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Lecture 22 (Linear) prediction
(Week 8) Regression effect
Test-retest



Regression line (recall)

_ SD _
Regression line: Y —Y =rxy Y (X — X)
SDy
. Cov(X,Y) _
Y —-Y = X — X
Var(X) ( )

Calculating the regression line from data:
Y = a+BX, where a and B are estimated by y; = bx; + a

_ _ S Sy
a=17Y—bx b:—yrxy:—éy
Sx S See also Theorem and
. corollary about MLE
: _ _ for the coefficients in
Sample Covariance s, = T, — )y, —
p vy n—1 ;( ‘ >(yz y) handwritten notes
Sy

Sample Correlation 1y, =
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Prediction: y from Xx

y = 0.649x + 23.8

Suppose the average height of the parents is 72 inches.
What do we predict for the height of the child?

Yprea = 0.649 x 72+ 23.8 = 70.5




Prediction: both ways

y = 0.649x + 23.8

Suppose the average height of the parents is 72 inches.
What do we predict for the height of the child?

Yprea = 0.649 x 72+ 23.8 = 70.5

Suppose the child’s height is 70.5 inches.
What do we predict for the height of the parents?

>
Sy

Tpred = 0.326 X 70.5 +45.9 = 68.9




Example: Heights of fathers and sons

Heights of fathers and their full grown sons
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Father's height (inches)

Historical data collection: Heights of 1,078 fathers and their full-grown sons, in England, circa 1900,
Pearson and Lee 1903

Available for example at https://www.kaggle.com/datasets/abhilashO4/fathersandsonheight

More comprehensive data collection including full families: https://vincentarelbundock.github.io/
Rdatasets/doc/HistData/Pearsonlee.html



https://www.kaggle.com/datasets/abhilash04/fathersandsonheight
https://vincentarelbundock.github.io/Rdatasets/doc/HistData/PearsonLee.html
https://vincentarelbundock.github.io/Rdatasets/doc/HistData/PearsonLee.html

Son’s height (inches)

Local means

Father-son pairs where the father is 6 feet tall
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From local means to regression

Son's height (inches)

The graph of averages and the regression line
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Regression line and SD line

Son's height (inches)
Average 68.7, SD = 2.7

60 4 #4— SD line

The regression line and the SD line

Regression line for
predicting SH from FH

correlation coefficient
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There are two regression lines

Son's height (SH)

Average 68.7, SD = 2.7

78
T Regression line
76 for predicting
. FH from SH
74 . .

58

The regression of father's height on son’s height

! | ! | ! | ! |
58 60 62 64 66

|
68

I
0 72 74 T6 T8

Father's height (FH)
Average = 67.7, SD = 2.7



Phenomenon: Regression to the mean

Recall prediction: Parent’s Child’s
height height

Yprea = 0.649 X 72 + 23.8 = 70.5

Observations in the father-son data:

* Sons of fathers who are taller than average are themselves
taller than average, but by not so much as the fathers.

e Sons of fathers who are shorter than average are themselves
shorter than average, but by not so much as the fathers.

e There is a move towards the mean.

* In Galton’s terms:“‘regression towards mediocrity”.

Why does this happen?




Why? First aspect

A person’s height depends on the heights of both the mother
and father.

Very tall men do not generally have children with very tall
women, because:

* factors other than height enter into the choice of a mate

* in terms of numbers, there are less very tall women than
not very tall women

lllustration: A man who is 2 SDs taller than the average male may marry a women who is 2
SDs taller than the average female. But because attributes other than height matter, the wife
is very likely to be a woman who is less than 2 SDs taller than average, just because there are
s0 many more such women.

Thus, most very tall men do not have children with women
who are also exceptionally tall. Since there is some aspect of
heritability, have sons who are not as exceptionally tall either.

Note: Same arguments for mother, daughters, just different dataset.



Why? Second aspect

Diet, exercise, and other environmental factors influence
height, so that observed height is not a perfect reflection of
one’s genes.

Someone who is very tall is much more likely to be the
unusually tall result of what might be less exceptional genes.

Thus the observed height of a very tall person is usually an
overstatement of his or her genetic height, which is
what determines the expected height of the child.

These are aspect of a wider topic (and debate) called:
Nature versus Nurture

Sticking with height, an example for the impact of nutrition in the
evolution of height of Dutch people in the |9th vs 20th century



Contextual information: Nature vs Nurture

Introduction e.g.
https://en.wikipedia.org/wiki/Nature_versus_nurture

Nature

innate knowledge,
innate behaviors, and OUtcomes/
Phenotypes

genetic programming
m Development | Ele
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Source: https://oxfordre.com/psychology/doc/10.1093/acrefore/9780190236557.001.0001/
acrefore-9780190236557-e-518-graphic-00 | -full.gif



Why? General principle

Large deviations from the mean occur as a
combination of factors some of which can be
passed on to the to children via the relationship
expressed in correlation, while other are not.

Hence the deviations from the mean are
expected to shrink in the next generation.



Test-retest situations:

observations and conceptional interpretation

Situation: Students take two tests. Observations:

Second score
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* Students who did very well
on the first quiz did less
well on the second quiz

e Students who did poorly on
the first quiz did better on
the second quiz.
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Test-retest situations:

observations and conceptional interpretation

Situation: Students take two tests. Observations:

Second score

100

80

60

40

20

* Students who did very well
on the first quiz did less
well on the second quiz

e Students who did poorly on
the first quiz did better on
the second quiz.

Interpretation:

e Students who did well the
first time slacked off.

* Those shocked by a poor
score the first time studied
hard and improved.
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Maybe, but it is a speculation.

First score




Test-retest situations:
observations and conceptional interpretation

Situation: Students take two tests. Observations:

* Students who did very well
on the first quiz did less
well on the second quiz

e Students who did poorly on
the first quiz did better on
the second quiz.

100
I
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60

Alternative interpretation:

Students who did well the first
time had nowhere to go but
i down...

Second score

40

20

This is like regression to the
- mean. In this context also
| | | | | — knowns as

0 20 40 60 80 100
€€ b4
Test-retest effect

First score



Test-retest: a model based analysis

An experiment:

* An instructor standardises her midterm and final so the
class average is 50 and the SD is 10 on both tests.

* The correlation between the tests is always around 0.50.

* On one occasion, she took the students who scored in the
lower quartile at the midterm and gave them special
tutoring.

* On average, they scored about 6 points higher on the final
than they did on the midterm.

* Does this show that the special tutoring was effective!?




Test-Retest effect

Midterm and final scores

The scores of the students in the lower quartile on the
midterm are marked by e’s; their point of averages is
marked by the x. The scores of the remaining students
are marked by o’s.

70 SD line

60 —

50

Score on final

40

30

Score on midterm




Test-retest effect: a model

Model: observed score = true score + chance error

true score: reflects students ability

chance error:accounts for factors like
preparedness, anxiety, concentration etc

To check whether this model could explain the effect, create a
data set accordingly:

* assign “true scores’ to students, ~N(50,10)

* add random errors to the test scores, ~N(0, [0)

* plot chance errors against true scores

* label lower quartile student and check their error distribution




Test-retest effect

Model: observed score = true score + chance error

Lower quartile midterm students had mostly negative chance errors!

Midterm and final scores Performance on the midterm

The scores of the students in the lower quartile on the
midterm are marked by e’s; their point of averages is
marked by the x. The scores of the remaining students
are marked by o’s.

Students in the lower quartile on the midterm are
represented by ®’s, the other students by o’s.
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Test-retest effect:

The model offers an explanation for the improvement:

* For students in lower quartile on the midterm, distribution of
random errors in midterm is skewed: mostly negative. In other
words, their midterm scores understate their true performance.

* Their average performance on the final is expected to improve.

* The improvement may be due to special tutoring or it may be
due to chance error or it maybe be due to a combination of both.

* This group’s average improvement on the final can be predicted
by regression applied to this group’s midterm.

* |n practice, however, we usually do not know all the necessary
barameters of the model (e.g. SD of error).




Regression fallacy: Implications

Typical mistake: People attribute a decrease or increase to a
systematic cause, based on selected observations of the top or
bottom part of data. But the change may be due to chance variation
(skewed distribution for selected parts of data



Regression fallacy: Implications

Typical mistake: People attribute a decrease or increase to a
systematic cause, based on selected observations of the top or
bottom part of data. But the change may be due to chance variation
(skewed distribution for selected parts of data

Examples: test scores, pilot performance, safety measures etc

Daniel Kahneman:
“We normally reinforce others when their behaviour is good and punish
them when their behaviour is bad. By regression alone, therefore, they
are most likely to improve after being punished and most
likely to deteriorate after being rewarded.

Consequently, we are exposed to a lifetime schedule in which we are
most often rewarded for punishing others, and punished for rewarding.”



Regression fallacy: Implications

Typical mistake: People attribute a decrease or increase to a
systematic cause, based on selected observations of the top or
bottom part of data. But the change may be due to chance variation
(skewed distribution for selected parts of data

Examples: test scores, pilot performance, safety measures etc

Daniel Kahneman:
“We normally reinforce others when their behaviour is good and punish

them when their behaviour is bad. By regression alone, therefore, they
are most likely to improve after being punished and most
likely to deteriorate after being rewarded.

Consequently, we are exposed to a lifetime schedule in which we are
most often rewarded for punishing others, and punished for rewarding.”

Implications for education, policy evaluation, evaluation of
population based health recommendations etc.



Test-retest: What is better study design?

How would you design an experiment to find out whether or
not the special tutoring helped!?



Test-retest: What is better study design?

How would you design an experiment to find out whether or
not the special tutoring helped!?

Control group: Some students get special tutoring others do not.
Then compare test score differences between groups.

Randomised: Assignment to special tutoring and control groups at
random to avoid that other factors interfere (e.g. if special tutoring
would be offered to volunteers, motivation would interfere with

the results).
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Test-retest: What is better study design?

How would you design an experiment to find out whether or
not the special tutoring helped!?

Control group: Some students get special tutoring others do not.
Then compare test score differences between groups.

Randomised: Assignment to special tutoring and control groups at
random to avoid that other factors interfere (e.g. if special tutoring
would be offered to volunteers, motivation would interfere with
the results).

Blind (students): All students could receive something called “special
tutoring”’, but for the ones in the control group this would in
reality be designed as having no effect (e.g. irrelevant topics
presented in incomprehensible ways as “placebo tutoring”).



Test-retest: What is better study design?

How would you design an experiment to find out whether or
not the special tutoring helped!?

Control group: Some students get special tutoring others do not.
Then compare test score differences between groups.

Randomised: Assignment to special tutoring and control groups at
random to avoid that other factors interfere (e.g. if special tutoring
would be offered to volunteers, motivation would interfere with
the results).

Blind (students): All students could receive something called “special
tutoring”’, but for the ones in the control group this would in
reality be designed as having no effect (e.g. irrelevant topics
presented in incomprehensible ways as “placebo tutoring”).

Blind (instructor): Instructor marking the exams does not know who
received special tutoring.



Test-retest: better study designh (ct.)

Is any of this doable in reality? That depends...

Control group: Sounds easy, but is not. Anticipating that students not
assigned special tutoring may complain, the exam secretary will not
allow this to go ahead. One way to get around this is to allow all
students to participate with the understanding that some will
receive real special tutoring and others something less effective.
However, if the exam results matter, they may try to get each
other’s tutoring material destroying the study design. And, the
exam secretary may still refuse based on legal concerns.
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Randomised: Easy to implement.



Test-retest: better study designh (ct.)

Is any of this doable in reality? That depends...

Control group: Sounds easy, but is not. Anticipating that students not
assigned special tutoring may complain, the exam secretary will not
allow this to go ahead. One way to get around this is to allow all
students to participate with the understanding that some will
receive real special tutoring and others something less effective.
However, if the exam results matter, they may try to get each
other’s tutoring material destroying the study design. And, the
exam secretary may still refuse based on legal concerns.

Randomised: Easy to implement.

Blind (students): May be hard with students exchanging experiences
and the controls realising they don’t receive actual special tutoring.

Blind (instructor): Easy to implement as marking is anonymous.



Data visualisation: Difference vs mean plot

* For matched pairs data

* Instead of Y vs X plot difference vs mean (or difference vs sum)
* Difference more obvious (w/o tilting your head)

e Shows dependency on intensity

* It’s just a simple transformation

* Traditionally used for comparing different measurement methods,
in particularly in medical diagnostic tests etc

e Suitable to access agreement

* Goes back to Tukey (EDA), became very popular in medical
application through Bland & Altman’s paper in Statistics of Medicine



Example with MRI imaging data
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A: regression analysis of the comparison between RV and LV stroke volumes (SV) as
assessed by MR imaging (MRI). B: Bland-Altman analysis for assessment of the agreement
between RV and LV SV measurements. Given is the difference between RV and LV SV for
each mouse studied (y-axis) over the mean of RV and LV SV for each mouse (x-axis).

Source: http://ajpheart.physiology.org/content/283/3/H1065


http://ajpheart.physiology.org/content/283/3/H1065

Difference in log(RPKM)

Example with genomic data

Average log(RPKM)

10

Bland-Altman plot showing level
of agreement between technical
replicates for natural log
transformed RPKM D. simulans
biological replicate 3. On the Y
axis is the difference between
technical replicates and on the X
axis 1s the average between
technical replicates. Green lines
are the average of all differences
+/- 1.96 (standard deviation of the
differences). The red line is drawn
at zero. The blue line is a loess fit.
The discrepancy between
technical replicates is a function of
the estimated expression level.
The horizontal line is drawn at an
average coverage per nucleotide of
5. Bland-Altman plots for all the
remaining comparisons among
technical replicates are in
Additional file 11.

Mclntyre et al. BMC Genomics
2011 12:293


http://www.biomedcentral.com/1471-2164/12/293/suppl/S11

Matched-Pairs Data

Matched pairs arise when the same variable is measured on two

matched experimental units.

7.45
|

» Example:

Mother’s and baby’s blood pH
level during labour

Child's PH
7.35 7.40
| |

7.30
|

7.25
|

Exercise:
Create a difference versus sum

7.20
|

plots from this dataset.

7.35 7.40 7.45 7.50 7.55

Mother's PH

To examine the relationship, during labour, of the blood pH-levels
of a mother and child. (in pH units: below 7 indicates acidity,
above 7 alkalinity)

Maternal pH | 7.33 741 7.49 743 732 743 755 7.36
Child pH (34 732 736 734 717 736 744 7.26
Maternal pH | 7.34 745 751 748 738 7.36 7.43 7.47
Child pH (32 732 748 742 740 7.44 T7.42 7.31




Aggregating and stratifying data

Prototype question:
* Observe two variables X andY
* Population can be divided into a number of groups (known)
* For each group, the correlation between X andY is 0.6

* What is the correlation, approximately, in the whole population!?

Groups could be, for example, by age, occupation, nationality etc



weight

Gender
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Simpson’s paradox
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Figure on following pages: Front Psychol. 2013;4:513.
Simpson's paradox in psychological science: a practical guide, Rogier A. Kievit et al

http://rogierkievit.com/wp-content/uploads/2013/05/Kievit_Original Manuscript_7 7.pdf


http://rogierkievit.com/wp-content/uploads/2013/05/Kievit_Original_Manuscript_7_7.pdf
http://www.ncbi.nlm.nih.gov/pubmed/?term=Kievit%20RA%5Bauth%5D

Salary (in 1000 Euro)

Fig. 25.1 Time enrolled until graduation (in semesters) and salary in first year of employment

(in thousand €)

65 — \
A
D Business | a
60 — ® Physics
4 Chemistry .
55
®
® A
50 — » .
L ]
45 — 0 .
40 — o
D
35 —
30 -
T T T T
5 10 15 20
Time enrolled




Confounding variables: The Simpson’s paradox occurs when neglecting
an explanatory third variable or confounder which causes a reversal of an
association (e.g., Freedman, Pisani, & Purves, 1998). For example, a German
newspaper reported that students who progress slowly through their academic
programme make more money in their first year on a job than those students who
graduate in shorter time. In the example (see Fig. 25.1), the confounding or
lurking variable is the field in which the degree was obtained. Although it
usually takes the longest time to get a diploma in chemistry, within the field, the
ones who finish faster earn more. When regressing salary on time enrolled for
the whole data, a positive slope is obtained, although the slope is negative when
differentiating according to the field of study.
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Teaching Statistics in School
Mathematics-Challenges for

Teaching and ...
edited by Carmen Batanero, Gail Burrill,
-hris Reading
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Note: In addition to what is said above, the
graduation times for chemistry probably
relate to PhD not diploma. For traditional
reasons, in Germany, almost all chemistry
0 s w0 15 students stay on for PhD.This is not the
Time enrolled
case for other degrees.
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Fig. 25.1 Time enrolled until graduation (in semesters) and salary in first year of employment
(in thousand €)



Typical scenarios for Simpson’s paradox

Figure on following figures from a review paper explaining the
Simpson’s paradox and how to detect and avoid it. This has in
mind real-world applications, but has simulated data scenarios
making the particular mechanisms very transparent.

Front Psychol.2013;4:51 3.
Simpson's paradox in psychological science: a practical guide
Rogier A. Kievit et al

rogierkievit.com/wp-content/uploads/2013/05/Kievit_Original _Manuscript_7 7.pdf


http://rogierkievit.com/wp-content/uploads/2013/05/Kievit_Original_Manuscript_7_7.pdf
http://www.ncbi.nlm.nih.gov/pubmed/?term=Kievit%20RA%5Bauth%5D

i e Gender
.- e Ay Female
- Male

Recovery Probability

Dosage

Example of Simpson's Paradox. Despite the fact that there exists a negative
relationship between dosage and recovery in both males and females, when grouped
together, there exists a positive relationship. All figures created using ggplot2
(Wickham, 2009). Data in arbitrary units.


http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3740239/#B102

Simpson's paradox in individual differences
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. Steve

\

Alcohol Intake

1Q

Alcohol use and intelligence. Simulated data illustrating that despite a
positive correlation at the group level, within each individual there exists a
negative relationship between alcohol intake and intelligence. Data in
arbitrary units.
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Using cluster analysis to uncover Simpson's Paradox. The cluster
analysis (correctly) identifies that there are three subclusters, and that the
relationship in two of these both deviates significantly from the group mean,
and is in the opposite direction. Data in arbitrary units.
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Healthcare Quality

Income ($ pa)

A case when visualizing the data illustrates that although there are
separate clusters, the inference is not affected: the relationship
between income and healthcare quality is homogeneously positive. The
clusters may have arisen due to a sampling artifact or due to naturally occurring
patterns in the population (e.g., discontinuous steps in healthcare plans).



Simpson’s paradox

e Counterintuitive feature of data

* Arises when (causal) inferences are drawn across different
explanatory levels (e.g. population to subgroups, subgroups
to individuals)

* Linear relationships can weaken, disappear or even inverse
when aggregating data

* Detect it by labelling data points based on subgroups,
exploring alternative categorisations

* Unsupervised detection with clustering methods

* Related/aka: ecological regression, ecological fallacy,
Robinson’s paradox (continuous case)
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Representation in juries:
a question with two answers?

Question: Are Maoris properly represented in the New Zealand’s
jury pools?

First quick answer: Yes, the overall percentage (Whole new
Zealand) is even slightly bigger than what would be expected.

Eligible Population Maori % | Jury Pool Maori %

9.5 10. |

Second attempt: Look at the representation in each of the districts.

Source: lan Westbrooke (1998)
Simpson's Paradox: An Example in a New Zealand Survey of Jury
Composition, CHANCE, | 1:2, 40-42

http://www.stats.govt.nz/NR/rdonlyres/5SDFEE5C8-A969-4684-B95F-FA2 AFEDA649A/0/Simpdox.pdf
http://dx.doi.org/10.1080/09332480.1998.10542093


http://www.stats.govt.nz/NR/rdonlyres/5DFEE5C8-A969-4684-B95F-FA2AFEDA649A/0/Simpdox.pdf
http://dx.doi.org/10.1080/09332480.1998.10542093

Simpson’s paradox in Berkeley admissions

1973, UC Berkeley was sued for sex discrimination

Graduate School had just accepted, based on departmental decisions:
44% of male applications
35% of female applicants

Investigation by Bickel et al revealed Simpson’s paradox:

* Women were (slightly) more likely to be admitted by the individual
departments, but more women applied to the departments with
higher rejections rates.

* |n the aggregate data that amounted to a lower rejection rate for
women.

P] Bickel et al, Sex Bias in Graduate Admissions: Data from Berkeley, Science,
new series, Vol. 187,n0.4175 (Feb. 7, 1975), pp 398-404

Full text at http://www.unc.edu/~nielsen/soci708/cdocs/Berkeley admissions_bias.pdf



http://www.unc.edu/~nielsen/soci708/cdocs/Berkeley_admissions_bias.pdf
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Table demonstrating the effect

Further analysis shows that the departments with higher acceptance rates
are in engineering/maths/science, while the lower acceptance rates are in
the humanities departments. The table below (from PJ Bickel et al, 1973)
visualises the Simpson’s paradox scenario for the case of two departments.

Table 2. Admissions data by sex of applicant for two hypothetical departments. For total,
vy =351, df. =1, P = 0.19 (one-tailed).

Outcome
Difference
Applicants Observed Expected
Admit Deny Admit Deny Admit Deny
Department of machismatics
Men 200 200 200 200 0 0
Women 100 100 100 100 0 0
Department of social warfare
Men 50 100 50 100 0 0
Women 150 300 150 300 0 0
Totals
Men 250 300 229.2 320.8 20.8 — 20.8

Women 250 400 270.8 379.2 —20.8 20.8




Summary of original paper

- Examination of aggregate data on
graduate admissions to the University
of California, Berkeley, for fall 1973
shows a clear but misleading pattern
of bias against female applicants. Ex-
amination of the disaggregated data
reveals few decision-making units that
show statistically significant departures
from expected frequencies of female
admissions, and about as many units
appear to favor women as to favor
men. If the data are properly pooled,
taking into account the autonomy of
departmental decision making, thus
correcting for the tendency of women
to apply to graduate departments that
are more difficult for applicants of
either sex to enter, there is a small
but statistically significant bias in favor
of women. The graduate departments
that are easier to enter tend to be those
that require more mathematics in the
undergraduate preparatory curriculum.

The bias in the aggregated data stems
not from any pattern of discrimination
on the part of admissions committees,
which seem quite fair on the whole,
but apparently from prior screening
at earlier levels of the educational sys-
tem. Women are shunted by their so-
cialization and education toward fields
of graduate study that are generally
more crowded, less productive of com-
pleted degrees, and less well funded,
and that frequently offer poorer pro-
fessional employment prospects.

Source: P] Bickel et al 1973
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http://vudlab.com/simpsons/
http://vudlab.com/simpsons/

Simpson’s paradox

e explained variable Y (response)
* observed explanatory variable X (predictor)

* lurking explanatory variable Z (may be known or suspected)

Effect of the observed explanatory variable on the explained
variable changes substantially (even qualitatively) when lurking
variable is taken into account.

Some continuous examples: weight vs height (lurking: gender), I st
salary vs graduation time (lurking: course), alcohol consumption vs
1Q (lurking: individual), health care quality vs salary (social class)

Some discrete examples: Maori representation in New Zealand
jury pools, graduate admission and gender



