ∈ Xn .
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Algorithm description

The double bootstrap algorithm

(
ξin

)
selection

−−−−−−−→
(
ξ̂
i

n

)
mutation

−−−−−−−→
(
ξin+1

)
Let N2 be the number of interacting islands.

During the selection stage, we select randomly N2 islands
(
ξ̂
i

n

)
1≤i≤N2

among the current islands
(
ξin
)
1≤i≤N2

∈ XXXN2
n with probability

proportional to the empirical mean of the individuals in each island

gn(ξin) = N−1
1

N1∑
j=1

gn(ξi,jn ) , 1 ≤ i ≤ N2 .

During the mutation transition, selected islands (ξ̂
i

n)N2
i=1 evolve randomly

to a new con�guration ξin+1 according to the Markov transition Mn+1.
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Algorithm description

The double bootstrap

De�ne the Markov kernel LN2
n+1 from (XXXN2

n ,X⊗N2
n ) to (XXXN2

n+1,X
⊗N2
n+1 ) for

any (x1
n, . . . ,x

N2
n ) ∈ XXXN2

n and (A1
n+1, . . . ,A

N2
n+1) ∈ XN2

n by

LN2
n+1(x1

n, . . . ,x
N2
n ,A1

n+1 × · · · ×AN2
n+1)

def
=

∏
1≤i≤N2

Ψn(m(x1
n, . . . ,x

N2
n , ·))Mn+1(Ai

n+1) ,

where m(x1
n, . . . ,x

N2
n , ·) stands for the empirical measure of the islands

(x1
n, . . . ,x

N2
n ) given for any An ∈ Xn by

m(x1
n, . . . ,x

N2
n ,An)

def
=

1

N2

N2∑
i=1

δxin(An) .
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Algorithm description

The double bootstrap algorithm

1: for p from 0 to n− 1 do

2: Sample Ip = (Iip)
N2
i=1 multinomially with proba. prop. to(

1
N1

∑N1
j=1 gp(ξ

i,j
p )
)N2

i=1
.

3: for i from 1 to N2 do

4: Sample J ip = (J i,jp )N1
j=1 multinomially with proba. prop. to(

gp(ξ
Iip,j
p )

)N1

j=1

.

5: For 1 ≤ j ≤ N1, sample independently ξi,jp+1 according to

Mp+1(ξ
Iip,J

j
p

p , ·).
6: end for

7: end for
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Bias and variance of the double bootstrap

Bootstrap approximation: bias and variance

Theorem

For any time horizon n ≥ 0 and any bounded function fn ∈ Bb(Xn,Xn), we
have

lim
N1→∞

N1E
[
ηN1
n (fn)− ηn(fn)

]
= Bn(fn) ,

lim
N1→∞

N1Var
(
ηN1
n (fn)

)
= Vn(fn) ,

where Bn(fn) and Vn(fn) can be computed explicitly.
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Bias and variance of the double bootstrap

Double bootstrap approximation: bias and variance

Theorem

For any time horizon n ≥ 0 and any fn ∈ Bb(Xn,Xn), we have

lim
N1→∞

lim
N2→∞

N1N2E
[
ηN2
n (m(·, fn))− ηn(m(·, fn))

]
= Bn(fn) + B̃n(fn) ,

lim
N1→∞

lim
N2→∞

N1N2Var
(
ηN2
n (m(·, fn))

)
= Vn(fn) + Ṽn(fn) ,

where Bn(fn), B̃n(fn), Vn(fn), Ṽn(fn) can be computed explicitly.

The rate of the interacting island (N2 islands each with N1 individuals) is
the same as the one of the single island model with N1N2 particles.

Even though the constant terms may be worst in the interacting island
model, it allows to use parallel implementations.
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Bias and variance of the double bootstrap

Independent islands

Theorem

For any time horizon n ≥ 0 and any fn ∈ Bb(Xn,Xn), we have

lim
N1→∞

N1

{
E
[
η̃N2
n (m(·, fn))

]
− ηn(fn)

}
= Bn(fn) ,

lim
N1→∞

N1N2Var
(
η̃N2
n (m(·, fn))

)
= Vn(fn) ,

where Bn(fn) and Vn(fn) are the same than for the single island model.

Although the variance of the particle approximation is inversely proportional to
N1N2, the bias is independent of N2 and is inversely proportional to N1.
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Bias and variance of the double bootstrap

Example

1 Linear Gaussian Model

Xp+1 = φXp + σuUp ,

Yp = Xp + σvVp ,

Computing the predictive distribution of the state Xn given the
observations Y0:n−1 = y0:n−1 up to time n− 1 can be cast into the
framework of Feynman-Kac model by setting for all p ≥ 0

Mp+1(xp, dxp+1) =
1√

2πσu
exp

[
−(xp+1 − φxp)2/(2σ2

u)
]

dxp+1 ,

gp(xp) =
1√

2πσv
exp

[
−(yp − xp)2/(2σ2

v)
]
.
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Bias and variance of the double bootstrap

How to choose between interacting and independent islands?

Independent islands Interacting islands

Squared bias
Bn(fn)2

N2
1

(
Bn(fn) + B̃n(fn)

)2
N2

1N
2
2

Variance
Vn(fn)

N1N2

Vn(fn) + Ṽn(fn)

N1N2

Sum
Vn(fn)

N1N2
+
Bn(fn)2

N2
1

Vn(fn) + Ṽn(fn)

N1N2

Vn(fn)

N1N2
+
Bn(fn)2

N2
1

<
Vn(fn) + Ṽn(fn)

N1N2
⇔ N1 >

Bn(fn)2

Ṽn(fn)
N2 .
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Numerical application

Numerical application: Linear Gaussian Model

The model is de�ned by

Xp+1 = φXp + σuUp , Yp = Xp + σvVp .

n+ 1 = 11 observations were generated with φ = 0.9, σu = 0.6 and
σv = 1.

We have E [Xn|Y0:n−1 = y0:n−1] = ηn(Id). M

We compare interacting to independent islands through

100×
E
[(
ηN2
n (Id)− ηn(Id)

)2]− E
[(
η̃N2
n (Id)− ηn(Id)

)2]
E
[(
η̃N2
n (Id)− ηn(Id)

)2] .
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Numerical application

Results for the LGSS model

Figure: Interacting versus independent island renormalized estimators.
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E�ective Sample Size Interaction

De�ne

Θn,α =

xn = (x1n, w
1
n, . . . , x

N1
n , wN1

n ) ∈ XXXn

∣∣∣∣∣∣∣
(∑N1

i=1 w
i
ngn(xin)

)2
∑N1
i=1 (wingn(xin))2

≥ αN1

 .

De�ne m(xn, ·) stands for the empirical measure of xn given for any
An ∈ Xn by

m(xn, An)
def
=

1∑N1
i=1 w

i
n

N1∑
i=1

winδxin(An) ,
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E�ective Sample Size Interaction

Consider the Markov kernel Mn+1

Mn+1(xn,An+1) ={∏N1
i=1 δwingn(xin)(B

i
n+1)Mn+1(xin, A

i
n+1) xn ∈ Θn,α∏N1

i=1 δ1(Bin+1)Ψn(m(xn, ·))Mn+1(Ain+1) xn 6∈ Θn,α

De�ne a Markov chain {Xn}n≥0 where for each n ∈ N,

Xn =
[
(ξ1n, ω

1
n), . . . , (ξN1

n , ωN1
n )
]
∈ XXXn ,
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ESS: particle approximation

N1-particle approximations of the measures ηn and γn

ηN1
n (fn)

def
= m(Xn, fn) =

1∑N1
i=1 ω

i
n

N1∑
i=1

ωinfn
(
ξin

)
,

γN1
n (fn)

def
= ηN1

n (fn)
∏

0≤p<n

ηN1
p (gp) .

Theorem

For any fn ∈ Bb(Xn,Xn), γN1
n (fn) is an unbiased estimator of γn(fn):

E
[
γN1
n (fn)

]
= E

ηN1
n (fn)

∏
0≤p<n

ηN1
p (gp)

 = E

fn(Xn)
∏

0≤p<n

gp(Xp)

 .
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ESS: Feynman-Kac approximation

For xn = (x1n, w
1
n, · · · , xN1

n , wN1
n ) ∈ XXXn we set

gn(xn)
def
= m(xn, gn) =

1∑N1
i=1 w

i
n

N1∑
i=1

wingn
(
xin

)
.

The associated Feynman-Kac model {(ηn,γγγn)}n≥0 is

ηn(fn) = γγγn(fn)/γγγn(1)

γγγn(fn) = E

fn(Xn)
∏

0≤p<n

gp(Xp)

 ,
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ESS: Feynman-Kac approximation

Since gn(Xn) = ηN1
n (gn), for any fn of the form

fn(xn) =
(∑N1

i=1 w
i
n

)−1∑N1
i=1 w

i
nfn

(
xin
)
where fn ∈ Bb(Xn,Xn),

E

fn(Xn)
∏

0≤p<n

gp(Xp)

 = E

fn(Xn)
∏

0≤p<n

gp(Xp)

 ,

Therefore

γγγn(fn) = γn(fn)

ηn(fn) = ηn(fn) .
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1: for p from 0 to n − 1 do

2: Selection step and weight actualization between islands:

3: Set Neff
2 =

(∑N2
i=1

Ωipgp(ξip,ω
i
p)

)2
/
∑N2
i=1

(
Ωipgp(ξip,ω

i
p)
)2

.

4: if Neff
2 ≥ αIslandsN2 then

5: For 1 ≤ i ≤ N2, set Ωip+1 = Ωipgp(ξip,ω
i
p).

6: Set Ip = (Iip)
N2
i=1

= (1, 2, . . . , N2).

7: else

8: Set Ωp+1 =
(
Ωip+1

)N2
i=1

= (1, . . . , 1).

9: Sample Ip = (Iip)
N2
i=1

multinomially with proba. prop. to
(
Ωipgp(ξip,ω

i
p)
)N2
i=1

.

10: end if

11: Island mutation step:

12: for i from 1 to N2 do

13: Particle selection and weight actualization within each island:

14: same business as usual
15: end for

16: end for

17: Approximate ηn(fn) by
1∑N2

i=1
Ωin

N2∑
i=1

Ω
i
n

1∑N1
j=1

ω
i,j
n

N1∑
j=1

ω
i,j
n fn

(
ξ
i,j
n

)
.
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Results for the ESS model

 

 

Real value

N2 = 100 N2 = 250 N2 = 500 N2 = 1000

N1 = 250

N1 = 100

N1 = 500

N1 = 1000

(1) ESS          (2) Bootstrap          (2) Independent
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Number of interactions

Table: Number of interactions between islands for the ESS within ESS estimator as a
percentage of the one the ESS within bootstrap estimator in the LGM.

PPPPPPPN1

N2
100 250 500 1000

100 4.32 4.76 4.92 4.98
250 0.88 0.60 0.34 0.32
500 0.04 0.02 0 0
1000 0 0 0 0
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