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Bayesian model comparison

Basic formulas
Given a collection of (at most countable) models {𝑀𝑘}𝑘∈𭒦,

𝜋(𝑀𝑘|𝑦) =
𝜋(𝑀𝑘)𝑝(𝑦|𝑀𝑘)
𝑝(𝑦)

𝑝(𝑦|𝑀𝑘) = ∫
𝛩𝑘
𝜋(𝜃𝑘|𝑀𝑘)𝑝(𝑦|𝜃𝑘,𝑀𝑘) d 𝜃𝑘

Common approaches
Evaluate posterior model probabilities 𝜋(𝑀𝑘|𝑦) directly
Evaluate marginal likelihood 𝑝(𝑦|𝑀𝑘) individually
Evaluate Bayes factors 𝑝(𝑦|𝑀𝑘+1)𝑝(𝑦|𝑀𝑘)

sequentially
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Sequential Monte Carlo Approach for Bayesian model
comparison

What do we want?
Better estimates at less computational cost with less manual calibration

Better estimates
Unbiased or almost unbiased
Consistent
Smaller variance or smaller mse if biased

Less computational cost
Smaller number of samples
Leverage more efficient computational resources – parallel computing

Less manual calibration
Generic approach
Adaptive strategies
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Sequential Monte Carlo

Initialization from 𝜂0(𝑋) for 𝜋0(𝑋)

Iterate over intermediate distributions {𝜋𝑡(𝑋) = 𝛾𝑡(𝑋)/𝑍𝑡}𝑇𝑡=1

Terminiate at 𝜋𝑇(𝑋) and estimation

Draw {𝑋(𝑖)0 }
𝑁
𝑖=1 from 𝜂0

Compute {𝑊(𝑖)0 }
𝑁
𝑖=1

Resampling if necessary
Draw𝑋(𝑖)𝑡 from𝐾𝑡(𝑋

(𝑖)
𝑡−1, ⋅) for 𝑖 = 1,… ,𝑁

Compute incremental weights {�̃�(𝑖)𝑡 (𝑋
(𝑖)
𝑡−1, 𝑋
(𝑖)
𝑡 )}
𝑁
𝑖=1

Compute normalized weights {𝑊(𝑖)𝑡 }
𝑁
𝑖=1

𝜋𝑁𝑡 (d 𝑥) = ∑
𝑁
𝑖=1𝑊
(𝑖)
𝑡 𝛿𝑋(𝑖)𝑡 (d 𝑥) approxiamte 𝜋𝑡(d 𝑥)

�̂�𝑡
𝑍𝑡−1
= ∑𝑁𝑖=1𝑊

(𝑖)
𝑡−1�̃�
(𝑖)
𝑡 estimates the ratio of normalizing constants recusively
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Sequential Monte Carlo – Evaluate 𝜋(𝑀𝑘|𝑦) directly

Initialization from 𝜂0(𝑋) for 𝜋0(𝑋)

Iterate over intermediate distributions {𝜋𝑡(𝑋) = 𝛾𝑡(𝑋)/𝑍𝑡}𝑇𝑡=1

Terminiate at 𝜋𝑇(𝑋) and estimation

𝜂0(𝜃0,𝑀0) = 𝜋0(𝜃0,𝑀0) ∝ 𝜋(𝑀0)𝜋(𝜃0|𝑀0)

𝜋𝑡(𝜃𝑡,𝑀𝑡) ∝ 𝜋(𝑀𝑡)𝜋(𝜃𝑡|𝑀𝑡)𝑝(𝑦|𝜃𝑡,𝑀𝑡)𝛼(𝑡/𝑇)
Markov kernel𝐾𝑡(𝑋𝑡−1, ⋅) requires both within- and inter-model moves

Estimate 𝜋(𝑀𝑘|𝑦) using particle approximation to 𝜋𝑇(𝜃𝑇,𝑀𝑇)
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Sequential Monte Carlo – Evaluate 𝜋(𝑦|𝑀𝑘) individually

Initialization from 𝜂0(𝑋) for 𝜋0(𝑋)
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𝜋𝑡(𝜃𝑡) ∝ 𝜋(𝜃𝑡|𝑀𝑘)𝑝(𝑦1∶𝑡|𝜃𝑡,𝑀𝑘) (Chopin, 2002)

Markov kernel𝐾𝑡(𝑋𝑡−1, ⋅) only within-model moves

Estimate 𝑝(𝑦|𝑀𝑘), the normalizing constant ratio 𝑍𝑇/𝑍0
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Sequential Monte Carlo – Evaluate 𝑝(𝑦|𝑀𝑘+1)
𝑝(𝑦|𝑀𝑘)

sequentially

Initialization from 𝜂0(𝑋) for 𝜋0(𝑋)

Iterate over intermediate distributions {𝜋𝑡(𝑋) = 𝛾𝑡(𝑋)/𝑍𝑡}𝑇𝑡=1
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Sequential Monte Carlo – Path sampling estimator

Basic identity
Given a family of distributions {𝜋𝛼(𝑥) = 𝑞𝛼(𝑥)/𝑍𝛼}𝛼∈[0,1]

log(
𝑍1
𝑍0
) = ∫

1

0
𝔼𝛼[
d log 𝑞𝛼(𝑋)
d 𝛼
] d𝛼

Using smc samples
Particle approximations of the expectations from smc samplers
Numerical integration to approximate the estimator

Andrew Gelman and Xiao-Li Meng (1998). “Simulating normalizing
constants: From importance sampling to bridge sampling to path
sampling”. In: Statistical Science 13.2, pp. 163–185
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Simple illustrative example: Gaussian mixture model

Model
Determine the number of components 𝑘, which define the model by

𝑦𝑖|𝜃𝑘 ∼
𝑘

∑
𝑗=1
𝜔𝑗𭒩(𝜇𝑗, 𝜆−1𝑗 ) 𝑖 = 1,… , 𝑛

𝜇𝑗 ∼𭒩(𝜉, 𝜅−1) 𝜆𝑗 ∼ 𭒢(𝜈, 𝜒) 𝜔1∶𝑘 ∼ 𭒟(𝜌)

Pierre Del Moral, Arnaud Doucet, and Ajay Jasra (2006). “Sequential
Monte Carlo samplers”. In: Journal of Royal Statistical Society B 68.3,
pp. 411–436



Simple illustrative example: Gaussian mixture model
Comparison of estimates of Bayes factor 𝐵5,4
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●
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●●
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Path Sam.

Standard

▶ ais & smc: 1,000 particles, 100 time steps, 𝛼(𝑡/𝑇) = (𝑡/𝑇)2

▶ rjmcmc: 100,000 iterations



Adaptive strategies – Specification of distributions
Purpose
Create a smooth sequence of distributions that reduces discrepancy
between 𝜋𝑡−1 and 𝜋𝑡

Assumption
The criterion for adaptation can be calculated prior to the sampling of
next iteration.
For example, �̃�𝑡(𝑋𝑡−1, 𝑋𝑡) ∝ 𝜋𝑡(𝑋𝑡−1)/𝜋𝑡−1(𝑋𝑡) when𝐾𝑡(𝑋𝑡−1, ⋅) is 𝜋𝑡
invariant

Why does it matter?
“the variance of (�̃�𝑡) will typically be high if the discrepancy between 𝜋𝑡−1
and 𝜋𝑡 is large even if the kernel𝐾𝑡 mixes very well” (Del Moral, Doucet,
and Jasra, 2006)
Recall normalizing constants estimator relates directly to �̃�𝑡
Desired effect of the adaptive strategy
Independent of resampling strategies – it is a property of the sequence of
distributions
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Adaptive strategies – Specification of distributions

Using ess (Jasra et al., 2008; Schäfer and Chopin, 2011)

ess𝑡 =
(∑𝑁𝑗=1𝑊

(𝑗)
𝑡−1�̃�
(𝑗)
𝑡 )
2

∑𝑁𝑗=1(𝑊
(𝑗)
𝑡−1)2(�̃�

(𝑗)
𝑡 )2

At time 𝑡 − 1, find 𝛼(𝑡/𝑇) such that ess𝑡 equal a specific value

Caveats
The sequence of distributions depends on the resampling strategies
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Simple illustrative example: Gaussian mixture model

Consider a smc sampler on {𝜋𝑡(𝜃𝑡)}𝑇𝑡=0

𝜋𝑡(𝜃𝑡) ∝ 𝜋(𝜃𝑡|𝑀𝑘)𝑝(𝑦|𝜃𝑡,𝑀𝑘)𝛼(𝑡/𝑇)

Problem
At each 𝛼(𝑡/𝑇), find the 𝛥𝛼(𝑡/𝑇) = 𝛼((𝑡 + 1)/𝑇) − 𝛼(𝑡/𝑇). How does 𝛥𝛼
evolve along with 𝛼?
Does the adaptive specification of the sequence of distributions, 𝛼(𝑡/𝑇)
improve the normalizing constant estimator?

Benchmark
Comparison to 𝛼(𝑡/𝑇) = t/T
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Simple illustrative example: Gaussian mixture model
Change of path sampling integrands (log 𝑝(𝑦|𝜃𝑡,𝑀𝑘)
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Adaptive strategies – Specification of distributions
Using ess– Resampling every iteration (Schäfer and Chopin, 2011)
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Adaptive strategies – Specification of distributions
Using ess– Resampling only when ess < 𝑁/2 (Jasra et al., 2008)
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Adaptive strategies – Specification of distributions
Using ess– Resampling only when ess < 𝑁/2 (Jasra et al., 2008)
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Adaptive strategies – Specification of distributions

A new approach: cess– Conditional ess

cess𝑡 =
(∑𝑁𝑗=1𝑊

(𝑗)
𝑡−1�̃�
(𝑗)
𝑡 )
2

∑𝑁𝑗=1
1
𝑁𝑊
(𝑗)
𝑡−1(�̃�
(𝑗)
𝑡 )2

Properties
Approximate the ess as if resampling at time 𝑡 − 1 without actually doing it
Produce the same sequence regardless of resampling strategy
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Adaptive strategies – Specification of distributions
Using cess– Resampling every iteration
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Adaptive strategies – Specification of distributions
Using cess– Resampling only when ess < 𝑁/2
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Adaptive strategies – Specification of distributions
Using cess– Resampling only when ess < 𝑁/2
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Adaptive strategies – Calibrating rwm or mala proposal scales

Estimating moments of parameters from particle approximations
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Performance: smc vs ais

Annealed importance resampling
smc without resampling
Some argues smc does not improve results for normalizing constant
estimates

Effects of resampling in estimating normalizing constants
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Performance: Path sampling using smc vs Population-mcmc

Population-mcmc with path sampling estimator (Calderhead and
Girolami, 2009)
Sampling parallel mcmc chains for 𝜋(𝑋0∶𝑇) = ∏𝑇𝑡=0 𝜋𝑡(𝑋𝑡), with local
mixing and global swap/crossover moves

−42

−41

−40

−39

−38

250000 500000 750000 1000000
Number of Samples

E
st

. o
f Z

Method

PMCMC

SMC

smc: Fix number of particles𝑁 = 1000; Population-mcmc: Fix number of
iterations𝑁 = 10000
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Performance: Scalability on gpu parallelization
Implemented with OpenCL on NVIDIA Quadro 2000
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Summary

Bayesian model comparison via Sequential Mote Carlo

▶ Can be used as drop-in replacement where conventional mcmc,
rjmcmc, etc., were used
▶ Requires minimal manual calibration
▶ Can provide better and more robust performance
▶ Can be parallelized straightforwardly



Thank You!
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