Filtering for discretely observed jump diffusions

Murray Pollock, Adam Johansen, Gareth Roberts

Dept. Of Statistics, University Of Warwick <u>murray.pollock@warwick.ac.uk</u> <u>www.warwick.ac.uk/mpollock</u>

September 20th, 2012

Problem Outline

Latent Process

What is a Diffusion? I

Murray Pollock (University Of Warwick)

Filtering for jump diffusions

What is a Diffusion? II

Murray Pollock (University Of Warwick)

What is a Diffusion? III

Murray Pollock (University Of Warwick)

Filtering for jump diffusions

What is a Diffusion? IV

What is a Diffusion? V

What is a Diffusion? VI

What is a Diffusion? VII

$$dX_t = \mu(X_t) dt + \sigma(X_t) dB_t + dJ_{t-} [\lambda(X_{t-}), \nu(X_{t-})]$$

Murray Pollock (University Of Warwick)

What is a Diffusion? VIII

Murray Pollock (University Of Warwick)

Filtering for jump diffusions

What is a Diffusion? IX

What is a Diffusion? X

What is a Diffusion? XI

What is a Diffusion? XII

What is a Diffusion? XIII

What is a Diffusion? XIV

- Key Problem

Key Problem

- Not possible to simulate entire diffusion sample paths...

Key Problem

- Not possible to simulate entire diffusion sample paths...
- ... Finite representation.

Key Problem

- Not possible to simulate entire diffusion sample paths...
- ... Finite representation.
- ... Transition density inaccessible.

- Key Problem

- Not possible to simulate entire diffusion sample paths...
- ... Finite representation.
- ... Transition density inaccessible.

- What can we simulate?

- . . .

What can we simulate? I

What can we simulate? II

What can we simulate? III

What can we simulate? IV

What can we simulate? V

What can we simulate? VI

"sufficiency"

What can we simulate? VII

"sufficiency"

Murray Pollock (University Of Warwick)

What can we simulate? VIII

What can we simulate? IX

What can we simulate? X

Murray Pollock (University Of Warwick)
What can we simulate? XI

$$\mathrm{d}X_{t} = \mathrm{d}B_{t} + \mathrm{d}J_{t-}\left[\lambda, \nu\left(X_{t-}\right)\right]$$

What can we simulate? XII

$$\mathrm{d}X_{t} = \mathrm{d}B_{t} + \mathrm{d}J_{t-}\left[\lambda, \nu\left(X_{t-}\right)\right]$$

What can we simulate? XIII

What can we simulate? XIV

$$\mathrm{d}X_{t} = \mathrm{d}B_{t} + \mathrm{d}J_{t-}\left[\lambda, v\left(X_{t-}\right)\right]$$

What can we simulate? XV

$$dX_{t} = dB_{t} + dJ_{t-} [\lambda(X_{t-}), \nu(X_{t-})]$$

$$\sup_{t \in [0,T]} \lambda(X_{t}) \stackrel{\uparrow}{\leq} \Lambda < \infty$$

What can we simulate? XVI

$$dX_{t} = dB_{t} + dJ_{t-} [\lambda(X_{t-}), \nu(X_{t-})]$$

$$\sup_{t \in [0,T]} \lambda(X_{t}) \stackrel{\uparrow}{\leq} \Lambda < \infty$$

What can we simulate? XVII

$$dX_{t} = dB_{t} + dJ_{t-} [\lambda(X_{t-}), \nu(X_{t-})]$$

$$\sup_{t \in [0,T]} \lambda(X_{t}) \stackrel{\uparrow}{\leq} \Lambda < \infty$$

What can we simulate? XVIII

$$dX_{t} = dB_{t} + dJ_{t-} [\lambda(X_{t-}), \nu(X_{t-})]$$

$$\sup_{t \in [0,T]} \lambda(X_{t}) \stackrel{\uparrow}{\leq} \Lambda < \infty$$

Murray Pollock (University Of Warwick)

SMC 2012 - Warwick

What can we simulate? XIX

$$dX_{t} = dB_{t} + dJ_{t-} [\lambda(X_{t-}), \nu(X_{t-})]$$

$$\sup_{t \in [0,T]} \lambda(X_{t}) \stackrel{\uparrow}{\leq} \Lambda < \infty$$

What can we simulate? XX

What about everything else?

What about everything else?

- "Discretize" diffusion dynamics.

What about everything else?

- "Discretize" diffusion dynamics.
 - Euler discretization, for instance (PJS09, Jav05).

What about everything else?

- "Discretize" diffusion dynamics.
 - Euler discretization, for instance (PJS09, Jav05).

 $X_{t+\Delta t} = \begin{cases} \mu(X_t) \Delta t + \sigma(X_t) \mathcal{N}(0, \Delta t) & \text{w.p. } e^{-\lambda(X_{t-})\Delta t} \\ \mu(X_t) \Delta t + \sigma(X_t) \mathcal{N}(0, \Delta t) + \nu(X_{t-}) & \text{w.p. } 1 - e^{-\lambda(X_{t-})\Delta t} \end{cases}$

- Miltstein, Shoji & Ozaki,...

What about everything else?

- "Discretize" diffusion dynamics.
 - Euler discretization, for instance (PJS09, Jav05).

- Miltstein, Shoji & Ozaki,...
- Drawbacks?

What about everything else?

- "Discretize" diffusion dynamics.
 - Euler discretization, for instance (PJS09, Jav05).

- Miltstein, Shoji & Ozaki,...
- Drawbacks?
 - Implicit error.

What about everything else?

- "Discretize" diffusion dynamics.
 - Euler discretization, for instance (PJS09, Jav05).

- Miltstein, Shoji & Ozaki,...
- Drawbacks?
 - Implicit error.
 - Computationally expensive.

What about everything else?

- "Discretize" diffusion dynamics.
 - Euler discretization, for instance (PJS09, Jav05).

- Miltstein, Shoji & Ozaki,...
- Drawbacks?
 - Implicit error.
 - Computationally expensive.
 - Moving beyond 'bootstrap'?

What about everything else?

- "Discretize" diffusion dynamics.
 - Euler discretization, for instance (PJS09, Jav05).

- Miltstein, Shoji & Ozaki,...
- Drawbacks?
 - Implicit error.
 - Computationally expensive.
 - Moving beyond 'bootstrap'?
 - Performance evaluated using (finely discretised) simulated data.

- Problem Outline & Motivation.

- Problem Outline & Motivation.
- Area Estimator

- Problem Outline & Motivation.
- Area Estimator
- Exact Algorithm (BPRF06, BPR08, PJR12a)

- Problem Outline & Motivation.
- Area Estimator
- Exact Algorithm (BPRF06, BPR08, PJR12a)
 - Jump Exact Algorithm (CR10, Gon11)

- Problem Outline & Motivation.
- Area Estimator
- Exact Algorithm (BPRF06, BPR08, PJR12a)
 - Jump Exact Algorithm (CR10, Gon11)
- Filtering for Jump Diffusions (FPR08, FPRS10, PJR12b)

- Problem Outline & Motivation.
- Area Estimator
- Exact Algorithm (BPRF06, BPR08, PJR12a)
 - Jump Exact Algorithm (CR10, Gon11)
- Filtering for Jump Diffusions (FPR08, FPRS10, PJR12b)
- Other (Related) Work. (PJR12a, PJR12b)

- Problem Outline & Motivation.
- Area Estimator
- Exact Algorithm (BPRF06, BPR08, PJR12a)
 - Jump Exact Algorithm (CR10, Gon11)
- Filtering for Jump Diffusions (FPR08, FPRS10, PJR12b)
- Other (Related) Work. (PJR12a, PJR12b)
- Questions (& Hopefully) Answers.

Area Estimator

Goal...

Evaluate $\mathbb{E}(P)$ for some r.v. $P \in \mathbb{R}_+$

Goal...

■ Evaluate $\mathbb{E}(P)$ for some r.v. $P \in \mathbb{R}_+$ Suppose for now...

■ *P* ∈ [0, 1]

 \blacksquare $u \sim U[0, 1]$

Goal...

Evaluate $\mathbb{E}(P)$ for some r.v. $P \in \mathbb{R}_+$

Suppose for now...

- *P* ∈ [0, 1]
- \blacksquare $u \sim U[0, 1]$

Consider a biased coin C_p ...

- Heads (1) if $u \leq P$
- Tails (0) if *u* > *P*

Why is this interesting...?

$$\mathbb{P}(C_{p} = 1) = \mathbb{E}(\mathbb{1}(u \le P)) \qquad - \mathbb{P}(X) = \mathbb{E}(\mathbb{1}_{X})$$
$$= \mathbb{E}(\mathbb{E}(\mathbb{1}(u \le P)|P)) \qquad - \text{Tower Property}$$
$$= \mathbb{E}(\mathbb{P}(C_{p} = 1|P)) \qquad - \mathbb{P}(X) = \mathbb{E}(\mathbb{1}_{X})$$
$$= \mathbb{E}(P)$$

To estimate $\mathbb{E}(P)$ unbiasedly we can simply throw a C_p coin

$$\mathbb{E}(\boldsymbol{P}) := \mathbb{E}\left[\exp\left\{-\int_{0}^{T}f(t)\,\mathrm{d}t\right\}\right]$$

$$\mathbb{E}(\boldsymbol{P}) := \mathbb{E}\left[\exp\left\{-\int_{0}^{T}f(t)\,\mathrm{d}t\right\}\right]$$

■ If
$$0 \le f(t) \le M$$
 then $P := \exp\left\{-\int_0^T f(t) dt\right\} \in [0, 1]$

$$\mathbb{E}(\boldsymbol{P}) := \mathbb{E}\left[\exp\left\{-\int_{0}^{T}f(t)\,\mathrm{d}t\right\}\right]$$

If $0 \le f(t) \le M$ then $P := \exp\left\{-\int_0^T f(t) dt\right\} \in [0, 1]$ $\mathbb{E}(P) = P \Rightarrow \text{ find and flip } C_p$

$$\mathbb{E}(\boldsymbol{P}) := \mathbb{E}\left[\exp\left\{-\int_{0}^{T}f(t)\,\mathrm{d}t\right\}\right]$$

If $0 \le f(t) \le M$ then $P := \exp\left\{-\int_0^T f(t) dt\right\} \in [0, 1]$ $\mathbb{E}(P) = P \Rightarrow \text{ find and flip } C_p$

Consider a Poisson process with instantaneous rate f(t) on [0, T],

$$\mathbb{E}(\boldsymbol{P}) := \mathbb{E}\left[\exp\left\{-\int_{0}^{T}f(t)\,\mathrm{d}t\right\}\right]$$

■ If $0 \le f(t) \le M$ then $P := \exp\left\{-\int_0^T f(t) dt\right\} \in [0, 1]$ ■ $\mathbb{E}(P) = P \Rightarrow \text{ find and flip } C_p$

Consider a Poisson process with instantaneous rate f(t) on [0, T],

$$\mathbb{P}(\mathcal{N}=0) = \exp\left\{-\int_0^T f(t) \, \mathrm{d}t\right\}$$
Let's consider an example... Suppose we want to evaluate,

$$\mathbb{E}(\boldsymbol{P}) := \mathbb{E}\left[\exp\left\{-\int_{0}^{T}f(t)\,\mathrm{d}t\right\}\right]$$

If $0 \le f(t) \le M$ then $P := \exp\left\{-\int_0^T f(t) dt\right\} \in [0, 1]$ $\mathbb{E}(P) = P \Rightarrow \text{ find and flip } C_p$

Consider a Poisson process with instantaneous rate f(t) on [0, T],

$$\mathbb{P}(\mathcal{N}=0) = \exp\left\{-\int_0^T f(t)\,\mathrm{d}t\right\}$$

 $\square \mathbb{P}(\mathcal{N}=0) \equiv \mathcal{P} = \mathbb{E}(\mathcal{P})$

The algorithm...

Retrospective Area Estimator II

Retrospective Area Estimator III

Retrospective Area Estimator IV

Retrospective Area Estimator V

Retrospective Area Estimator VI

Retrospective Area Estimator VII

Retrospective Area Estimator VIII

Retrospective Area Estimator IX

Retrospective Area Estimator X

Retrospective Area Estimator XI

Retrospective Area Estimator XII

Retrospective Area Estimator XIII

Retrospective Area Estimator XIV

Retrospective Area Estimator XV

Retrospective Area Estimator XVI

Retrospective Area Estimator XVII

Retrospective Area Estimator XVIII

Retrospective Area Estimator XIX

Retrospective Area Estimator XX

Retrospective Area Estimator XXI

Retrospective Area Estimator XXII

- First consider no jumps

- First consider no jumps

- Transform Diffusion - Lamperti Transform

 $\mathrm{d}X_t = \alpha(X_t)\,\mathrm{d}t + \,\mathrm{d}B_t$

- First consider no jumps

- Transform Diffusion - Lamperti Transform

$\mathrm{d}X_t = \alpha(X_t)\,\mathrm{d}t + \,\mathrm{d}B_t$

- Propose sample paths (which can be simulated) - Brownian motion.

- First consider no jumps

- Transform Diffusion - Lamperti Transform

$\mathrm{d}X_t = \alpha(X_t)\,\mathrm{d}t + \,\mathrm{d}B_t$

- Propose sample paths (which can be simulated) Brownian motion.
 - Absolutely continuous.

- First consider no jumps

- Transform Diffusion - Lamperti Transform

$\mathrm{d}X_t = \alpha(X_t)\,\mathrm{d}t + \,\mathrm{d}B_t$

- Propose sample paths (which can be simulated) Brownian motion.
 - Absolutely continuous.
- Accept or reject.

Transition Density I

Transition Density II

Transition Density III

Transition Density IV

$$\mathbb{E}_{\mathbb{W}_{s,t}^{x,y}}\left[\frac{\mathrm{d}\mathbb{Q}_{s}^{x}}{\mathrm{d}\mathbb{W}_{s}^{x}}(X)\right] = \mathbb{E}_{\mathbb{W}_{s,t}^{x,y}}\left[\frac{p_{t-s}(x,y)}{w_{t-s}(x,y)}\frac{\mathrm{d}\mathbb{Q}_{s,t}^{x,y}}{\mathrm{d}\mathbb{W}_{s,t}^{x,y}}(X)\right]$$
Expectation wrt
Conditioned
Dominating Measure

Transition Density IX

$$\mathbb{E}_{\mathbb{W}^{x,y}_{s,t}}\left[\frac{\mathrm{d}\mathbb{Q}^{x}_{s}}{\mathrm{d}\mathbb{W}^{x}_{s}}(X)\right] = \mathbb{E}_{\mathbb{W}^{x,y}_{s,t}}\left[\frac{p_{t-s}(x,y)}{w_{t-s}(x,y)}\frac{\mathrm{d}\mathbb{Q}^{x,y}_{s,t}}{\mathrm{d}\mathbb{W}^{x,y}_{s,t}}(X)\right]$$
Expectation wrt
Conditioned
Dominating Measure

Murray Pollock (University Of Warwick)

$$p_{t-s}(x,y) = w_{t-s}(x,y) \mathbb{E}_{\mathbb{W}_{s,t}^{x,y}} \left[\frac{d\mathbb{Q}_s^x}{d\mathbb{W}_s^x}(X) \right]$$
f
Transition Density

Murray Pollock (University Of Warwick)

Transition Density XI

Transition Density XII

$$p_{t-s}(x,y) = \mathcal{N}_{t-s}(y-x)\exp\{A(X_t) - A(X_s) - \ell(t-s)\} \mathbb{E}_{\mathbb{W}_{s,t}^{x,y}}\left[\exp\left\{-\int_s^t \phi(X_u) \,\mathrm{d}u\right\}\right]$$
Transition Density

$$p_{t-s}(x,y) = \underbrace{N_{t-s}(y-x)\exp\left\{A(X_t) - A(X_s) - \ell(t-s)\right\}}_{h_{t-s}(x,y)} \mathbb{E}_{\mathbb{W}_{s,t}^{x,y}}\left[\exp\left\{-\int_s^t \phi(X_u) \, \mathrm{d}u\right\}\right]$$
Transition Density
where, $\phi(X_u) := \frac{\alpha^2(X_u) + \alpha'(X_u)}{2} - \ell$

Exact Algorithm

- 1 Simulate end point $y \sim h$
- 2 Propose sample bridge
- 3 Accept or Reject proposed sample bridge (and GOTO 1)

Exact Algorithm I

Exact Algorithm II

Exact Algorithm III

Exact Algorithm IV

Exact Algorithm V

Exact Algorithm VI

Exact Algorithm VII

Exact Algorithm VIII

Exact Algorithm IX

Exact Algorithm X

Exact Algorithm XI

Random Weights II

Murray Pollock (University Of Warwick)

Random Weights III

Murray Pollock (University Of Warwick)

$$\mathbb{E}_{\mathbb{W}_{s,t}^{x,y}}\left[\exp\left\{-\int_{s}^{t}\phi(X_{u})\,\mathrm{d}u\right\}\right]$$

$$\mathbb{E}_{\mathbb{W}_{s,t}^{x,y}}\left[\exp\left\{-\int_{s}^{t}\phi(X_{u})\,\mathrm{d}u\right\}\right]$$

What if $\phi(X_u) \in [0, M]$?

$$\mathbb{E}_{\mathbb{W}_{s,t}^{x,y}}\left[\exp\left\{-\int_{s}^{t}\phi(X_{u})\,\mathrm{d}u\right\}\right]$$

- What if $\phi(X_u) \in [0, M]$?
 - Broader class of Poisson Estimators

$$\mathbb{E}_{\mathbb{W}_{s,t}^{x,y}}\left[\exp\left\{-\int_{s}^{t}\phi(X_{u})\,\mathrm{d}u\right\}\right]$$

- What if $\phi(X_u) \in [0, M]$?
 - Broader class of Poisson Estimators
 - Unbiased
 - Finite Variance (Generalised Poisson Estimators (FPR08))
 - Positivity (Wald Generalised Poisson Estimator (FPRS10))

$$\mathbb{E}_{\mathbb{W}_{s,t}^{x,y}}\left[\exp\left\{-\int_{s}^{t}\phi(X_{u})\,\mathrm{d}u\right\}\right]$$

- What if $\phi(X_u) \in [0, M]$?
 - Broader class of Poisson Estimators
 - Unbiased
 - Finite Variance (Generalised Poisson Estimators (FPR08))
 - Positivity (Wald Generalised Poisson Estimator (FPRS10))
 - Auxiliary Poisson Estimators (APES (PJR12b))
 - Generalised APES (GRAPES (PJR12b) Jump Diffusions)

$\pi_{\theta}(\boldsymbol{x}_t | \boldsymbol{x}_{t-1}, \boldsymbol{y}_t)$

 $\pi_{\theta}(x_t|x_{t-1}, y_t) = g_{\theta}(y_t|x_t)f_{\theta}(x_t|x_{t-1})$

$$\pi_{\theta}(\mathbf{x}_t | \mathbf{x}_{t-1}, \mathbf{y}_t) = \mathbf{g}_{\theta}(\mathbf{y}_t | \mathbf{x}_t) \mathbf{f}_{\theta}(\mathbf{x}_t | \mathbf{x}_{t-1})$$
$$= \mathbf{g}_{\theta}(\mathbf{y}_t | \mathbf{x}_t) \mathbf{h}_{t-(t-1)}(\mathbf{x}_{t-1}, \mathbf{x}_t) \mathbb{E}_{\mathbb{W}_{t-1,t}^{\mathbf{x}_{t-1}, \mathbf{x}_t}} \left[\exp\left\{ -\int_{t-1}^t \phi(\mathbf{X}_u) \, \mathrm{d}u \right\} \right]$$

$$\pi_{\theta}(\mathbf{x}_{t}|\mathbf{x}_{t-1}, \mathbf{y}_{t}) = \underline{g}_{\theta}(\mathbf{y}_{t}|\mathbf{x}_{t})f_{\theta}(\mathbf{x}_{t}|\mathbf{x}_{t-1})$$

$$= \underbrace{\underline{g}_{\theta}(\mathbf{y}_{t}|\mathbf{x}_{t})h_{t-(t-1)}(\mathbf{x}_{t-1}, \mathbf{x}_{t})}_{\text{proposal}} \underbrace{\mathbb{E}_{\mathbb{W}_{t-1,t}^{\mathbf{x}_{t-1},\mathbf{x}_{t}}}\left[\exp\left\{-\int_{t-1}^{t}\phi(\mathbf{X}_{u})\,\mathrm{d}u\right\}\right]}_{\text{weight}}$$

Jump Transition Density

Murray Pollock (University Of Warwick)

$$p_{t-s}(x,y) = \mathbb{E}_{\mathbb{S}} \mathbb{E}_{\mathbb{W}_{s,t}^{x,y} | \mathbb{S}} \left[w_{t-s}(x,y) \frac{d\mathbb{Q}_{s}^{x}}{d\mathbb{W}_{s}^{x}}(X) \middle| t_{J_{1}}, \dots, t_{J_{M}}, \Delta X_{t_{J_{1}}}, \dots, \Delta X_{t_{J_{M}}} \right]$$

Transition Density

Jump Exact Algorithm II

Jump Exact Algorithm IV

Murray Pollock (University Of Warwick)

Jump Exact Algorithm V

Sequentially evaluate diffusion at dominating jump times

Jump Exact Algorithm VII

Example

Murray Pollock (University Of Warwick)

An Example...

Exact Particle Filtering for Jump Diffusions In Practice!

Example: Particle Filtering for Jump Diffusions II

State Space Dynamics

 $\begin{array}{c} \hline X_0 \sim N(0,5) & dX_t = \sin(X_t) \, dt + dB_t + dJ_t \\ Y_t | (X_t = x_t) \sim N(x_t, 10) & \lambda(X_t) = \cos^2(X_t) \\ t \in [0, 100] & \mu(X_t) \sim N(\sin(X_t), 1) \end{array}$

Example: Particle Filtering for Jump Diffusions III

Example: Particle Filtering for Jump Diffusions IV

Example: Particle Filtering for Jump Diffusions V

Example: Particle Filtering for Jump Diffusions VI

Variance Reduction with Increased Particles

Variance Reduction with Increased Computation

Murray Pollock (University Of Warwick)

SMC 2012 – Warwick

Murray Pollock (University Of Warwick)

SMC 2012 – Warwick

Current Work

- Poisson Estimator
 - As discussed...
 - $\min_{u \in [s,t]} \alpha^2(X_u) + \alpha'(X_u)$

Current Work

- Poisson Estimator

- As discussed...
- $\min_{u \in [s,t]} \alpha^2(X_u) + \alpha'(X_u)$
- Exact Algorithm
 - Alternative to EA3 (EA4 'Mondrian' EA)
 - EA3 Implementation
 - Jump EA

Current Work

- Poisson Estimator

- As discussed...
- $\min_{u \in [s,t]} \alpha^2(X_u) + \alpha'(X_u)$
- Exact Algorithm
 - Alternative to EA3 (EA4 'Mondrian' EA)
 - EA3 Implementation
 - Jump EA

- e-Strong Simulation (BPR12)

- Initialisation
- Various Sampling Steps
- Extensions

- [BPR08] A. Beskos, O. Papaspiliopoulos, and G. O. Roberts. A factorisation of diffusion measure and finite sample path constructions. *Methodology and Computing in Applied Probability*, 10:85–104, 2008.
- [BPR12] A. Beskos, S. Peluchetti, and G. O. Roberts. ϵ -strong simulation of the brownian path. *Bernoulli.*, 2012.
- [BPRF06] A. Beskos, O. Papaspiliopoulos, G.O. Roberts, and P. Fearnhead. Exact and computationally effcient likelihood-based estimation for discretely observed diffusion processes (with discussion). *Journal of the Royal Statistical Society, Series B (Statistical Methodology).*, 68(3):333–382, 2006.

References II

- [CR10] B. Casella and G. O. Roberts. Exact simulation of jump-diffusion processes with monte carlo applications. *Methodology and Computing in Applied Probability*, 13(3):449–473, 2010.
- [FPR08] P. Fearnhead, O. Papaspiliopoulos, and G. O. Roberts. Particle filters for partially-observed diffusions. *Journal of the Royal Statistical Society, Series B (Statistical Methodology).*, 70(4):755–777, 2008.
- [FPRS10] P. Fearnhead, O. Papaspiliopoulos, G. Roberts, and A. Stuart. Random-weight particle filtering of continuous time processes. Journal of the Royal Statistical Society, Series B (Statistical Methodology)., 72(4):497–512, 2010.
 - [Gon11] F. Gonçalves. *Exact simulation and Monte Carlo inference for jump-diffusion processes*. PhD thesis, Dept. Of Statistics, University of Warwick., 2011.

[Jav05] A. Javaheri. Inside Volatility Arbitrage. Wiley., 1st edition, 2005.

- [PJR12a] M. Pollock, A. M. Johansen, and G. O. Roberts. EA4. Technical report, CRISM, Department of Statistics, University of Warwick., 2012.
- [PJR12b] M. Pollock, A. M. Johansen, and G. O. Roberts. Exact Particle Filters. Technical report, CRISM, Department of Statistics, University of Warwick., 2012.
 - [PJS09] N. Polson, M. Johannes, and J. Stroud. Optimal filtering of jump-diffusions: Extracting latent states from asset prices. *Review of Financial Studies*, 22(7):2259–2299, 2009.