THE UNIVERSITY OF WARWICK

*e***-Strong Simulation of Diffusions**

Murray Pollock Supervisors: Adam Johansen & Gareth Roberts

1 - Problem Outline

1.1 - The Goal...??? Simulate upper and lower convergent dominating processes $(X^{\downarrow} \text{ and } X^{\uparrow})$ which enfold of points the behaviour of the sample path is unknown... almost surely diffusion sample paths over some finite interval.

1.2 - Key Point... Diffusion sample paths can only be simulated at a finite number of points. Between any pair

1.3 - Applications... Monte Carlo Integration, Option Pricing, Simulating Hitting Times, Extrema etc...

2 - Key Ideas

2.1 - Rejection Sampling

2.2 - Expectations of (+)ve Random Variables

2.3 - Retrospective Inversion Sampling

CRISM

- Simulate C_p to unbiasedly evaluate $\mathbb{E}(P)$!!

2.4 - **Exact Algorithm** - The transition density of a diffusion (typically) can not be evaluated analytically.

- Now, consider a Poisson process with instantaneous rate $\phi(\cdot)$ on the interval [s, t],

Μ

3 - Algorithm

4 - Example

Department of Statistics, University of Warwick, Coventry, UK, CV4 7AL