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A tale of dead pixels

• Inside-out

• The birth of dead pixels 

• Dead pixels geometry

• Spatial statistics for dead pixels

• Dead pixels go shiny: DetectorChecker

• Dead pixels make a deal

• Dead pixels alive





X-ray computed tomography

X-ray Computed Tomography (CT) is a 
nondestructive technique for visualising 
interior features within solid objects, 
and for obtaining digital information on 
their 3-D geometries and properties.



X-ray computed tomography

https://www.researchgate.net/figure/Example-of-an-industrial-computed-tomography-CT-system_fig1_324511614



X-ray computed tomography

https://www.seikoh-giken.co.jp/en/products/xray.html



Projects (selection)
• Modelling the penumbra in Computed Tomography using a          

mixture model (Gauss + uniform) for estimating precision of 
radiographs from the penumbra effect in the image

• Modelling mean-variance relationship (compound Poisson for 
grey value, linear relationship for variance prediction)  

• Detection of defects in additive manufacturing from a single 
x-ray projection using the empirical null filter

• Industrial uses for real-time tomography devices (e.g. airport 
security bag searches)

• …

• Dead pixels



X-ray detector

Perkin Elmer 
XRD 1621
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4.4 Detector�Overview�
�

�

Figure�3� Detector�Overview�

�
1� Potential�Equalization�

2� Ground�Connector�

3� Trigger�Input�(page�14)�

4� Power�Input�(page�14)�

5� XRD�Fibre�Optical�Interface�Bus��

Detector�Mode�and�Frame�Rate�(page�16)�

Green� Free�Running�

6�

Yellow� Trigger�Mode�

Power�On�and�Detector�Status��

Green� Power�ON�

7�

Orange� Self�Inspection�

6�+�7� All�Lights�On�during�Self�Inspection�(PowerǦON)�

8� PROM�Holder�

9� Electronics�(This�Area�needs�to�be�shielded)�

10� Active�Area�

Table�3� Detector�Overview�
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�
4.2 Electronic�control�and�readout�
Charge�amplifiers�for�readout�of�the�sensor,�and�row�drivers�for�addressing�the�rows�are�placed�on�
chip�on�board�(COB)�modules�contacting�the�pads�at�the�edges�of�the�sensor.�The�COBs�for�
control�and�readout�are�connected�to�A/D�conversion�PCB�boards.�The�analogue�part�of�the�
electronics�is�placed�beside�the�sensor�and�includes�sophisticated�FPGA�control�of�the�detector.�
Numerous�features�are�realized�to�minimize�noise,�as�well�as�shaping�and�timing�of�the�control�
pulses�and�isolation�of�digital�and�analogue�sections.�The�digital�control�is�reprogrammable�
through�a�PROM�to�enable�future�upgrades�or�modifications.�
�
�
4.3 Structure�of�the�XRD�1621��
�
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Figure�2� Structure�of�the�XRD�1621��
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5.5.3 Sorting�schemes�overview�
The�XISL�sorts�the�data�in�an�internal�buffer�with�highly�optimized�routines�written�in�machine�
code.�Figure�10�shows�the�read�out�scheme�of�the�XRD�1621�sensor.��
�

�

Figure�10� Sorting�scheme�of�the�XRD�1621�

The�sensor�is�divided�into�an�upper�and�a�lower�part.�Both�sections�are�electrically�separated.�The�
data�of�each�section�is�transferred�by�32�“read�out�groups”�(ROG).�Each�ROG�has�128�channels�for�
the�detector.�The�upper�groups�scan�the�sensor�columns�from�left�to�right.�The�lower�groups�scan�
from�right�to�left.�The�upper�groups�are�transferred�first,�followed�by�the�lower�groups.�The�upper�
groups�start�read�out�from�the�upper�row.�The�lower�groups�start�read�out�from�the�last�row.�
The�following�Table�20�displays�the�data�stream�for�XRD�1621:�
�
data�stream�no.� sensor�pixel�(row,�column)� ROG�no.�

1� (1,1)� 1�

2� (1,129)� 2�

3� (1,257)� 3�

4� (1,385)� 4�

5� (1,513)� 5�

6� …� �

15� (1,1793)� 15�

16� (1,1921)� 16�

17� (2048,�128)� 18�

18� (2048,�256)� 17�

19� (2048,�384)� 20�

20� (2048,�512)� 19�

…� …� …�

Table�20� Sorting�scheme�of�the�XRD�1621�

�

Readout groups (ROG):           
Upper groups transferred 
first, starting read out from 
the upper row. 
Lower groups starting 
from the last row.



Bad pixel maps 

Each bad pixel map consist of a total of 10 files:
White images: mean, min, max, sd (.tif)
Grey images: mean (.tif)
Black images: mean, min, max, sd (.tif)
Bad pixel list of locations (.xml)    

Criteria for “underperforming” (Perkin Elmer):
Signal sensitivity (at different energies)
Noise observed in sequence of 100 bright/dark images
Uniformity (global, local)



Modeling and analysing dead pixels

Refined analysis:
Refined categories for dysfunctional pixels 

Temporal development  

Spatial analysis of dead pixels:
Exploratory analysis

Data structure for dead pixel data

Spatial statistics models and characteristics

Relationship to causes of damage:
Change of perspective in the stochastic model: clusters



Local defects: Isolated dead pixels

A_0: Black 
image [R]

A_0: Grey image [R]

Singles, doubles, small clusters

A_0:
bp binary 
image [R]



Local defects: Dead lines

Lines on bad pixel images
From centre horizontal line outwards
Visible on tif images of channel(s), too

Top right area in A_0: 
White image [R]



Local defects: Locations of dead lines
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Local defects:  Ends of dead lines

Most lines end in small cluster pointing to the right
Lines are composed of dark pixels
Lines have constant intensity, except end may differ

bmp binary image 

Black image



Local defects: Corners

B_0: Binary bad pixel image [R]



Local defects: Patches

Areas with high density area of 
bad pixels   

F_0 Binary bad pixel imageE_0 Binary bad pixel image



Which spatial data structure?

Geostatistical data: 
Fixed study region with a random variable (observed or unobserved) 
in every location. 
e.g. UK with rainfall 

Three common types described by Cressie (1993)

Lattice data: 
Collection of fixed (nonrandom) set of points in study region with a 
random variable defined in each of them.
e.g. Ising model on a lattice, crime in snap points

Spatial point patterns: 
Spatial locations of the observations are random, with observations 
itself deterministic (=1) or itself random variables.
e.g. locations of bird nests, same with number of eggs in each nest



Spatial model for dead pixels

Detector is based on a lattice, but our interest is in locations 
of dead pixels. Hence, use a spatial point pattern model, but with 
reduced resolution (given by the detector lattice).

Point pattern X: random locations of dead pixels

Lattice or point pattern?

Objectives:
• describe spatial distribution of dead pixels

• hypothesise causes for dead pixels

For example, look at CSR…



Complete spatial randomness (CSR)
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Figure 1: Realization of two-dimensional Poisson processes of 50 points on

the unit square exhibiting (a) complete spatial randomness, (b) regularity, and

(c) clustering.

3

CSR: Points are distributed independently and homogeneously,
as in a homogenous Poisson process.
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Exploring CSR using Ripley’s K-function

K-function: 
expected number of extra points in circle of radius r 
rescaled by density

Under CSR:

7

summarize spatial distribution. Let Z be a point process with state space I and (glob-

ally measured) intensity �. We distinguish between locations, that is any element in

I, and points, that is a location contained the realisation of the process in question.

A central question is whether Z process has the property of complete spatial random-

ness (short: CSR), which means that the points are distributed independently and

homogeneously over the state space I, such as for the homogeneous Poisson process.

The nearest neighbour function G is the cumulative distribution function of the dis-

tance from an arbitrary point to its nearest point. Under CSR, G(r) = 1�exp(��⇡r2).

The empty space function F is the cumulative distribution function of the distance from

an arbitrary location to its nearest point. Under CSR, F (r) = 1 � exp(��⇡r2). (The

two measures typically di↵er if CS does not hold.)

Ripley’s K-function calculates the expected number of points as a function of the

distance r for any point, that is, K(r) = ��1E[N0(r)], where N0(r) is the number

of points up to a distance of r from an arbitrary point of the process. It provides a

measure for the interaction between the points of the process and helps identifying and

competition at di↵erent scales. Under CSR, K(r) = ⇡r2.
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Figure 4: G-function. Empirical processes (black), under CSR (red) with confidence

bands (grey); horizontal scales di↵er. For the pixel process X the empirical G-function

increases very steeply for small distances r indicating the presence of areas with higher

abundance of points than the global density would suggest. For the event process

Y the empirical G-function is less steep, but still increases much more than its CSR

counterpart.
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Point pattern and K-function 
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Point pattern and K-function 
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Exploring CSR using F- and G-functions

Nearest neighbour function G: 
cumulative distribution function of the distance from 
an arbitrary point to its nearest point
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Figure 4: G-function. Empirical processes (black), under CSR (red) with confidence

bands (grey); horizontal scales di↵er. For the pixel process X the empirical G-function

increases very steeply for small distances r indicating the presence of areas with higher

abundance of points than the global density would suggest. For the event process

Y the empirical G-function is less steep, but still increases much more than its CSR

counterpart.

Under CSR:

Empty space function F: 
cumulative distribution function of the distance from 
an arbitrary location to its nearest point

Under CSR:
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Point pattern and F- and G-function 
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Are we asking the right question?

Modified question: Is it CSR after we 
remove all specific (known) problems?

• Reducing lines to their endpoint
• Reducing clusters to their centre point 

Step 1:
Convert point process into event process by



Are we asking the right question?

Modified question: Is it CSR after we 
remove all specific (known) problems?

• Reducing lines to their endpoint
• Reducing clusters to their centre point 

Step 1:
Convert point process into event process by

Step 2:
• Fit inhomogeneous density 
• Cut out areas above threshold



Model for cause versus model for effect

The same cause for damage shape can hit 1, 2, 3 or 4 pixels, 
depending on position and orientation.

Detector is based on a lattice, but damage occurs independently of 
the lattice structure.  



Higher level model: dead events

Solution: Model the damage by summarising neighbouring dead 
pixels into one dead event. 5

so as to represent a centre of the cluster. We will choose for ir(C) the point

imedian(C) =
�
⇢(median1(C)), ⇢(median2(C))

�
. (1)

where ⇢ is the rounding function. Alternative definitions of ir could be used, depending

on the application. For example,

imean(C) =
�
⇢(mean1(C)), ⇢(mean2(C))

�
. (2)

Also, ⇢ could be replaced by another appropriate integer valued function on R. However,
while replacing ⇢ may result in a di↵erent choice for ir, the di↵erence will typically be

small enough not to matter in practice.

For singletons, imedian and imean are always the pixel itself and for doubles they are

one of two pixels. For triplets arranged in a straight line, imedian and imean are the

middle pixel. In general, ir will capture the concept of being a centre of the cluster,

but details depend on the choice of the definition and the cluster shape. In particularly,

due to rounding and non-convexity, is is possible for ir not to be part of the cluster.

Since it is more important for ir to robustly capture the location where the bulk of

the pixels of a cluster is located than doing so with precision, the use of the median

(1) is usually preferable to the mean (2). Specifically, the use of the median has the

advantage of limiting the e↵ect of an individual long “hair” sticking out of a cluster as

shown in Figure 2 on the choice of the point ir.

Figure 2: Example for a pixel cluster with a “hair” sticking out. The first row

of pixels in the cluster C shown extends well beyond the other rows pulling mean1(C)
to the right resulting in imean(C) = (5, 2) marked as Point B (⇢(mean1(C) = ⇢(4.6) = 5,

⇢(mean2(C)) = ⇢(2.185185) = 2). In contrast, imedian(C) = (3, 2) marked as Point A.
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10% additional pixels along the sides and two more at the ends are acceptable.) An

↵ suitable for the context can be chosen when the methods are applied to data and

should remain fixed through the subsequent analysis. We then simply refer to an ↵-line

as a line.

If |C| � 4 and it is not a line then it is called a large cluster.

2.2 Event process

A weakness of the pixel process introduced in the last section is its dependency on the

exact placements of damages responsible for rendering pixels dysfunctional. A change

of location of the damaged area can lead to a di↵erent set of a↵ected pixels. If the area

is not rationally invariant, then a rotation can have that e↵ect as well. Examples for

these scenarios are shown in Figure 1.

Figure 1: Damage covering multiple pixels depending on their shape and

placement relative to the grid. Examples for events symbolising damages are

shown in solid black shapes and resulting dysfunctional pixels are shown in solid grey

squares. The top left series involving a circular damage event demonstrates how its

exact location relative to the grid lines, can cause 1, 2, 3 or 4 dysfunctional pixels. The

top right shows how for a needle shaped damage event a change of angle can make

the di↵erence of causing 1 or 2 dysfunctional pixels. The bottom left series involving

a triangular damage event shows that a rotation can make the di↵erence between 1,

2, 3 or 4 a↵ected pixels. The bottom right shows a change of location can result in a

di↵erent arrangement of the 4 dysfunctional pixels.

To overcome these di�culties, we convert the pixel process X into a higher level

process Y, which we call the event process. Y is a marked point process with points

determined by clusters of pixels from the original point process X. Each cluster C of X

is represented by one point ir(C) 2 I and is marked based on shape classification: If C
is an ↵-line, ir(C) is defined as one of the endpoints (which one can be chosen according

to the specific application). For other clusters, ir is chosen by some defined procedure

Convert pixel point pattern X into event point pattern Y by
replacing each cluster of pixels in X by

Using median because of robustness:
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Dead pixels versus dead events

6
  Defect pixels

(a) Pixel process

  Defect events

(b) Event process (marks not visualised)

Figure 3: Pixel process and event process. Applying the appropriate rules,

configurations of connected pixels in the pixel process are reduced to one point per

configuration when constructing the event process. In the example, lines provide the

most striking instances of damage, but there is also damage in corners and in some

other areas.

3 Quality assessment tools

There is a variety of objectives in the quality assessment of detectors which can be

associated with suitable statistical measures. Our approach has several components

based on global information, local configurations and spatial distributions of these.

Both pixel level and event level information are used for a variety of scores we propose

for usage in the context of quality assessment.

We uses very simple scores for rating overall detector quality:

functional pixel percentage = #functional pixels
�
|I|

damage events count =
���C

�� C is a cluster
 ��

Our local approach involves spatial analysis of the distribution of damage events

rather than individual dysfunctional pixels. Based on the classification in Section 2.1,

dysfunctional pixels belong to five categories: singletons, doubles, triplets, large clusters

and lines and we summarise this using the simple scores listed below.

singleton count =
���C

�� C is singleton
 ��

line count =
�
C
�� C is a line

 

non-line cluster count =
���C

�� C is singleton, double, triplet or large cluster
 ��

median line length = median
�
|C|

�� C is a line
 

median cluster size = median
�
|C|

�� C is singleton, double, triplet or large cluster
 

Apart from counting damage events and measuring their average size, we need to

X (dead pixels) Y (dead events)



Higher level defect model (Step 1)

Conversion of point process to event process 

  Defect events  Defect pixels



Density based thresholding (Step 2)

Remove areas with local density above threshold 
(median +1.5 IQR) 

  Density Events
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After modification: K-function 
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Before modification: K-function 
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After modification: F-function 
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Before modification: F-function 
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After modification: G-function 
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Before modification: G-function 
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Measurement quality assessment/improvement

• Identify poor quality regions (patches with high dead pixels 
density) through density thresholding

• Remaining area CSR means no special causes of poor quality

• Identify causes of poor quality

• Monitor over time

• Conclusions for usage modes



Software project with the Alan Turing Institute

Objectives: 
Web application “DetectorChecker”

• Feedback about state of detector through pixel damage analysis

• Detector data repository

Seed funded project:
• Working with Turing Research Software Engineer Group 

• DetectorChecker R package for statistical analysis of pixel damage in 
CT scanners

• DetectorCheckerWebApp for useful initial graphical/analysis 

• Facility to upload data in different formats (crowd sourcing)

• Hosted by Azure



Team
Dr Julia Brettschneider (University of Warwick)
Dr Oscar Giles (The Alan Turing Institute)
Dr Tomas Lazauskas (The Alan Turing Institute)
Prof Wilfrid Kendall  (University of Warwick)
Contacts
julia.brettschneider@warwick.ac.uk
W.S.Kendall@warwick.ac.uk
Timeline
1.9.2018 - 29.3.2019

https://detectorchecker.azurewebsites.net

mailto:julia.brettschneider@warwick.ac.uk
mailto:W.S.Kendall@warwick.ac.uk


https://detectorchecker.azurewebsites.net



https://detectorchecker.azurewebsites.net



https://detectorchecker.azurewebsites.net



https://detectorchecker.azurewebsites.net

coordinates of 
underperforming 
pixels (.xml) 



https://detectorchecker.azurewebsites.net

Counts



https://detectorchecker.azurewebsites.net

Density



https://detectorchecker.azurewebsites.net

Arrows

Arrows pointing at nearest neighbour



https://detectorchecker.azurewebsites.net

Arrows

Arrows pointing at nearest neighbour
Angles distribution dominated by lines

Angles?



https://detectorchecker.azurewebsites.net

K-function

Not CSR (completely spatially at random)



Levels: Pixels or Events?

The same cause for damage shape can hit 1, 2, 3 or 4 pixels, 
depending on position and orientation.

Detector is based on a lattice, but damage occurs independently of 
the lattice structure.  

Solution: Model the damage by summarising neighbouring dead pixels 
into one dead event.

Convert point process into event process by



https://detectorchecker.azurewebsites.net
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Angles

Level:
Events
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Team
Dr Julia Brettschneider (University of Warwick)
Dr Oscar Giles (The Alan Turing Institute)
Dr Tomas Lazauskas (The Alan Turing Institute)
Prof Wilfrid Kendall  (University of Warwick)
Contacts
julia.brettschneider@warwick.ac.uk
W.S.Kendall@warwick.ac.uk
Timeline
1.9.2018 -   29.3.2019

https://detectorchecker.azurewebsites.net
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Brexit on 29.3. after all: 
dead pixel deal approved at 
11pm in PM surprise move

Deal approved by narrow majority of Conservative and 
Labour MPs without DUP.

Prime minister Theresa May announced that the so-called 
“dead-pixel plan”, passed in a surprise parliamentary move 
last night at 11pm, is the best possible Brexit deal. "I have 
always been clear that we will leave the European Union on 
29th of March in 2019, and my deal has delivered this.”

Earlier that day the prime minister had failed for the third 
time to get her initial withdrawal agreement through the 
Commons.

Little is known about the content of the deal, except that it 
is built entirely on a web app called DetectorChecker, 
completed only hours earlier by a University of Warwick — 
Alan Turing Institute joint venture. Moving beyond the 
limitations of previous government apps, the research 
software engineers built it to work on all operating systems.


Corbyn argued the deal fits right into the party's "Build 
it in Britain again" campaign. Manufacturing things by 
British workers has highest priority for the Labour party 
and dead pixels are no exception to that, he explained.

The Guardian reveals that UK made detectors are more 
efficient in producing dead pixels than their German 
made counterparts with further increase in productivity 
once US corporations take over.

Siemens representative Schnipselspalter-Knackwurst, 
claimed that German pixels never die blaming the 
weather on the Island for the high fatality rate among 
their British counterparts. Gibraltar was quick to add 
that indeed such problems are unknown on the rock.

• Corbyn: British workers make dead pixels here in UK 

• Rees-Mogg: I have never had an X-ray, no 

• Farage: Greatest day in British history 

• DUP: N. Ireland doesn’t recognise pixels of any sort 

• Business: Optimistic about digital economy  

• Tusk’s special place in hell better with dead pixels

• PM: Pixel means pixel 

• Gove: Dead pixels key to Irish border IT solution 

•Merkel and Macron seen waltzing in Brussels

May pointed out: “I want the 3 Million dead pixels from the 
EU to stay in the UK and this deal guarantees their rights.” 
She later apologised for confusing dead pixels with alive 
EU citizens.

Boris Johnson promised the dead pixels “will cause your 
wife to have bigger breasts and increase your chances of 
owning a BMW M3.” His wife and his car dealer refused 
comment.


https://detectorcheckerdev.azurewebsites.net

The commemorative Brexit coin has been squared to 
better reflect the shape of detectors. It shows Sherlock 
looking at dead pixels through a magnifying lens, the 
flip side stating "Keep calm and count dead pixels".

Dead pixel statisticians from Warwick could not be 
reached for a comment, but a university spokesman 
said they are proud their innovative ideas solved a 
national crises. The Alan Turing Institute praised this as 
a precedent and expects automatic decision-making to 
take over politics in less than a decade, fulfilling their 
mission of making algorithmic systems fair, transparent, 
and ethical.


30.3.2019



Refined states (more than just dead)

Quick notes

• Previous state transitions were not v convincing so far (lots of movement between ‘healthy’ and ‘un-

healthy’ states, suggesting poor thresholds?)

• Now moved to using shape as well as value to classify points (clusters & superclusters).

Define a ‘supercluster’ as a group of adjacent pixels containing at least one hot pixel, the remainder

being either hot or bright.

State diagram

Figure 1: Possible state space diagram based on arrangement of bad pixels as well as value (SD has been left aside

as a classifier for now). Highlighted states may be fixed by flat field correction (although this depends on

the behaviour of the damaged pixels in the grey and white images, so may not always be the case)

Healthy

pixels

Dim No response Dead pixel Dead line

Bright
Bright

cluster
Supercluster Bright line

Definitions

Dim: Pixels identified as dim by thresholding in grey/white images. Exclude patches identified as spots on beryllium screen.
No response: Pixel behaves normally in black images, but response in grey/white images remains at normal black level. No

response at all to presence of x-rays.
Dead pixel: Pixelwise mean is exactly 0 in grey or white images.
Dead line: Column of zero-valued pixels. Not yet observed in the new data set.
Bright: Singleton pixel identified as bright by thresholding in white/grey images.
Bright cluster: Cluster of between 2 and 9 adjacent pixels identified as right by thresholding in white/grey images.
Supercluster: Cluster of adjacent hot and bright pixels or pixel clusters. Contains at least one hot pixel, which appears to

be leaking charge into (usually) horizontally-adjacent cells - a phenomenon known as ‘blooming’, I think.
For example: of 129 hot pixels identified in the black images from 16-03-14, 2 are singletons while 127 form part of
a supercluster with adjacent bright pixels: see attached hot-pixels-160314-black.pdf for plots of every supercluster and
surrounding bad pixels: ⌅ hot, ⌅ bright, ⌅ dim. Superclusters are outlined in black.

Bright line: Column of cells with slightly higher values than those on either side, possibly with its root in a supercluster.
May need to be identified using a separate process, since the pixels may not be very much brighter (in the two examples
so far, perhaps 300 brighter than the two adjacent columns: not usually enough to be picked up by thresholding)

Still to decide...

Which images to use to define hot pixels? If px == 65535 in black image, it is definitely damaged. Perhaps

classify hot pixels in white/grey images as bright instead? Then again - the user is more interested in the

behaviour of the detector when in use, not in the dark images. [How many px classified as hot in white/grey

are part of a supercluster? This may suggest a solution] - a similar problem applies when defining bright

pixels (especially since identifying bright pixels based on the dark image produces a huge number of bad

pixels to work with)

1

Using grey, white and black images define a variety of 
dysfunctional states and look at transitions.



Model for temporal development 1 Pixels identified using globally extreme values

Bad pixels were identified using simple median-based thresholding of the black, grey and white pixelwise

mean values, without first fitting a parametric model. Bright lines were identified through convolution with

an edge-detecting filter, and dim spots using a morphological closing.

Table 1: Mean proportion of pixels moving from one state to the next at each acquisition

New state

I
n
it

ia
l

s
t
a
t
e

Normal No response Dead Hot V. bright Bright Bright line Screen spot Edge V. dim Dim

normal 99.91 - - 0 0 0 0 0.1 0 - 0

no response - 98.83 - - - - - - - 1.17 -

dead - - 100 - - - - - - - -

hot - - - 96.72 3.28 - - - - - -

v.bright 0.89 - - 2.74 88.62 7.69 - - 0.06 - -

bright 18.07 - - - 8.44 73.44 0.05 - - - -

line.b - - - - - - 100 - - - -

screen spot 84.7 - - - - - - 16.59 0.56 - -

edge 0.06 - - - 0 - 0 0.06 99.89 - -

v.dim - 10 - - - - - - - 90 -

dim 15 - - - - - - - - - 94.44

Table 2: Mean number of pixels moving from one state to the next at each acquisition

New state

I
n
it

ia
l

s
t
a
t
e

Normal No response Dead Hot V. bright Bright Bright line Screen spot Edge V. dim Dim

normal 3895329 - - 0 3 42 90 4057 40 - 0

no response - 29 - - - - - - - 0 -

dead - - 3 - - - - - - - -

hot - - - 126 4 - - - - - -

v.bright 1 - - 4 134 12 - - 0 - -

bright 28 - - - 14 113 0 - - - -

line.b - - - - - - 1064 - - - -

screen spot 4419 - - - - - - 1077 47 - -

edge 50 - - - 0 - 1 47 79130 - -

v.dim - 0 - - - - - - - 2 -

dim 0 - - - - - - - - - 2

With the exception of screen spots (which vary because the screen is replaced, not because of any problems

with detector pixels), the categories identified are reasonably stable; there is some movement between bright,

very bright and hot states (probably because brighter pixels are generally more variable, so perhaps should

not be expected to remain in the same category). However, a more sophisticated classification approach,

considering the clusters in which pixels occur, may also be useful.

1

Markov model with transition probabilities estimated from data:



Markov decision process

Decision node Chance node
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Figure 4.5: Process dynamics in MDPs.

In principle, few restrictions exist on the above elements of M in order to jointly
qualify as an MDP. The primary characteristic of an MDP is the Markov property :
the effects of actions are described by stochastic transitions on the system state that
depend on the last state and action choice only; the sequence of subsequent system
states within a given evolution of the decision process is therefore a Markov chain.
We restrict the discussion of MDPs to cases where the set T is discrete, and the sets
X and A are finite. As in the previous sections, by finiteness of X we mean that X
is a finite set of discrete variables with a finite domain, and therefore the set dom(X)
of system states is also finite. Below, we will first describe the process dynamics
in MDPs. We then turn to criteria to evaluate and compare decision processes,
and to the formulation of decision-making policies for FOMDPs. We conclude the
section with a brief discussion of solution methods, and some remarks on the FOMDP
representation.

Process dynamics

In an MDP model M = (T,A, Θ, R), the set T explicitly denotes the times at which
the decision maker is expected to choose an action; the explicitness in the representa-
tion of these decision moments contrasts with the earlier discussed decision-theoretic
representation formalisms where the notion of time was left implicit. As we take T
to be discrete, we can assume without loss of generality that T = {0, 1, 2, . . .} ⊆ N,
where the ordering < on the natural numbers represents temporal precedence; the
time point t = 0 is called the initial moment of the decision process. When there ex-
ists a finite maximum element N ∈ N in T , the model is said to have a finite horizon
of length N ; otherwise, it is said to have an infinite horizon. In the present discussion,
we will focus on finite-horizon models and make a few remarks on the generalisation
to infinite horizons. Note that in the finite case, the action choice at the final decision
moment t = N is meaningless with respect to evolution of the system state.

The dynamic system under (partial) control by the decision maker is described by a
set X of random variables, where each joint value S ∈ dom(X) represents a possible
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the effects of actions are described by stochastic transitions on the system state that
depend on the last state and action choice only; the sequence of subsequent system
states within a given evolution of the decision process is therefore a Markov chain.
We restrict the discussion of MDPs to cases where the set T is discrete, and the sets
X and A are finite. As in the previous sections, by finiteness of X we mean that X
is a finite set of discrete variables with a finite domain, and therefore the set dom(X)
of system states is also finite. Below, we will first describe the process dynamics
in MDPs. We then turn to criteria to evaluate and compare decision processes,
and to the formulation of decision-making policies for FOMDPs. We conclude the
section with a brief discussion of solution methods, and some remarks on the FOMDP
representation.

Process dynamics

In an MDP model M = (T,A, Θ, R), the set T explicitly denotes the times at which
the decision maker is expected to choose an action; the explicitness in the representa-
tion of these decision moments contrasts with the earlier discussed decision-theoretic
representation formalisms where the notion of time was left implicit. As we take T
to be discrete, we can assume without loss of generality that T = {0, 1, 2, . . .} ⊆ N,
where the ordering < on the natural numbers represents temporal precedence; the
time point t = 0 is called the initial moment of the decision process. When there ex-
ists a finite maximum element N ∈ N in T , the model is said to have a finite horizon
of length N ; otherwise, it is said to have an infinite horizon. In the present discussion,
we will focus on finite-horizon models and make a few remarks on the generalisation
to infinite horizons. Note that in the finite case, the action choice at the final decision
moment t = N is meaningless with respect to evolution of the system state.

The dynamic system under (partial) control by the decision maker is described by a
set X of random variables, where each joint value S ∈ dom(X) represents a possibleDynamic system under partial control of DM 
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state of that system.1 Similar to the representation of time, state dynamics are made
explicit in MDPs: all the variables in X obtain a new value at each decision moment
(although it is possible that some values have not changed as compared to their
previous values). An expression of the form X = S states that the system occupies
state S ∈ dom(X); we regard the elements of the set X as attributes, each describing
a different aspect of the dynamic system. The number of possible system states equals
|dom(X)| = |ΩX |. The set A represents the actions, or equally, decision alternatives,
that are available to the decision maker at each decision moment. Note that there
are no restrictions on the action-selection procedure: actions may be chosen multiple
times, and it is even possible to repeat a single action all the time. Figure 4.5
schematically depicts the described process dynamics.

The effects of actions on system dynamics are described by the set Θ of time- and
action-dependent transition probability functions, where θt(S, a, S ′), θt ∈ Θ, denotes
the probability that state S ′ ∈ dom(X) results after performing action a ∈ A in state
S ∈ dom(X) at decision moment t ∈ T . In infinite-horizon MDPs, action effects are
usually assumed to be independent of time, i.e. θt = θt′ for all time points t, t′ ∈ T ;
the transition probabilities are then said to be stationary. A special case exists when
the action effects are deterministic, i.e. θt(S, a, S ′) ∈ {0, 1} for all t ∈ T , a ∈ A, and
S, S ′ ∈ dom(X). Then, a given initial system state and sequence of action choices
fixes the evolution of the system over time. Generally speaking, however, the effects
are stochastic and a multitude of evolutions is possible.

We will now introduce some notations to guide the remaining discussion. Let τ ∈ T
be a decision moment. A sequence

σ = S0, . . . , Sτ (4.11)

of subsequent system states (i.e. St ∈ dom(X), t = 0, . . . , τ) represents a potential
evolution of the system and is called a state sequence up to time point τ . If m = |ΩX |
is the cardinality of the state space, there exist mτ+1 different state sequences up to
that time point. A sequence

α = a0, . . . , aτ (4.12)

of subsequent action choices (i.e. at ∈ A, t = 0, . . . , τ) represents concrete decision-
making behaviour and is called an action sequence up to time point τ . If there are
k = |A| different actions to choose from, there exist kτ+1 different action sequences
up to that time point. The pair h = (σ,α) represents a potential realisation of the
decision process and is called a decision-making history. We will use Hτ to denote
the set of all possible histories up to time point τ . The set of full-length histories HN

now represents all potential outcomes of the decision process; the cardinality of HN

is (mk)N+1.

Given an action sequence α = a0, a1, . . . , aτ and an initial state S ∈ dom(X), a (con-

ditional) probability distribution P (S,α)
τ on state sequences up to time point τ ∈ T is

1Recall from Section 3.1 that dom(X) = dom(x1)× · · ·× dom(xn) if X = {x1, . . . , xn}.

Subsequent states
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induced as follows:

P (S,α)
τ (σ) =

τ−1∏

t=0

θt(St, at, St+1) (4.13)

for all state sequences σ = S0, . . . , Sτ having S0 = S, and P (S,α)
τ (σ) = 0 for all other

state sequences. In this probability distribution, the system state at time point t is
independent of the decision-making history given the action choice and system state
at time point t − 1; the sequence of subsequent system states is therefore a Markov
chain. Furthermore, the action aτ at time point τ does not appear in the equation
and is uninfluential. In the overall decision problem, the action choice at the last
decision moment t = N , is therefore irrelevant to the system’s evolution.

Example 4.17 An example MDP model for the VSD domain can be devised as fol-
lows. The set X represents the clinical state of the patient and is composed of the
attributes VSD, resis, shunt, pmhyp, pmart, hfail, and death. There are 6 deci-
sion moments, at respectively 3 months, 6 months, 12 months, 24 months, 4 years,
and 8 years after birth. The available actions, finally, are the modalities available to
the cardiologist to manage a VSD patient: A = {echo, med, cath, surg, biop}. Note
that in this MDP model, spontaneous closure of the VSD is represented implicitly by
diminishing values for the attribute VSD at subsequent decision moments. Similarly,
the Eisenmenger syndrome is represented by increasing values for pmhyp (pulmonary
hypertension) due to pulmonary arteriopathy (pmart=true).

Evaluation criteria

In an MDP model M = (T,A, P,R), the set R comprises reward functions rt,
t ∈ T , that describe time-dependent preferences of the decision maker with respect
to states and actions: rt(S, a), rt ∈ R, denotes the (numerical) reward received when
the decision maker chooses action a ∈ A at time point t ∈ T and the current state
is S ∈ dom(X). It is important to note that this reward value reflects relative
(un)desirability of that state and action at time point t only; states and actions
at other time points are disregarded within the reward functions. Furthermore, re-
ward values may be positive as well as negative; in the latter case one often speaks
of costs. Similar to transition probability functions, we speak of stationary reward
functions when they are independent of time, i.e. when rt = rt′ for all t, t′ ∈ T ; this
is customary for infinite-horizon models. We note that although the action choice
at the final decision moment t = N will not influence the system’s evolution, it does
affect the reward received at that time point.

To rank the potential outcomes h ∈ HN of a decision process, the rewards received at
subsequent time points have to be combined using an evaluation metric. Examples
of such metrics are total reward, average reward, and variations thereof. We focus
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In principle, few restrictions exist on the above elements of M in order to jointly
qualify as an MDP. The primary characteristic of an MDP is the Markov property :
the effects of actions are described by stochastic transitions on the system state that
depend on the last state and action choice only; the sequence of subsequent system
states within a given evolution of the decision process is therefore a Markov chain.
We restrict the discussion of MDPs to cases where the set T is discrete, and the sets
X and A are finite. As in the previous sections, by finiteness of X we mean that X
is a finite set of discrete variables with a finite domain, and therefore the set dom(X)
of system states is also finite. Below, we will first describe the process dynamics
in MDPs. We then turn to criteria to evaluate and compare decision processes,
and to the formulation of decision-making policies for FOMDPs. We conclude the
section with a brief discussion of solution methods, and some remarks on the FOMDP
representation.

Process dynamics

In an MDP model M = (T,A, Θ, R), the set T explicitly denotes the times at which
the decision maker is expected to choose an action; the explicitness in the representa-
tion of these decision moments contrasts with the earlier discussed decision-theoretic
representation formalisms where the notion of time was left implicit. As we take T
to be discrete, we can assume without loss of generality that T = {0, 1, 2, . . .} ⊆ N,
where the ordering < on the natural numbers represents temporal precedence; the
time point t = 0 is called the initial moment of the decision process. When there ex-
ists a finite maximum element N ∈ N in T , the model is said to have a finite horizon
of length N ; otherwise, it is said to have an infinite horizon. In the present discussion,
we will focus on finite-horizon models and make a few remarks on the generalisation
to infinite horizons. Note that in the finite case, the action choice at the final decision
moment t = N is meaningless with respect to evolution of the system state.

The dynamic system under (partial) control by the decision maker is described by a
set X of random variables, where each joint value S ∈ dom(X) represents a possible

4.2 Decision-theoretic planning 95

x1

x2

xn

...

t = 0

x1

x2

xn

...

t = 1

x1

x2

xn

...

t = 2

· · ·

x1

x2

xn

...

t = N

a0 a1

Figure 4.5: Process dynamics in MDPs.

In principle, few restrictions exist on the above elements of M in order to jointly
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state of that system.1 Similar to the representation of time, state dynamics are made
explicit in MDPs: all the variables in X obtain a new value at each decision moment
(although it is possible that some values have not changed as compared to their
previous values). An expression of the form X = S states that the system occupies
state S ∈ dom(X); we regard the elements of the set X as attributes, each describing
a different aspect of the dynamic system. The number of possible system states equals
|dom(X)| = |ΩX |. The set A represents the actions, or equally, decision alternatives,
that are available to the decision maker at each decision moment. Note that there
are no restrictions on the action-selection procedure: actions may be chosen multiple
times, and it is even possible to repeat a single action all the time. Figure 4.5
schematically depicts the described process dynamics.

The effects of actions on system dynamics are described by the set Θ of time- and
action-dependent transition probability functions, where θt(S, a, S ′), θt ∈ Θ, denotes
the probability that state S ′ ∈ dom(X) results after performing action a ∈ A in state
S ∈ dom(X) at decision moment t ∈ T . In infinite-horizon MDPs, action effects are
usually assumed to be independent of time, i.e. θt = θt′ for all time points t, t′ ∈ T ;
the transition probabilities are then said to be stationary. A special case exists when
the action effects are deterministic, i.e. θt(S, a, S ′) ∈ {0, 1} for all t ∈ T , a ∈ A, and
S, S ′ ∈ dom(X). Then, a given initial system state and sequence of action choices
fixes the evolution of the system over time. Generally speaking, however, the effects
are stochastic and a multitude of evolutions is possible.

We will now introduce some notations to guide the remaining discussion. Let τ ∈ T
be a decision moment. A sequence

σ = S0, . . . , Sτ (4.11)

of subsequent system states (i.e. St ∈ dom(X), t = 0, . . . , τ) represents a potential
evolution of the system and is called a state sequence up to time point τ . If m = |ΩX |
is the cardinality of the state space, there exist mτ+1 different state sequences up to
that time point. A sequence

α = a0, . . . , aτ (4.12)

of subsequent action choices (i.e. at ∈ A, t = 0, . . . , τ) represents concrete decision-
making behaviour and is called an action sequence up to time point τ . If there are
k = |A| different actions to choose from, there exist kτ+1 different action sequences
up to that time point. The pair h = (σ,α) represents a potential realisation of the
decision process and is called a decision-making history. We will use Hτ to denote
the set of all possible histories up to time point τ . The set of full-length histories HN

now represents all potential outcomes of the decision process; the cardinality of HN

is (mk)N+1.

Given an action sequence α = a0, a1, . . . , aτ and an initial state S ∈ dom(X), a (con-

ditional) probability distribution P (S,α)
τ on state sequences up to time point τ ∈ T is

1Recall from Section 3.1 that dom(X) = dom(x1)× · · ·× dom(xn) if X = {x1, . . . , xn}.

Subsequent states
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induced as follows:

P (S,α)
τ (σ) =

τ−1∏

t=0

θt(St, at, St+1) (4.13)

for all state sequences σ = S0, . . . , Sτ having S0 = S, and P (S,α)
τ (σ) = 0 for all other

state sequences. In this probability distribution, the system state at time point t is
independent of the decision-making history given the action choice and system state
at time point t − 1; the sequence of subsequent system states is therefore a Markov
chain. Furthermore, the action aτ at time point τ does not appear in the equation
and is uninfluential. In the overall decision problem, the action choice at the last
decision moment t = N , is therefore irrelevant to the system’s evolution.

Example 4.17 An example MDP model for the VSD domain can be devised as fol-
lows. The set X represents the clinical state of the patient and is composed of the
attributes VSD, resis, shunt, pmhyp, pmart, hfail, and death. There are 6 deci-
sion moments, at respectively 3 months, 6 months, 12 months, 24 months, 4 years,
and 8 years after birth. The available actions, finally, are the modalities available to
the cardiologist to manage a VSD patient: A = {echo, med, cath, surg, biop}. Note
that in this MDP model, spontaneous closure of the VSD is represented implicitly by
diminishing values for the attribute VSD at subsequent decision moments. Similarly,
the Eisenmenger syndrome is represented by increasing values for pmhyp (pulmonary
hypertension) due to pulmonary arteriopathy (pmart=true).

Evaluation criteria

In an MDP model M = (T,A, P,R), the set R comprises reward functions rt,
t ∈ T , that describe time-dependent preferences of the decision maker with respect
to states and actions: rt(S, a), rt ∈ R, denotes the (numerical) reward received when
the decision maker chooses action a ∈ A at time point t ∈ T and the current state
is S ∈ dom(X). It is important to note that this reward value reflects relative
(un)desirability of that state and action at time point t only; states and actions
at other time points are disregarded within the reward functions. Furthermore, re-
ward values may be positive as well as negative; in the latter case one often speaks
of costs. Similar to transition probability functions, we speak of stationary reward
functions when they are independent of time, i.e. when rt = rt′ for all t, t′ ∈ T ; this
is customary for infinite-horizon models. We note that although the action choice
at the final decision moment t = N will not influence the system’s evolution, it does
affect the reward received at that time point.

To rank the potential outcomes h ∈ HN of a decision process, the rewards received at
subsequent time points have to be combined using an evaluation metric. Examples
of such metrics are total reward, average reward, and variations thereof. We focus
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here on the total discounted reward metric, which is defined as

u(h) =
N∑

t=0

λtrt(St, at), (4.14)

where h = (S0, . . . , SN , a0, . . . , aN ), and 0 < λ ≤ 1 is a real-valued discount factor.
The value u(h) is the total discounted reward associated with history h, and is also
referred to as its utility under this metric; when λ = 1, we simply speak of total
reward. From a utility-theoretic point of view, the function u provides a preference
ordering on the set HN of outcomes, where the states and actions at subsequent time
points are taken to be additive-independent attributes of utility. The discount factor
is generally justified economically (as a representation of interest, when the rewards
represent monetary gains), mechanically (as a representation of physical decay), or
psychologically (people tend to care more about near than about distant future).
The discount factor is also a prerequisite to infinite-horizon MDPs, as there would
otherwise be no upper bound on the function u.

Given an action sequence α = a0, . . . , aN , the expected utility ũα(S) of initial system
state S is now defined as

ũα(S) =
∑

h∈HN , h=(σ,α)

u(h) · P (S,α)
N (σ). (4.15)

The decision maker’s objective is to maximise expected utility by choosing an appro-
priate sequence of actions.

Formulation of solutions

As the evolution of the system cannot be predicted with certainty, the decision maker
will have to respond to observations in due course when choosing his actions; other-
wise, expected-utility maximisation is not guaranteed. Under the assumption of full
observability, solving the decision problem formulated by an MDP model therefore
amounts to finding a policy π = {δt | t ∈ T}, where

δt : dom(X)→ A (4.16)

is a decision function prescribing the action choice at time point t ∈ T given the
actual system state. Potentially, there are km different decision functions to choose
from at each time point, where again k = |A| and m = |ΩX |. The number of different
policies is therefore km(N+1)

. If the functions are identical for all time points, i.e.
when δt = δt′ for all t, t′ ∈ T , then the policy is said to be stationary ; the number
of different policies than reduces to km. Stationarity of the policy can be assumed
when both the transition probability and the reward functions are stationary; in that
case, investigating non-stationary policies would not help to increase expected utility.
Such policies are therefore the standard type of solution to infinite-horizon FOMDPs.
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when δt = δt′ for all t, t′ ∈ T , then the policy is said to be stationary ; the number
of different policies than reduces to km. Stationarity of the policy can be assumed
when both the transition probability and the reward functions are stationary; in that
case, investigating non-stationary policies would not help to increase expected utility.
Such policies are therefore the standard type of solution to infinite-horizon FOMDPs.
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Given a policy π = {δt | t ∈ T} and an initial system state S ∈ dom(X), a (condi-

tional) probability distribution P (S,π)
τ on histories up to time point τ is induced as

follows:

P (S,π)
τ (h) =

τ−1∏

t=0

θt(St, at, St+1) (4.17)

for all h = (S0, . . . , Sτ , a0, . . . , aτ ) having S0 = S and δt(St) = at; for all other h ∈ Hτ ,

we have P (S,π)
τ (h) = 0. The expected utility ũπ(S) of initial system state S under

policy π now equals

ũπ(S) = E
P

(S,π)
N

(u)

=
∑

h∈HN

u(h) · P (S,π)
N (h). (4.18)

The task of computing ũπ(S) for a given policy π and initial state S is called pol-
icy evaluation. We say that a policy is optimal when it maximises ũπ(S) for all
S ∈ dom(X); the task of finding such a policy is called solving the FOMDP. Note
that the utility function must have an upper bound in order to compare policies; this
condition is satisfied when all the reward functions are bounded, and, in the case of
infinite-horizon models, the discount rate λ is smaller than 1.

Solution methods

The standard approach to solving FOMDPs is based on decomposing the decision
process using the Markov property. Define the maximum expected partial utility
ν̃∗t (St) of state St ∈ dom(X) at time point t ∈ T as follows:

ν̃∗t (St) = max
at∈A

⎧
⎨

⎩rt(St, at) + λ ·
∑

St+1∈dom(X)

θt(St, at, St+1) · ν̃∗t+1(St+1)

⎫
⎬

⎭ ,(4.19)

if t < N , and ν̃∗N (SN) = maxaN∈A{rN(SN , aN )}, otherwise. The value ν̃∗t (St) is the
maximum expected total reward that is to be received during the future steps of the
decision process. If π∗ is an optimal policy, we have that

ũπ∗(S) = ν̃∗0(S) (4.20)

for all initial system states S ∈ dom(X). The recursion described by Equation 4.19 is
usually named a Bellman equation, after Richard Bellman, the researcher who intro-
duced this method. It reflects the fact in the FOMDP representation, a multi-stage
decision problem can be reduced to a series of inductively-defined single-stage deci-
sion problems. Computational methods based on Bellman equations are generally
referred to as stochastic dynamic programming; as they solve decision problems in re-
verse order are considered to be an efficient form of backward induction. An example
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τ (h) = 0. The expected utility ũπ(S) of initial system state S under

policy π now equals
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