Ancestral Sampling for Particle Gibbs

Fredrik Lindsten*, Michael I. Jordan**, Thomas B. Schön*

*Division of Automatic Control Linköping University, Sweden

**Departments of EECS and Statistics, University of California, Berkeley, USA

- イロト イヨト イヨト トヨー うへの

Two things:

- Improve the mixing of particle Gibbs by "ancestor sampling".
- Application to non-Markovian models.

Problem formulation

- High-dimensional target $\bar{\gamma}_T(x_{1:T}, \theta)$ on $X^T \times \Theta$.
- Sample from $\bar{\gamma}_T(x_{1:T}, \theta)$ using MCMC.

Problem formulation

- High-dimensional target $\bar{\gamma}_T(x_{1:T}, \theta)$ on $X^T \times \Theta$.
- Sample from $\bar{\gamma}_T(x_{1:T}, \theta)$ using MCMC.

ex) State-space model,

$$\bar{\gamma}_T(x_{1:T},\theta) = p(x_{1:T},\theta \mid y_{1:T}).$$

Ideal Gibbs sampler,

- 1. Draw $x'_{1:T} \sim p(x_{1:T} \mid \theta, y_{1:T});$
- 2. Draw $\theta' \sim p(\theta \mid x_{1:T}, y_{1:T})$.

Particle MCMC

Particle Markov chain Monte Carlo (PMCMC),

- Use sequential Monte Carlo (SMC) to sample from $\bar{\gamma}_T(x_{1:T})$.
- Particle independent Metropolis-Hastings (PIMH)
- Particle Gibbs (PG)

N.B. Sampling θ straightforward. We drop θ to simplify notation!

Particle MCMC

Particle Markov chain Monte Carlo (PMCMC),

- Use sequential Monte Carlo (SMC) to sample from $\bar{\gamma}_T(x_{1:T})$.
- Particle independent Metropolis-Hastings (PIMH)
- Particle Gibbs (PG)

N.B. Sampling θ straightforward. We drop θ to simplify notation!

<ロ> < 部> < E> < E> < E < のへの</p>

Particle MCMC

Particle Markov chain Monte Carlo (PMCMC),

- Use sequential Monte Carlo (SMC) to sample from $\bar{\gamma}_T(x_{1:T})$.
- Particle independent Metropolis-Hastings (PIMH)
- Particle Gibbs (PG)

Sequential Monte Carlo,

• Sequence of target densities, for *t* = 1, ..., *T*,

$$ar{\gamma}_t(x_{1:t}) = rac{\gamma_t(x_{1:t})}{Z_t}.$$

Approximated by collections of weighted particles.

N.B. Sampling θ straightforward. We drop θ to simplify notation!

Sequential Monte Carlo – the particle filter

- Selection: $\{x_{1:t-1}^m, w_{t-1}^m\}_{m=1}^N \to \{\tilde{x}_{1:t-1}^m, 1/N\}_{m=1}^N$.
- Mutation: $x_t^m \sim R_t(dx_t \mid \tilde{x}_{1:t-1}^m)$ and $x_{1:t}^m = \{\tilde{x}_{1:t-1}^m, x_t^m\}$.

• Weighting:
$$w_t^m = W_t(x_{1:t}^m)$$
.

$$\Rightarrow \{x_{1:t}^m, w_t^m\}_{m=1}^N$$

Sequential Monte Carlo – the particle filter

Selection + Mutation:

$$(a_t^m, x_t^m) \sim M_t(a_t, x_t) = \frac{w_{t-1}^{a_t}}{\sum_l w_{t-1}^l} R_t(x_t \mid x_{1:t-1}^{a_t}).$$

• Weighting: $w_t^m = W_t(x_{1:t}^m)$.

$$\Rightarrow \{x_{1:t}^m, w_t^m\}_{m=1}^N$$

Path degeneracy

Fredrik Lindsten, Michael I. Jordan, Thomas B. Schön Ancestral Sampling for Particle Gibbs

Path degeneracy

Fredrik Lindsten, Michael I. Jordan, Thomas B. Schön Ancestral Sampling for Particle Gibbs

Sampling based on SMC

• With
$$P(x'_{1:T} = x^m_{1:T}) \propto w^m_T$$
 we get,

$$x'_{1:T} \overset{\text{approx.}}{\sim} \bar{\gamma}_T(x_{1:T}).$$

ペロト (個) (注) (注) (日) (の)

Sampling based on SMC

• With
$$P(x'_{1:T} = x^m_{1:T}) \propto w^m_T$$
 we get,

$$x_{1:T}^{\prime} \overset{\text{approx.}}{\sim} \bar{\gamma}_T(x_{1:T}).$$

• Approximation can be arbitrarily bad (for small *N*)!

▲ □ ▶ ▲ 圖 ▶ ▲ 国 ▶ ▲ 国 ▶ ▲ 圖 ● 今への

AUTOMATIC CONTROL REGLERTEKNIK LINKÖPINGS UNIVERSITET

Sampling based on SMC

• With
$$P(x'_{1:T} = x^m_{1:T}) \propto w^m_T$$
 we get,

$$x_{1:T}^{\prime} \overset{\operatorname{approx.}}{\sim} \bar{\gamma}_{T}(x_{1:T}).$$

- Approximation can be arbitrarily bad (for small *N*)!
- Compensate for approximation: SMC within MCMC = PMCMC.

ペロト 4回ト 4 目下 4 目下 1 日 9 9 9 9

Extended target distribution

SMC generates a sample on $X^{NT} \times \{1, ..., N\}^{N(T-1)}$ with density,

$$\psi(\mathbf{x}_{1:T}, \mathbf{a}_{2:T}) \triangleq \prod_{m=1}^{N} R_1(x_1^m) \prod_{t=2}^{T} \prod_{m=1}^{N} M_t(a_t^m, x_t^m).$$

スロアス団 メヨアスロア ほうのよう

SMC generates a sample on $\mathsf{X}^{NT} imes \{1, \ldots, N\}^{N(T-1)}$ with density,

$$\psi(\mathbf{x}_{1:T}, \mathbf{a}_{2:T}) \triangleq \prod_{m=1}^{N} R_1(x_1^m) \prod_{t=2}^{T} \prod_{m=1}^{N} M_t(a_t^m, x_t^m).$$

Introduce extended target. Let $x_{1:T}^k = x_{1:T}^{b_{1:T}} = \{x_1^{b_1}, \dots, x_T^{b_T}\}.$

$$\phi(\mathbf{x}_{1:T}, \mathbf{a}_{2:T}, k) = \phi(x_{1:T}^{b_{1:T}}, b_{1:T})\phi(\mathbf{x}_{1:T}^{-b_{1:T}}, \mathbf{a}_{2:T}^{-b_{2:T}} \mid x_{1:T}^{b_{1:T}}, b_{1:T})$$

AUTOMATIC CONTROL REGLERTEKNIK LINKÖPINGS UNIVERSITET

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・ うへつ

SMC generates a sample on $\mathsf{X}^{NT} imes \{1, \ldots, N\}^{N(T-1)}$ with density,

$$\psi(\mathbf{x}_{1:T}, \mathbf{a}_{2:T}) \triangleq \prod_{m=1}^{N} R_1(x_1^m) \prod_{t=2}^{T} \prod_{m=1}^{N} M_t(a_t^m, x_t^m).$$

Introduce extended target. Let $x_{1:T}^k = x_{1:T}^{b_{1:T}} = \{x_1^{b_1}, \dots, x_T^{b_T}\}.$

$$\begin{split} \phi(\mathbf{x}_{1:T}, \mathbf{a}_{2:T}, k) &= \phi(x_{1:T}^{b_{1:T}}, b_{1:T}) \phi(\mathbf{x}_{1:T}^{-b_{1:T}}, \mathbf{a}_{2:T}^{-b_{2:T}} \mid x_{1:T}^{b_{1:T}}, b_{1:T}) \\ &\triangleq \underbrace{\frac{\bar{\gamma}_T(x_{1:T}^{b_{1:T}})}{N^T}}_{\text{marginal}} \underbrace{\prod_{\substack{m=1\\m\neq b_1}}^{N} R_1(x_1^m) \prod_{t=2}^T \prod_{\substack{m=1\\m\neq b_t}}^{N} M_t(a_t^m, x_t^m) }_{\text{conditional}}. \end{split}$$

▲□▶▲□▶▲目▶▲目▶ 目 のへの

• Draw
$$\mathbf{x}_{1:T}^{\star,-b_{1:T}}, \mathbf{a}_{2:T}^{\star,-b_{2:T}} \sim \phi(\mathbf{x}_{1:T}^{-b_{1:T}}, \mathbf{a}_{2:T}^{-b_{2:T}} \mid x_{1:T}^{b_{1:T}}, b_{1:T}).$$

Fredrik Lindsten, Michael I. Jordan, Thomas B. Schön Ancestral Sampling for Particle Gibbs

2

- Draw $\mathbf{x}_{1:T}^{\star,-b_{1:T}}$, $\mathbf{a}_{2:T}^{\star,-b_{2:T}} \sim \phi(\mathbf{x}_{1:T}^{-b_{1:T}}, \mathbf{a}_{2:T}^{-b_{2:T}} \mid x_{1:T}^{b_{1:T}}, b_{1:T})$.
- Draw $k^{\star} \sim \phi(k \mid \mathbf{x}_{1:T}^{\star,-b_{1:T}}, \mathbf{a}_{2:T}^{\star,-b_{2:T}}, x_{1:T}^{b_{1:T}}, a_{2:T}^{b_{2:T}}).$

- Draw $\mathbf{x}_{1:T}^{\star,-b_{1:T}}$, $\mathbf{a}_{2:T}^{\star,-b_{2:T}} \sim \phi(\mathbf{x}_{1:T}^{-b_{1:T}}, \mathbf{a}_{2:T}^{-b_{2:T}} \mid x_{1:T}^{b_{1:T}}, b_{1:T})$.
- Draw $k^{\star} \sim \phi(k \mid \mathbf{x}_{1:T}^{\star, -b_{1:T}}, \mathbf{a}_{2:T}^{\star, -b_{2:T}}, x_{1:T}^{b_{1:T}}, a_{2:T}^{b_{2:T}}).$

More precisely...

- Draw $\mathbf{x}_{1:T}^{\star,-b_{1:T}}$, $\mathbf{a}_{2:T}^{\star,-b_{2:T}}$ by running conditional SMC (CSMC).
- Draw k^* with $P(k^* = m) \propto w_T^m$.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ○ ○ ○ ○

Stochastic volatility model,

$$x_{t+1} = 0.9x_t + w_t,$$
 $w_t \sim$
 $y_t = e_t \exp\left(\frac{1}{2}x_t\right),$ $e_t \sim$

$$w_t \sim \mathcal{N}(0, \theta),$$

 $e_t \sim \mathcal{N}(0, 1).$

1(0 0)

Fredrik Lindsten, Michael I. Jordan, Thomas B. Schön Ancestral Sampling for Particle Gibbs

Stochastic volatility model,

$$x_{t+1} = 0.9x_t + w_t,$$
 w_t
 $y_t = e_t \exp\left(\frac{1}{2}x_t\right),$ e_t

$$w_t \sim \mathcal{N}(0, heta),$$

 $e_t \sim \mathcal{N}(0, 1).$

Fredrik Lindsten, Michael I. Jordan, Thomas B. Schön Ancestral Sampling for Particle Gibbs ペロト < 団 ト < 臣 ト < 臣 ト < 臣 つ の Q の</p>

Stochastic volatility model,

$$x_{t+1} = 0.9x_t + w_t,$$

 $y_t = e_t \exp\left(rac{1}{2}x_t
ight),$

$$w_t \sim \mathcal{N}(0, heta),$$

 $e_t \sim \mathcal{N}(0, 1).$

Fredrik Lindsten, Michael I. Jordan, Thomas B. Schön Ancestral Sampling for Particle Gibbs

Stochastic volatility model,

$$egin{aligned} x_{t+1} &= 0.9 x_t + w_t, & w_t \sim \mathcal{N}(0, heta), \ y_t &= e_t \exp\left(rac{1}{2} x_t
ight), & e_t \sim \mathcal{N}(0, 1). \end{aligned}$$

▲ロト ▲昼 ト ▲ 臣 ト ▲ 臣 ト 一 臣 - つ へ (3)

AUTOMATIC CONTROL REGLERTEKNIK LINKÖPINGS UNIVERSITET

ex cont'd) Particle Gibbs

- イロア イ団 ア イヨア トヨー ろくの

- Draw $\mathbf{x}_{1:T}^{\star,-b_{1:T}}, \mathbf{a}_{2:T}^{\star,-b_{2:T}} \sim \phi(\mathbf{x}_{1:T}^{-b_{1:T}}, \mathbf{a}_{2:T}^{-b_{2:T}} \mid x_{1:T}^{b_{1:T}}, b_{1:T}).$
- Draw $k^{\star} \sim \phi(k \mid \mathbf{x}_{1:T}^{\star,-b_{1:T}}, \mathbf{a}_{2:T}^{\star,-b_{2:T}}, x_{1:T}^{b_{1:T}}, a_{2:T}^{b_{2:T}}).$

The variables $\{x_{1:T}^{b_{1:T}}, b_{1:T-1}\}$ are never sampled!

Fredrik Lindsten, Michael I. Jordan, Thomas B. Schön Ancestral Sampling for Particle Gibbs

- Draw $\mathbf{x}_{1:T}^{\star,-b_{1:T}}, \mathbf{a}_{2:T}^{\star,-b_{2:T}} \sim \phi(\mathbf{x}_{1:T}^{-b_{1:T}}, \mathbf{a}_{2:T}^{-b_{2:T}} \mid x_{1:T}^{b_{1:T}}, b_{1:T}).$
- Draw $k^{\star} \sim \phi(k \mid \mathbf{x}_{1:T}^{\star, -b_{1:T}}, \mathbf{a}_{2:T}^{\star, -b_{2:T}}, x_{1:T}^{b_{1:T}}, a_{2:T}^{b_{2:T}}).$

The variables $\{x_{1:T}^{b_{1:T}}, b_{1:T-1}\}$ are never sampled!

Include $b_{1:T-1}$ in the Gibbs sweep!

PG-AS

Particle Gibbs with ancestor sampling (PG-AS)

$$\begin{aligned} \mathbf{x}_{t}^{\star,-b_{t}}, \mathbf{a}_{t}^{\star,-b_{t}} &\sim \text{ one iteration of CSMC,} \\ (a_{t}^{\star,b_{t}} =) \ b_{t-1}^{\star} &\sim \phi(b_{t-1} \mid \mathbf{x}_{1:t-1}^{\star,-b_{1:t-1}}, \mathbf{a}_{2:t-1}^{\star}, x_{1:T}^{b_{1:T}}, b_{t:T}). \end{aligned}$$

• Draw
$$(k^{\star} =) b_T^{\star}$$
 with $P(b_T^{\star} = m) \propto w_T^m$.

<ロト < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

PG-AS

Particle Gibbs with ancestor sampling (PG-AS)

$$\mathbf{x}_{t}^{\star,-b_{t}}, \mathbf{a}_{t}^{\star,-b_{t}} \sim \text{one iteration of CSMC},$$

 $(a_{t}^{\star,b_{t}} =) \ b_{t-1}^{\star} \sim \phi(b_{t-1} \mid \mathbf{x}_{1:t-1}^{\star,-b_{1:t-1}}, \mathbf{a}_{2:t-1}^{\star}, x_{1:T}^{b_{1:T}}, b_{t:T}).$

• Draw
$$(k^{\star} =) b_T^{\star}$$
 with $P(b_T^{\star} = m) \propto w_T^m$.

We can show,

$$\phi(b_t \mid \mathbf{x}_{1:t}, \mathbf{a}_{2:t}, x_{t+1:T}^{b_{t+1:T}}, b_{t+1:T}) \propto w_t^{b_t} \frac{\gamma_T(x_{1:T}^k)}{\gamma_t(x_{1:t}^{b_t})}.$$

Fredrik Lindsten, Michael I. Jordan, Thomas B. Schön Ancestral Sampling for Particle Gibbs

3

CSMC with ancestor sampling, conditioned on $\{x'_{1:T}, b_{1:T}\}$

1. Initialize (t = 1): (a) Draw $x_1^m \sim R_1(x_1)$ for $m \neq b_1$ and set $x_1^{b_1} = x'_1$. (b) Set $w_1^m = W_1(x_1^m)$ for m = 1, ..., N. 2. for t = 2, ..., T: (a) Draw $(a_t^m, x_t^m) \sim M_t(a_t, x_t)$ for $m \neq b_t$ and set $x_t^{b_t} = x'_t$. (b) Draw $a_t^{b_t}$ with

$$P(a_t^{b_t} = m) \propto w_{t-1}^m \frac{\gamma_T(\{x_{1:t-1}^m, x_{t:T}^{\prime}\})}{\gamma_t(x_{1:t-1}^m)}$$

(c) Set $x_{1:t}^m = \{x_{1:t-1}^{a_t^m}, x_t^m\}$ and $w_t^m = W_t(x_{1:t}^m)$ for m = 1, ..., N.

(日) (四) (三) (三) (三) (三) (日)

ex cont'd) PG-AS

- イロア イロア イヨア イロア ヨー シック

PG vs. PG-AS

Fredrik Lindsten, Michael I. Jordan, Thomas B. Schön Ancestral Sampling for Particle Gibbs

ex cont'd) PG-AS

Stochastic volatility model,

$$egin{aligned} x_{t+1} &= 0.9 x_t + w_t, & w_t \sim \mathcal{N}(0, heta), \ y_t &= e_t \exp\left(rac{1}{2} x_t
ight), & e_t \sim \mathcal{N}(0, 1). \end{aligned}$$

- イロト イ団ト イヨト イヨト 三日 - わえの

Sampling $b_{1:T-1}$ suggested by Whiteley (2010),

N. Whiteley, "Discussion on Particle Markov chain Monte Carlo methods", Journal of the Royal Statistical Society: Series B, 72(3):306–307, 2010.

Particle Gibbs with backward simulation (PG-BS),

- Draw $\mathbf{x}_{1:T}^{\star,-b_{1:T}}$, $\mathbf{a}_{2:T}^{\star,-b_{2:T}}$ by running conditional SMC.
- Draw $b_{1:T}^{\star}$ by running a backward simulator.

ex cont'd) PG-BS and PG-AS

- イロト (雪) (目) (目) (日) (つ)

Main motivation for PG-AS instead of PG-BS

- appears to be more robust to weight approximation.

- イロア (雪) (ヨ) (ヨ) (日) (の)

Main motivation for PG-AS instead of PG-BS

- appears to be more robust to weight approximation.

Consider a non-Markovian model,

$$x_{t+1} \sim f(x_{t+1} \mid x_{1:t}),$$

 $y_t \sim g(y_t \mid x_{1:t}).$

Backward weights depend on,

$$\frac{\gamma_T(x_{1:T})}{\gamma_t(x_{1:t})} = \frac{p(x_{1:T}, y_{1:T})}{p(x_{1:t}, y_{1:t})} = \prod_{s=t+1}^T g(y_s \mid x_{1:s}) f(x_s \mid x_{1:s-1}).$$

Main motivation for PG-AS instead of PG-BS

- appears to be more robust to weight approximation.

Consider a non-Markovian model,

$$x_{t+1} \sim f(x_{t+1} \mid x_{1:t}),$$

 $y_t \sim g(y_t \mid x_{1:t}).$

Backward weights depend on,

$$\frac{\gamma_T(x_{1:T})}{\gamma_t(x_{1:t})} = \frac{p(x_{1:T}, y_{1:T})}{p(x_{1:t}, y_{1:t})} \propto \prod_{s=t+1}^p g(y_s \mid x_{1:s}) f(x_s \mid x_{1:s-1}).$$

Rao-Blackwellization,

$$egin{aligned} x_{t+1} &= Ax_t + v_t, & v_t \sim \mathcal{N}(0, Q), \ y_t &= Cx_t + e_t, & e_t \sim \mathcal{N}(0, R). \end{aligned}$$

- Marginalize 3 out of 4 states with conditional Kalman filters.
- Marginal model is non-Markovian!
- Apply PG-AS and PG-BS 1D marginal space with N = 5.

AUTOMATIC CONTROL

LINKÖPINGS UNIVERSITE

REGI ERTEKNIK

Target tracking

- Coordinated turn motion model with rank deficient process noise covariance.
- Noisy range-bearing measurements.
- Unknown turn rate θ .
- PG-AS with N = 5 and PMMH with N = 5000.

Fredrik Lindsten, Michael I. Jordan, Thomas B. Schön Ancestral Sampling for Particle Gibbs

Conclusions

- PG-AS: A novel approach to PMCMC.
- No explicit backward pass (contrary to PG-BS).
- Easier to implement and more memory efficient than PG-BS.
- Appears to be more robust to weight approximations. Needs further investigation!

F. Lindsten, M. I. Jordan and T. B. Schön, "Ancestral Sampling for Particle Gibbs", *Accepted to the 2012 Conference on Neural Information Processing Systems (NIPS)*, Lake Tahoe, NV, USA, 2012.

(オロトオ団トオ団トオ団ト) 同一の人の

AUTOMATIC CONTROL

LINKÖPINGS UNIVERSITE

Degenerate models

Degenerate state-space models,

$$\begin{aligned} x_{t+1} &= Ax_t + v_t, \\ y_t &= Cx_t + e_t, \end{aligned}$$

- rank(Q) = 1 ⇒
 degenerate model!
- Rewrite as non-degenerate non-Markovian 1D model.
- Apply PG-AS and PG-BS 1D marginal space with N = 5.

$$v_t \sim \mathcal{N}(0, Q),$$

 $e_t \sim \mathcal{N}(0, R).$

