Phylogenetic Tree Construction using Sequential Monte Carlo Algorithms on Posets

Liangliang Wang Western University, Canada

Joint work with Alexandre Bouchard-Côté Arnaud Doucet

Recent Advances in SMC Sep 19-21, 2012

Outline

2 Combinatorial Sequential Monte Carlo (CSMC)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ ● ●

- 3 Particle MCMC
- Ongoing and Future Work

Phylogenetics

Example: what are the evolutionary relationships among these Cichlid fishes?

Data: \mathcal{Y}

- Biological sequences of a set of species
 - e.g. a DNA sequence is a string of characters from the set of four nucleotides {*A*, *C*, *G*, *T*}.

・ロト ・同ト ・ヨト ・ヨト

Data: \mathcal{Y}

- Biological sequences of a set of species
 - e.g. a DNA sequence is a string of characters from the set of four nucleotides {*A*, *C*, *G*, *T*}.
- An example of aligned DNA sequences.
 - Nucleotides in the same column were obtained from a shared ancestral nucleotide

A rooted phylogenetic tree, t, and evolution

Root: a common ancestor;

A rooted phylogenetic tree, t, and evolution

- Root: a common ancestor;
- Internal nodes

A rooted phylogenetic tree, t, and evolution

- Root: a common ancestor;
- Internal nodes
- Branch lengths
 - positive real numbers associated with each edge,
 - specifying the amount of evolution between nodes.

• Assumption: site independence.

∃ >

- Assumption: site independence.
- Likelihood model on each site over one branch is a *Continuous Time Markov Chain* (CTMC): {*Y_s* : *s* ∈ [0, *b*]}
- The state space of the chain: $Y_s \in \{A, C, G, T\}.$

- Assumption: site independence.
- Likelihood model on each site over one branch is a *Continuous Time Markov Chain* (CTMC): {*Y_s* : *s* ∈ [0, *b*]}
- The state space of the chain: $Y_s \in \{A, C, G, T\}.$

- Assumption: site independence.
- Likelihood model on each site over one branch is a *Continuous Time Markov Chain* (CTMC): {*Y_s* : *s* ∈ [0, *b*]}
- The state space of the chain: $Y_s \in \{A, C, G, T\}.$
- The transition matrix: $P(b) = e^{Q_{4\times 4}b}$ for the branch of length *b*.

• e.g.
$$P_{1,3}(b) = P(Y_b = G|Y_0 = A)$$
.

$$Q = \begin{bmatrix} - & \pi_C & \kappa \pi_G & \pi_T \\ \pi_A & - & \pi_G & \kappa \pi_T \\ \kappa \pi_A & \pi_C & - & \pi_T \\ \pi_A & \kappa \pi_C & \pi_G & - \end{bmatrix}$$

- Assumption: site independence.
- Likelihood model on each site over one branch is a *Continuous Time Markov Chain* (CTMC): {*Y_s* : *s* ∈ [0, *b*]}
- The state space of the chain: $Y_s \in \{A, C, G, T\}.$
- The transition matrix: $P(b) = e^{Q_{4\times 4}b}$ for the branch of length *b*.
- e.g. $P_{1,3}(b) = P(Y_b = G|Y_0 = A)$.
- Evolutionary parameters in CTMCs are denoted by θ.

$$Q = \begin{bmatrix} - & \pi_C & \kappa \pi_G & \pi_T \\ \pi_A & - & \pi_G & \kappa \pi_T \\ \kappa \pi_A & \pi_C & - & \pi_T \\ \pi_A & \kappa \pi_C & \pi_G & - \end{bmatrix}$$

Bayesian phylogenetics

- Data: aligned sequences, denoted by ${\mathcal Y}$
- θ: evolutionary parameters
- *t*: a phylogenetic tree
- Posterior

$$\pi(\theta, t | \mathcal{Y}) = \frac{\mathbb{P}(\mathcal{Y} | t, \theta) p(t | \theta) p(\theta)}{\mathbb{P}(\mathcal{Y})}$$

∃ ▶

Background

Bayesian phylogenetics

 $\pi(dt)\varphi(t)$

Posterior expectation of $\varphi(t)$:

An example of the function φ :

- $\varphi(t) = \mathbf{1}(c \in \mathsf{clades}(t))$
- a clade: a group consisting of a species and all its descendants
- clades(t): all the clades of the tree t

Difficult inference problem over a huge tree space

Difficult inference problem over a huge tree space

• Tree space for a phylogenetic tree

#Species	#Topologies
3	3
4	15
6	945
10	34459425

Standard Bayesian phylogenetics using MCMC

MCMC: obtain samples $t_k \sim \pi(\cdot | \mathcal{Y}), k = 1, \cdots, K$

- 「同 ト - (三 ト - (三 ト -)

Problems with MCMC

- The Markov chain doesn't explore the tree space well
- Only small moves are allowed in each iteration
- Each step is expensive to compute
- MCMC does not scale to large datasets
 - a large number of taxa
 - large amount of data for each taxon

Infer phylogenetic trees accurately and efficiently

Develop new statistical evolutionary models

Computational algorithms for efficient analysis of large-scale datasets

Liangliang Wang (Western University)

Infer phylogenetic trees accurately and efficiently

Develop new statistical evolutionary models

- Current model: CTMC over characters for each site.
- Proposed model: a general string-valued CTMC for biological sequences.

Infer phylogenetic trees accurately and efficiently

Develop new statistical evolutionary models

- Current model: CTMC over characters for each site.
- Proposed model: a general string-valued CTMC for biological sequences.

- Current methods:
 - Standard MCMC
 - SMC for unrealistic phylogenetic trees (Teh et al. 2008; Bouchard-Côté et al. 2011) for fixed parameters θ

Infer phylogenetic trees accurately and efficiently

Develop new statistical evolutionary models

- Current model: CTMC over characters for each site.
- Proposed model: a general string-valued CTMC for biological sequences.

- Current methods:
 - Standard MCMC
 - SMC for unrealistic phylogenetic trees (Teh et al. 2008; Bouchard-Côté et al. 2011) for fixed parameters θ
- Proposed methods:
 - An efficient SMC algorithm for general phylogenetic trees

Infer phylogenetic trees accurately and efficiently

Develop new statistical evolutionary models

- Current model: CTMC over characters for each site.
- Proposed model: a general string-valued CTMC for biological sequences.

- Current methods:
 - Standard MCMC
 - SMC for unrealistic phylogenetic trees (Teh et al. 2008; Bouchard-Côté et al. 2011) for fixed parameters θ
- Proposed methods:
 - An efficient SMC algorithm for general phylogenetic trees
 - PMCMC for joint estimation of t and θ

2 Combinatorial Sequential Monte Carlo (CSMC)

3 Particle MCMC

3 🕨 🖌 3

SMC algorithm for phylogenetic trees

- Target distribution: the posterior $\pi(t|\mathcal{Y}) \propto \gamma(t|\mathcal{Y}) = \mathbb{P}(\mathcal{Y}|t)p(t)$
- Interested in the posterior expectation of $\varphi(t)$: $\int \pi(dt)\varphi(t)$.

SMC algorithm for phylogenetic trees

- Target distribution: the posterior $\pi(t|\mathcal{Y}) \propto \gamma(t|\mathcal{Y}) = \mathbb{P}(\mathcal{Y}|t)p(t)$
- Interested in the posterior expectation of $\varphi(t)$: $\int \pi(dt)\varphi(t)$.

SMC algorithm for phylogenetic trees

- Target distribution: the posterior $\pi(t|\mathcal{Y}) \propto \gamma(t|\mathcal{Y}) = \mathbb{P}(\mathcal{Y}|t)p(t)$
- Interested in the posterior expectation of $\varphi(t)$: $\int \pi(dt)\varphi(t)$.

- Input 𝒴
 - Aligned biological sequences D TTC
- Output:
 - weighted particles $\{(t_k, W_k)\}$ to approximate the posterior distribution over trees, $\hat{\pi}(t|\mathcal{Y})$

• estimate of the marginal likelihood, $\hat{\mathbb{P}}(\mathcal{Y})$.

Liangliang Wang (Western University)

Bayesian Phylogenetics via SMC

A sequence of partial states

- Using $v^+(s_0 \rightarrow t)$ is not efficient
- *s_r*: a partial state (forest) of *n* − *r* subtrees (*n* is the number of species)
- A forward proposal v⁺(s_{r-1} → s_r): randomly choose a pair of subtrees of s_{r-1} to merge.

How to define distributions π_r over partial states s_r ?

- $\pi_r(s_r|\mathcal{Y}) \propto \mathbb{P}(\mathcal{Y}|s_r)p(s_r)$
- $\mathbb{P}(\mathcal{Y}|s_r)$: the likelihood of the partial state s_r
 - we have likelihood model for trees
 - consider the trees in a forest to be independent
 - the product of the likelihood of the subtrees of *s_r*.
- π_r is represented by *K* weighted particles, $\{(s_{rk}, W_{rk})\}$

The initial partial state

• s_0 : a forest in which each sequence is a trivial tree with a single leaf.

The first partial state s_1

- Generate particle s_{11} using $v^+(s_0 \rightarrow \cdot)$
- Randomly choose a pair of subtrees, species B and C, to merge.

The first partial state s_1

- Generate particle s_{12} using $v^+(s_0 \rightarrow \cdot)$
- Randomly choose a pair of subtrees, species D and C, to merge.

The first partial state s_1

- Generate *K* particles s_{1k} using $v^+(s_0 \rightarrow \cdot)$
- These particles cannot represent π_1 directly
- We need to compensate for the discrepancy between the distribution of interest and the proposed distribution.

Update the weight of particles s_{1k}

• The rectangle size corresponds to the normalized particle weight $W_1(s_{1k})$.

Resample s_{1k}

- Using a multinomial distribution
- Purpose: prune unpromising particles

The second partial state *s*₂

- Generate the particles s_{2k} using $v^+(s_{1k} \rightarrow \cdot)$
- Update the weights of the particles $W_2(s_{2k})$

Resample s_{2k}

- Using a multinomial distribution.
- Purpose: prune unpromising particles

The final state (full tree)

The weight update in a standard SMC

$$w_r(s_r) = w_{r-1}(s_{r-1}) \cdot \frac{\gamma_r(s_r)}{\gamma_{r-1}(s_{r-1})} \frac{1}{v^+(s_{r-1} \to s_r)}$$

- $\gamma_r(s_r)$: unnormalized density of s_r
- $\gamma_{r-1}(s_{r-1})$: unnormalized density of s_{r-1}
- v^+ : forward proposal

The weight update in a standard SMC

$$w_r(s_r) = w_{r-1}(s_{r-1}) \cdot \frac{\gamma_r(s_r)}{\gamma_{r-1}(s_{r-1})} \frac{1}{\nu^+(s_{r-1} \to s_r)}$$

• $\gamma_r(s_r)$: unnormalized density of s_r

- γ_{r-1}(s_{r-1}) : unnormalized density of s_{r-1}
- v⁺ : forward proposal

This weight update of the standard SMC will lead to a biased estimate for general phylogenetic trees due to an over-counting problem.

The weight update in a standard SMC

WRONG for general trees!

- $\gamma_r(s_r)$: unnormalized density of s_r
- $\gamma_{r-1}(s_{r-1})$: unnormalized density of s_{r-1}
- v^+ : forward proposal

This weight update of the standard SMC will lead to a biased estimate for general phylogenetic trees due to an over-counting problem.

- Two copies of the same partial state: *s*₂₁, *s*₂₂
- Two copies of the same full tree: *s*₃₁, *s*₃₂

- Two copies of the same partial state: *s*₂₁, *s*₂₂
- Two copies of the same full tree: *s*₃₁, *s*₃₂
- Their weights are doubled.
- This will cause biased estimates.

- Two copies of the same partial state: *s*₂₁, *s*₂₂
- Two copies of the same full tree: *s*₃₁, *s*₃₂
- Their weights are doubled.
- This will cause biased estimates.
- Need to downweight the over-counted partial states.

- Two copies of the same partial state: *s*₂₁, *s*₂₂
- Two copies of the same full tree: *s*₃₁, *s*₃₂
- Their weights are doubled.
- This will cause biased estimates.
- Need to downweight the over-counted partial states.

- Two copies of the same partial state: *s*₂₁, *s*₂₂
- Two copies of the same full tree: *s*₃₁, *s*₃₂
- Their weights are doubled.
- This will cause biased estimates.
- Need to downweight the over-counted partial states.

Our correct weight update (in the CSMC algorithm)

$$w_r(s_r) = w_{r-1}(s_{r-1}) \cdot \frac{\gamma_r(s_r)}{\gamma_{r-1}(s_{r-1})} \frac{\nu^{-}(s_r \to s_{r-1})}{\nu^{+}(s_{r-1} \to s_r)}$$

The backward proposal ν^- is

- based on a graded partially ordered set (poset) on an extended combinatorial space
- 1: if there is only one way from s_{r-1} to s_r
- between 0 and 1 if there are multiple ways from s_{r-1} to s_r
 - to downweight the over-counted partial states.

Convergence results

Under weak conditions, for any bounded real-valued function $\varphi : S_r \to \mathbb{R}$, Strong Law of Large Numbers (SLLN)

$$\lim_{K\to\infty}\left(\sum_{k=1}^K W_{rk}\varphi(s_{rk}) - \int \pi_r(ds_r)\varphi(s_r)\right) \xrightarrow{a.s.} 0,$$

K: the number of weighted particles.

Illustration of convergence: simulation

y-axis: Total variation distance of $\hat{\pi}$ to π x-axis: K (# particles)

Experiment on tree inference

y-axis: Partition metric x-axis: time (in log scale)

- # leaves: 10
- # sites: 1000
- # datasets: 1000

Computationally faster 100×: 2 orders of magnitude

Combinatorial Sequential Monte Carlo (CSMC)

Particle MCMC

Inferring both the tree and the evolutionary parameter jointly

 $\pi(\theta, t|\mathcal{Y})$

Particle MCMC (Andrieu et al. 2010)

- Each MCMC iteration uses our proposed CSMC algorithm to approximate the posterior distribution of the phylogenetic tree
- Particle marginal Metropolis-Hastings (PMMH)
- Particle Independent Metropolis-Hastings (PIMH)
- The Particle Gibbs sampler (PGS)
 - requires a special SMC algorithm, conditional SMC.

Particle MCMC

Advantage

Bolder and more efficient move to update t.

Convergence result

These algorithms converges to the true posterior. (Andrieu et al. 2010)

- Assume θ can only take two values: θ₁, θ₂
- Two possible trees: *t*₁, *t*₂
- At each iteration of MCMC, the chain is at one of 4 states:
 (θ₁, t₁), (θ₁, t₂), (θ₂, t₁), (θ₂, t₂)
- The square is a joint distribution
- A good Markov chain should move quickly among the states with high probability mass

- Assume θ can only take two values: θ₁, θ₂
- Two possible trees: t_1, t_2
- At each iteration of MCMC, the chain is at one of 4 states:
 (θ₁, t₁), (θ₁, t₂), (θ₂, t₁), (θ₂, t₂)
- The square is a joint distribution
- A good Markov chain should move quickly among the states with high probability mass

- Assume θ can only take two values: θ₁, θ₂
- Two possible trees: *t*₁, *t*₂
- At each iteration of MCMC, the chain is at one of 4 states:
 (θ₁, t₁), (θ₁, t₂), (θ₂, t₁), (θ₂, t₂)
- The square is a joint distribution
- A good Markov chain should move quickly among the states with high probability mass

- Assume θ can only take two values: θ₁, θ₂
- Two possible trees: *t*₁, *t*₂
- At each iteration of MCMC, the chain is at one of 4 states:
 (θ₁, t₁), (θ₁, t₂), (θ₂, t₁), (θ₂, t₂)
- The square is a joint distribution
- A good Markov chain should move quickly among the states with high probability mass

Advantage of using particle MCMC

Particle marginal Metropolis-Hastings (PMMH)

Each iteration of PMMH

• sample $\theta^* \sim q(\theta \rightarrow \cdot)$,

< ロト < 同ト < ヨト < ヨト -

Particle marginal Metropolis-Hastings (PMMH)

Each iteration of PMMH

- sample $\theta^* \sim q(\theta \rightarrow \cdot)$,
- 2 run our SMC algorithm targeting $\pi_{\theta^*}(t|\mathcal{Y})$, sample $t^* \sim \hat{\pi}_{\theta^*}(\cdot|\mathcal{Y})$, and $\hat{\mathbb{P}}_{\theta^*}(\mathcal{Y})$ is the marginal likelihood obtained from SMC.

Particle marginal Metropolis-Hastings (PMMH)

Each iteration of PMMH

- sample $\theta^* \sim q(\theta \rightarrow \cdot)$,
- 2 run our SMC algorithm targeting $\pi_{\theta^*}(t|\mathcal{Y})$, sample $t^* \sim \hat{\pi}_{\theta^*}(\cdot|\mathcal{Y})$, and $\hat{\mathbb{P}}_{\theta^*}(\mathcal{Y})$ is the marginal likelihood obtained from SMC.
- Solution Θ^* and t^* with the probability

$$\min\left(1,\frac{\hat{\mathbb{P}}_{\theta^*}(\mathcal{Y})p(\theta^*)}{\hat{\mathbb{P}}_{\theta}(\mathcal{Y})p(\theta)}\frac{q\{\theta^*\to\theta\}}{q\{\theta\to\theta^*\}}\right).$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

The Particle Gibbs sampler (PGS)

For each iteration

- Sample $\theta^* \sim p(\cdot|t)$
- Run the conditional CSMC algorithm targeting $\pi_{\theta^*}(t|\mathcal{Y})$ conditional on t and its ancestral lineage.
- Sample $t^* \sim \hat{\pi}_{\theta^*}(\cdot | \mathcal{Y})$.

Estimation of the parameters with PMMH

y-axis: Coverage probability x-axis: Credible intervals

9 80 Coverage probability 80 6 20 0 20 40 60 80 100 n

Credible intervals

- True value: $\theta = 2$
- Using 100 datasets
- Averaged estimate: 1.99
- Standard deviation: 0.25

Combinatorial Sequential Monte Carlo (CSMC)

3 Particle MCMC

Ongoing and Future Work

Ongoing and Future Work

• Harnessing non-Local evolutionary events for tree inference

- Slipped strand mispairing (SSM)
- Joint estimation of Multiple Sequence Alignment (MSA) and phylogeny
- Inferring large scale trees on Graphics Processing Units (GPUs)

An Example of Evolutionary Events

Slipped Strand Mispairing (SSM) \Rightarrow long indels that depend on their contexts

String-valued Continuous Time Markov Chain (CTMC)

- This process is parametrized by the rate of departing from s, λ(s), and the jumping distribution, J(s → ·).
- Waiting time at *s*: $t \sim Exp(\lambda(s))$; $\lambda_i = \lambda(s_i)$.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Summary

A combinatorial SMC method

- Applicable to Bayesian inference in combinatorial spaces
- Converges to the true posterior asymptotically
- Computationally fast

Summary

- A combinatorial SMC method
- Particle MCMC

- Using the proposed SMC within MCMC iterations
- The Markov chain can explore the combinatorial space efficiently
- Accurate estimate of the parameters

Summary

- A combinatorial SMC method
- Particle MCMC
- Future work

- Harnessing non-Local evolutionary events for tree inference
- Joint estimation of MSA and phylogeny
- Inferring large scale trees on GPUs
Co-supervisors

Dr. Alexandre Bouchard-Côté

Dr. Arnaud Doucet

The Natural Sciences and Engineering Research Council of Canada (**NSERC**).

- Andrieu, C., A. Doucet, and R. Holenstein (2010). Particle Markov chain Monte Carlo methods. J. R. Statist. Soc. B 72(3), 269–342.
- Bouchard-Côté, A., S. Sankararaman, and M. I. Jordan (2011). Phylogenetic inference via sequential Monte Carlo. *Systematic Biology*.
- Teh, Y. W., H. Daumé III, and D. M. Roy (2008). Bayesian agglomerative clustering with coalescents. In *Advances in Neural Information Processing Systems (NIPS)*.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト ・