An Adaptive Sequential Monte Carlo Approach for Bayesian Model Comparison

Yan Zhou Adam M. Johansen John A. D. Aston

University of Warwick

September 21, 2012

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Outline

Bayesian model comparison

Sequential Monte Carlo Approach

Adaptive strategies

Some performance examples

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Summary

Bayesian model comparison

Basic formulas

Given a collection of (at most countable) models $\{M_k\}_{k \in \mathcal{K}}$,

$$\pi(M_k|\boldsymbol{y}) = \frac{\pi(M_k)p(\boldsymbol{y}|M_k)}{p(\boldsymbol{y})}$$
$$p(\boldsymbol{y}|M_k) = \int_{\Theta_k} \pi(\theta_k|M_k)p(\boldsymbol{y}|\theta_k, M_k) \, \mathrm{d}\theta_k$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Bayesian model comparison

Basic formulas

Given a collection of (at most countable) models $\{M_k\}_{k \in \mathcal{K}}$,

$$\pi(M_k|\mathbf{y}) = \frac{\pi(M_k)p(\mathbf{y}|M_k)}{p(\mathbf{y})}$$
$$p(\mathbf{y}|M_k) = \int_{\Theta_k} \pi(\theta_k|M_k)p(\mathbf{y}|\theta_k, M_k) \, \mathrm{d}\theta_k$$

(日) (日) (日) (日) (日) (日) (日) (日)

Common approaches

Evaluate posterior model probabilities $\pi(M_k|\mathbf{y})$ directly Evaluate marginal likelihood $p(\mathbf{y}|M_k)$ individually Evaluate Bayes factors $\frac{p(\mathbf{y}|M_{k+1})}{p(\mathbf{y}|M_k)}$ sequentially

What do we want? Better estimates at less computational cost with less manual calibration

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

What do we want?

Better estimates at less computational cost with less manual calibration

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Better estimates

Unbiased or almost unbiased Consistent

Smaller variance or smaller MSE if biased

What do we want?

Better estimates at less computational cost with less manual calibration

Better estimates

Unbiased or almost unbiased Consistent Smaller variance or smaller MSE if biased

Less computational cost

Smaller number of samples

Leverage more efficient computational resources - parallel computing

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

What do we want?

Better estimates at less computational cost with less manual calibration

Better estimates

Unbiased or almost unbiased Consistent Smaller variance or smaller MSE if biased

Less computational cost

Smaller number of samples Leverage more efficient computational resources – parallel computing

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Less manual calibration

Generic approach Adaptive strategies

Initialization from $\eta_0(X)$ for $\pi_0(X)$

Iterate over intermediate distributions $\{\pi_t(X) = \gamma_t(X)/Z_t\}_{t=1}^T$

Terminiate at $\pi_T(X)$ and estimation

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Draw $\{X_0^{(i)}\}_{i=1}^N$ from η_0 Compute $\{W_0^{(i)}\}_{i=1}^N$

Iterate over intermediate distributions $\{\pi_t(X) = \gamma_t(X)/Z_t\}_{t=1}^T$

Terminiate at $\pi_T(X)$ and estimation

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Draw $\{X_0^{(i)}\}_{i=1}^N$ from η_0 Compute $\{W_0^{(i)}\}_{i=1}^N$

Resampling if necessary Draw $X_t^{(i)}$ from $K_t(X_{t-1}^{(i)}, \cdot)$ for i = 1, ..., NCompute incremental weights $\{\tilde{w}_t^{(i)}(X_{t-1}^{(i)}, X_t^{(i)})\}_{i=1}^N$ Compute normalized weights $\{W_t^{(i)}\}_{i=1}^N$

Terminiate at $\pi_T(X)$ and estimation

・ロト・日本・日本・日本・日本・日本

Draw $\{X_0^{(i)}\}_{i=1}^N$ from η_0 Compute $\{W_0^{(i)}\}_{i=1}^N$

Resampling if necessary Draw $X_t^{(i)}$ from $K_t(X_{t-1}^{(i)}, \cdot)$ for i = 1, ..., NCompute incremental weights $\{\tilde{w}_t^{(i)}(X_{t-1}^{(i)}, X_t^{(i)})\}_{i=1}^N$ Compute normalized weights $\{W_t^{(i)}\}_{i=1}^N$

 $\begin{aligned} \pi_t^N(\mathrm{d}\,x) &= \sum_{i=1}^N W_t^{(i)} \delta_{X_t^{(i)}}(\mathrm{d}\,x) \text{ approxiamte } \pi_t(\mathrm{d}\,x) \\ \frac{\hat{Z}_t}{Z_{t-1}} &= \sum_{i=1}^N W_{t-1}^{(i)} \tilde{w}_t^{(i)} \text{ estimates the ratio of normalizing constants recusively} \end{aligned}$

▲□▶▲□▶▲≡▶▲≡▶ ≡ のへの

Initialization from $\eta_0(X)$ for $\pi_0(X)$

Iterate over intermediate distributions $\{\pi_t(X) = \gamma_t(X)/Z_t\}_{t=1}^T$

Terminiate at $\pi_T(X)$ and estimation

$$\eta_0(\theta_0, M_0) = \pi_0(\theta_0, M_0) \propto \pi(M_0)\pi(\theta_0|M_0)$$

Iterate over intermediate distributions $\{\pi_t(X) = \gamma_t(X)/Z_t\}_{t=1}^T$

Terminiate at $\pi_T(X)$ and estimation

$$\eta_0(\theta_0, M_0) = \pi_0(\theta_0, M_0) \propto \pi(M_0)\pi(\theta_0|M_0)$$

 $\pi_t(\theta_t, M_t) \propto \pi(M_t)\pi(\theta_t|M_t)p(y|\theta_t, M_t)^{\alpha(t/T)}$ Markov kernel $K_t(X_{t-1}, \cdot)$ requires both within- and inter-model moves

Terminiate at $\pi_T(X)$ and estimation

$$\eta_0(\theta_0, M_0) = \pi_0(\theta_0, M_0) \propto \pi(M_0) \pi(\theta_0 | M_0)$$

 $\pi_t(\theta_t, M_t) \propto \pi(M_t)\pi(\theta_t|M_t)p(y|\theta_t, M_t)^{\alpha(t/T)}$ Markov kernel $K_t(X_{t-1}, \cdot)$ requires both within- and inter-model moves

Estimate $\pi(M_k|\mathbf{y})$ using particle approximation to $\pi_T(\theta_T, M_T)$

Initialization from $\eta_0(X)$ for $\pi_0(X)$

Iterate over intermediate distributions $\{\pi_t(X) = \gamma_t(X)/Z_t\}_{t=1}^T$

Terminiate at $\pi_T(X)$ and estimation

 $\eta_0(\theta_0) = \pi_0(\theta_0) \propto \pi(\theta_0|M_k)$

Iterate over intermediate distributions $\{\pi_t(X) = \gamma_t(X)/Z_t\}_{t=1}^T$

Terminiate at $\pi_T(X)$ and estimation

 $\eta_0(\theta_0) = \pi_0(\theta_0) \propto \pi(\theta_0|M_k)$

 $\begin{aligned} \pi_t(\theta_t) &\propto \pi(\theta_t | M_k) p(\boldsymbol{y} | \theta_t, M_k)^{\alpha(t/T)} \text{ or } \\ \pi_t(\theta_t) &\propto \pi(\theta_t | M_k) p(\boldsymbol{y}_{1:t} | \theta_t, M_k) \text{ (Chopin, 2002)} \\ \text{Markov kernel } K_t(X_{t-1}, \cdot) \text{ only within-model moves} \end{aligned}$

Terminiate at $\pi_T(X)$ and estimation

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

 $\eta_0(\theta_0) = \pi_0(\theta_0) \propto \pi(\theta_0|M_k)$

 $\begin{aligned} \pi_t(\theta_t) &\propto \pi(\theta_t | M_k) p(\mathbf{y} | \theta_t, M_k)^{\alpha(t/T)} \text{ or } \\ \pi_t(\theta_t) &\propto \pi(\theta_t | M_k) p(\mathbf{y}_{1:t} | \theta_t, M_k) \text{ (Chopin, 2002)} \\ \text{Markov kernel } K_t(X_{t-1}, \cdot) \text{ only within-model moves} \end{aligned}$

Estimate $p(\mathbf{y}|M_k)$, the normalizing constant ratio Z_T/Z_0

(日) (日) (日) (日) (日) (日) (日) (日) (日)

Initialization from $\eta_0(X)$ for $\pi_0(X)$

Iterate over intermediate distributions $\{\pi_t(X) = \gamma_t(X)/Z_t\}_{t=1}^T$

Terminiate at $\pi_T(X)$ and estimation

 $\pi_0(\theta_0) \propto \pi(\theta_0|M_k) p(y|\theta_0,M_k)$ $\eta_0(\theta_0): \text{ The particle system of the sampler iterating from model } M_{k-1} \text{ to } M_k.$

Iterate over intermediate distributions $\{\pi_t(X) = \gamma_t(X)/Z_t\}_{t=1}^T$

Terminiate at $\pi_T(X)$ and estimation

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

 $\pi_0(\theta_0) \propto \pi(\theta_0|M_k) p(y|\theta_0,M_k)$ $\eta_0(\theta_0): \text{ The particle system of the sampler iterating from model } M_{k-1} \text{ to } M_k.$

$$\begin{split} \pi_t(\theta_t,M_t) \propto \pi_t(M_t) \pi(\theta_t|M_t) p(\pmb{y}|\theta_t,M_t) \\ \pi_t(M_t) &= \alpha(t/T) \end{split}$$
 Markov kernel $K_t(X_{t-1},\cdot)$ requires both within- and inter-model moves

Terminiate at $\pi_T(X)$ and estimation

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

 $\pi_0(\theta_0) \propto \pi(\theta_0|M_k) p(y|\theta_0,M_k)$ $\eta_0(\theta_0): \text{ The particle system of the sampler iterating from model } M_{k-1} \text{ to } M_k.$

 $\begin{aligned} \pi_t(\theta_t, M_t) \propto \pi_t(M_t) \pi(\theta_t | M_t) p(\pmb{y} | \theta_t, M_t) \\ \pi_t(M_t) &= \alpha(t/T) \end{aligned}$ Markov kernel $K_t(X_{t-1}, \cdot)$ requires both within- and inter-model moves

Estimate Bayes factor $B_{k+1,k}$, the normalizing constant ratio Z_T/Z_0

(日) (日) (日) (日) (日) (日) (日) (日) (日)

Sequential Monte Carlo – Path sampling estimator

Basic identity

Given a family of distributions $\{\pi_{\alpha}(x) = q_{\alpha}(x)/Z_{\alpha}\}_{\alpha \in [0,1]}$

$$\log\left(\frac{Z_1}{Z_0}\right) = \int_0^1 \mathbb{E}_{\alpha}\left[\frac{d\log q_{\alpha}(X)}{d\alpha}\right] \, \mathrm{d}\,\alpha$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Sequential Monte Carlo – Path sampling estimator

Basic identity

Given a family of distributions $\{\pi_{\alpha}(x) = q_{\alpha}(x)/Z_{\alpha}\}_{\alpha \in [0,1]}$

$$\log\left(\frac{Z_1}{Z_0}\right) = \int_0^1 \mathbb{E}_{\alpha}\left[\frac{d\log q_{\alpha}(X)}{d\,\alpha}\right] \, \mathrm{d}\,\alpha$$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Using SMC samples

Particle approximations of the expectations from SMC samplers Numerical integration to approximate the estimator Sequential Monte Carlo – Path sampling estimator

Basic identity

Given a family of distributions $\{\pi_{\alpha}(x) = q_{\alpha}(x)/Z_{\alpha}\}_{\alpha \in [0,1]}$

$$\log\left(\frac{Z_1}{Z_0}\right) = \int_0^1 \mathbb{E}_{\alpha}\left[\frac{d\log q_{\alpha}(X)}{d\alpha}\right] d\alpha$$

Using SMC samples

Particle approximations of the expectations from SMC samplers Numerical integration to approximate the estimator

Andrew Gelman and Xiao-Li Meng (1998). "Simulating normalizing constants: From importance sampling to bridge sampling to path sampling". In: *Statistical Science* 13.2, pp. 163–185

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Simple illustrative example: Gaussian mixture model

Model

Determine the number of components k, which define the model by

$$\begin{aligned} y_i | \theta_k &\sim \sum_{j=1}^k \omega_j \mathcal{N}(\mu_j, \lambda_j^{-1}) \qquad i = 1, \dots, n \\ \mu_j &\sim \mathcal{N}(\xi, \kappa^{-1}) \quad \lambda_j &\sim \mathcal{G}(\nu, \chi) \quad \omega_{1:k} \sim \mathcal{D}(\rho) \end{aligned}$$

Pierre Del Moral, Arnaud Doucet, and Ajay Jasra (2006). "Sequential Monte Carlo samplers". In: *Journal of Royal Statistical Society B* 68.3, pp. 411–436

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Simple illustrative example: Gaussian mixture model Comparison of estimates of Bayes factor $B_{5,4}$

Als & SMC: 1,000 particles, 100 time steps, $\alpha(t/T) = (t/T)^2$

▲□▶▲□▶▲□▶▲□▶ □ のQで

RJMCMC: 100,000 iterations

Purpose

Create a smooth sequence of distributions that reduces discrepancy between π_{t-1} and π_t

Purpose

Create a smooth sequence of distributions that reduces discrepancy between π_{t-1} and π_t

Assumption

The criterion for adaptation can be calculated prior to the sampling of next iteration.

For example, $\tilde{w}_t(X_{t-1},X_t) \propto \pi_t(X_{t-1})/\pi_{t-1}(X_t)$ when $K_t(X_{t-1},\cdot)$ is π_t invariant

Purpose

Create a smooth sequence of distributions that reduces discrepancy between π_{t-1} and π_t

Assumption

The criterion for adaptation can be calculated prior to the sampling of next iteration.

For example, $\tilde{w}_t(X_{t-1}, X_t) \propto \pi_t(X_{t-1})/\pi_{t-1}(X_t)$ when $K_t(X_{t-1}, \cdot)$ is π_t invariant

Why does it matter?

"the variance of (\tilde{w}_t) will typically be high if the discrepancy between π_{t-1} and π_t is large *even if the kernel* K_t *mixes very well*" (Del Moral, Doucet, and Jasra, 2006)

Recall normalizing constants estimator relates directly to \tilde{w}_t

Purpose

Create a smooth sequence of distributions that reduces discrepancy between π_{t-1} and π_t

Assumption

The criterion for adaptation can be calculated prior to the sampling of next iteration.

For example, $\tilde{w}_t(X_{t-1}, X_t) \propto \pi_t(X_{t-1})/\pi_{t-1}(X_t)$ when $K_t(X_{t-1}, \cdot)$ is π_t invariant

Why does it matter?

"the variance of (\tilde{w}_t) will typically be high if the discrepancy between π_{t-1} and π_t is large *even if the kernel* K_t *mixes very well*" (Del Moral, Doucet, and Jasra, 2006)

Recall normalizing constants estimator relates directly to \tilde{w}_t

Desired effect of the adaptive strategy

Independent of resampling strategies – it is a property of the sequence of distributions

Using ESS (Jasra et al., 2008; Schäfer and Chopin, 2011)

$$\mathsf{ESS}_{t} = \frac{(\sum_{j=1}^{N} W_{t-1}^{(j)} \tilde{w}_{t}^{(j)})^{2}}{\sum_{j=1}^{N} (W_{t-1}^{(j)})^{2} (\tilde{w}_{t}^{(j)})^{2}}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

At time t - 1, find $\alpha(t/T)$ such that Ess_t equal a specific value

Using ESS (Jasra et al., 2008; Schäfer and Chopin, 2011)

$$\mathsf{ESS}_{t} = \frac{(\sum_{j=1}^{N} W_{t-1}^{(j)} \tilde{w}_{t}^{(j)})^{2}}{\sum_{j=1}^{N} (W_{t-1}^{(j)})^{2} (\tilde{w}_{t}^{(j)})^{2}}$$

At time t - 1, find $\alpha(t/T)$ such that Ess_t equal a specific value

Caveats

The sequence of distributions depends on the resampling strategies

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Simple illustrative example: Gaussian mixture model

Consider a SMC sampler on $\{\pi_t(\theta_t)\}_{t=0}^T$

 $\pi_t(\theta_t) \propto \pi(\theta_t | M_k) p(\mathbf{y} | \theta_t, M_k)^{\alpha(t/T)}$

Simple illustrative example: Gaussian mixture model

Consider a SMC sampler on $\{\pi_t(\theta_t)\}_{t=0}^T$

```
\pi_t(\theta_t) \propto \pi(\theta_t | M_k) p(\mathbf{y} | \theta_t, M_k)^{\alpha(t/T)}
```

Problem

At each $\alpha(t/T)$, find the $\Delta \alpha(t/T) = \alpha((t+1)/T) - \alpha(t/T)$. How does $\Delta \alpha$ evolve along with α ?

Does the adaptive specification of the sequence of distributions, $\alpha(t/T)$ improve the normalizing constant estimator?

(日) (日) (日) (日) (日) (日) (日) (日) (日)

Benchmark Comparison to $\alpha(t/T) = t/T$ Simple illustrative example: Gaussian mixture model Change of path sampling integrands ($\log p(y|\theta_t, M_k)$)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ つへぐ

Adaptive strategies – Specification of distributions Using ESS– Resampling every iteration (Schäfer and Chopin, 2011)

▲□▶▲□▶▲□▶▲□▶ = ● ● ●

Adaptive strategies – Specification of distributions Using ESS– Resampling every iteration (Schäfer and Chopin, 2011)

▲□▶ ▲□▶ ▲ □▶ ▲ □ ▶ ▲ □ ● ● ● ●

Adaptive strategies – Specification of distributions Using ESS– Resampling only when ESS < N/2 (Jasra et al., 2008)

◆□▶ ◆□▶ ◆目▶ ◆目▶ ● □ ● ●

Adaptive strategies – Specification of distributions Using ESS– Resampling only when ESS < N/2 (Jasra et al., 2008)

▲□▶▲□▶▲□▶▲□▶ = つくぐ

A new approach: CESS- Conditional ESS

$$\mathsf{cess}_t = \frac{(\sum_{j=1}^N W_{t-1}^{(j)} \tilde{w}_t^{(j)})^2}{\sum_{j=1}^N \frac{1}{N} W_{t-1}^{(j)} (\tilde{w}_t^{(j)})^2}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

A new approach: cess- Conditional ess

$$\mathsf{CESS}_{t} = \frac{(\sum_{j=1}^{N} W_{t-1}^{(j)} \tilde{w}_{t}^{(j)})^{2}}{\sum_{j=1}^{N} \frac{1}{N} W_{t-1}^{(j)} (\tilde{w}_{t}^{(j)})^{2}}$$

Properties

Approximate the ESS as if resampling at time t - 1 without actually doing it Produce the same sequence regardless of resampling strategy

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Adaptive strategies – Specification of distributions Using CESS – Resampling every iteration

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○

Adaptive strategies – Specification of distributions Using CESS– Resampling every iteration

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへ(?)

Adaptive strategies – Specification of distributions Using CESS – Resampling only when ESS < N/2

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○

Adaptive strategies – Specification of distributions Using CESS – Resampling only when ESS < N/2

▲□▶ ▲□▶ ▲ □▶ ▲ □ ▶ ▲ □ ● ● ● ●

Adaptive strategies – Calibrating RWM or MALA proposal scales

Estimating moments of parameters from particle approximations

• □ > • □ > • □ > • □ > • □ >

Performance: SMC vs AIS

Annealed importance resampling

sмс without resampling

Some argues SMC does not improve results for normalizing constant estimates

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Performance: SMC vs AIS

Annealed importance resampling

sмc without resampling

Some argues SMC does not improve results for normalizing constant estimates

Effects of resampling in estimating normalizing constants

◆□▶ ◆□▶ ◆ 三 ▶ ◆ 三 ▶ ◆ □ ▶

Performance: Path sampling using sмс vs Population-мсмс

Population-MCMC with path sampling estimator (Calderhead and Girolami, 2009)

Sampling parallel MCMC chains for $\pi(X_{0:T}) = \prod_{t=0}^{T} \pi_t(X_t)$, with local mixing and global swap/crossover moves

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Performance: Path sampling using sмс vs Population-мсмс

Population-MCMC with path sampling estimator (Calderhead and Girolami, 2009)

Sampling parallel MCMC chains for $\pi(X_{0:T}) = \prod_{t=0}^{T} \pi_t(X_t)$, with local mixing and global swap/crossover moves

sмс: Fix number of particles N = 1000; Population-мсмс: Fix number of iterations N = 10000

・ロト・日本・日本・日本・日本・日本

Performance: Scalability on GPU parallelization Implemented with OpenCL on NVIDIA Quadro 2000

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ → □ ● のへぐ

Summary

Bayesian model comparison via Sequential Mote Carlo

 Can be used as drop-in replacement where conventional MCMC, RJMCMC, etc., were used

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- Requires minimal manual calibration
- Can provide better and more robust performance
- Can be parallelized straightforwardly

Thank You!

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = ● ● ●