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THE LEFT-CURTAIN MARTINGALE COUPLING IN THE
PRESENCE OF ATOMS

BY DAVID G. HOBSON AND DOMINYKAS NORGILAS

University of Warwick

Beiglböck and Juillet (Ann. Probab. 44 (2016) 42–106) introduced the
left-curtain martingale coupling of probability measures μ and ν, and proved
that, when the initial law μ is continuous, it is supported by the graphs of
two functions. We extend the later result by constructing the generalised left-
curtain martingale coupling and show that for an arbitrary starting law μ it is
characterised by two appropriately defined lower and upper functions.

As an application of this result, we derive the model-independent upper
bound of an American put option. This extends recent results of Hobson and
Norgilas (2017) on the atom-free case.

1. Introduction. Given two probability measures μ and ν on R and a pay-
off function c : R × R → R, the classical problem of optimal transport is to con-
struct a joint distribution for random variables Z1 ∼ μ and Z2 ∼ ν which min-
imises E[c(Z1,Z2)]. Beiglböck et al. [3] and Galichon et al. [10] introduced a
martingale version of the transportation problem and related it to the problem
of finding model-independent bounds of exotic derivatives in mathematical fi-
nance. Given μ and ν in convex order, the basic problem of martingale optimal
transport (MOT) is to construct a martingale M , with M1 ∼ μ, M2 ∼ ν, which
minimises E[c(M1,M2)]. In this setting, a martingale transport or coupling can
be identified with a measure π on R2 with univariate marginals μ and ν, and
such that

∫
y∈R

∫
x∈A(y − x)π(dx, dy) = 0 for all Borel sets A, and the MOT

is to find π to minimise
∫∫

c(x, y)π(dx, dy). In the context of mathematical fi-
nance, this problem was first studied in Hobson and Neuberger [13] for the payoff
c(x, y) = −|y − x|.

Beiglböck and Juillet [5] introduced the notion of a left-monotone martingale
coupling and established that for (arbitrary) fixed marginals μ and ν in convex
order there exists a unique such coupling (called the left-curtain martingale cou-
pling and denoted by πlc). The left-curtain martingale coupling may be viewed as
a martingale analogue to the monotone Hoeffding–Frèchet coupling in classical
optimal transport. The authors also proved the optimality of πlc for a specific class
of payoff functions. Henry-Labordère and Touzi [11] extended the results of Bei-
glböck and Juillet [5] and showed optimality for a wider class of payoff functions.
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Beiglböck et al. [4] analysed the left-curtain coupling further and gave a simplified
proof of uniqueness under the additional assumption that μ is continuous. Juillet
[18] proved that πlc is continuous, and thus, for general distributions, it can be
approximated by the left-curtain couplings corresponding to “nice” (e.g., finitely
supported or continuous) initial and/or target laws. A number of further articles in-
vestigate the properties and extensions of πlc; see Beiglböck et al. [2, 4] and Nutz
et al. [20, 21].

Beiglböck and Juillet [5] also established a martingale version of the funda-
mental Brenier’s [7] result in the classical optimal tansport which states that, for
a sufficiently regular initial distribution μ, the optimal transport map is unique
and supported by the graph of the gradient of some convex function (a mono-
tonically increasing function in one dimension). In particular, the authors showed
that under the assumption that the initial law μ is continuous, the left-curtain
martingale coupling is supported by the graphs of lower and upper functions
Td and Tu, respectively, so that M2 ∈ {Td(M1), Tu(M1)}. Henry-Labordère and
Touzi [11] gave an explicit construction of Td and Tu using differential equa-
tions. However, when μ has an atom at x the element πx

lc(·) in the disintegra-
tion πlc(dx, dy) = μ(dx)πx

lc(dy) becomes a measure with support on nontrivial
subsets of R and not just on a two-point set. Then we cannot construct functions
(Td, Tu), unless we allow them to be multivalued.

Our goal in this paper is to show how by changing our viewpoint we can again
recover the property that M2 takes values in a two-point set. The idea is to write
M1 = h(Z) for a continuous random variable Z (in fact we take Z ≡ U ∼ U(0,1))
and then to find fZ,h and gZ,h such that M2 ∈ {fZ,h(Z), gZ,h(Z)}. Then, although
there is uniqueness at the level of martingale couplings π , when μ contains atoms
there are many possible choices of (fZ,h, gZ,h), even for fixed Z and monotonic
increasing h. Nonetheless, we show that amongst this set there is an essentially
unique choice (fZ,h, gZ,h) with a special monotonicity property.

The motivation for this extension of the left-curtain martingale coupling comes
from mathematical finance. The recent study of American put options in Hobson
and Norgilas [17] highlights the role of the left-curtain martingale coupling in find-
ing the model-independent upper bound on the price of the American put. When
μ is continuous the authors show how the optimal martingale coupling and the op-
timal stopping time can be obtained from the functions f = Td and g = Tu which
arise in the construction of the left-curtain coupling. In particular, for the optimal
model there is a Borel subset of R, say B , such that it is optimal to stop at time-1 if
M1 ∈ B , and at time-2 otherwise. Moreover, the structure of f and g allows us to
identify the cheapest superhedging strategy that supports the price of the American
put.

If μ has atoms then the situation becomes more delicate, essentially because
we must allow for a wider range of possible candidates for exercise determining
sets B . On atoms of μ, we may want to sometimes stop and sometimes continue,
although we must still take stopping decisions which do not violate the martingale



1906 D. G. HOBSON AND D. NORGILAS

property. As the stopping decision in the continuous case is based on the natural
filtration of the martingale M , if M1 ends up at the atom of μ, then it is not clear,
using only the structure of f and g, what part of mass at time-1 should be stopped
and what part should be allowed to continue. This is the reason why we must
extend the notion of the left-curtain martingale coupling.

The main effort in this article is in proving Theorem 1 which extends the left-
curtain martingale coupling to the presence of atoms in the starting law μ. We show
that this extended coupling is again characterised by lower and upper functions,
R and S, respectively. However, while f and g are multivalued on the atoms of
μ, R and S remain well defined. Then our second achievement is to show how
the structure of R and S can be used to characterise the model and stopping rule
which achieves the highest possible price for the American put, and the cheapest
superhedge. This generalises results of Hobson and Norgilas [17]: for arbitrary μ

and ν, the highest model based price of the American put is equal to the cost of the
cheapest superhedge.

2. Preliminaries and set-up. Let M(Rn) (resp., P(Rn)) be the set of mea-
sures (resp., probability measures) on Rn. Given an integrable η ∈ M(R), that

is,
∫
R|x|η(dx) < ∞, define η̄ =

∫
R

xη(dx)∫
R

η(dx)
to be a barycentre of η. Let Iη with

endpoints {�η, rη} be the smallest interval containing the support of η (with
the convention that finite endpoints are included). Define Pη : R �→ R+ by
Pη(k) = ∫ k

−∞(k−x)η(dx). Then Pη is convex and increasing, limz↓−∞ Pη(z) = 0,
limz↑∞ Pη(z) − η(R)(z − η̄)+ = 0 and {k : Pη(k) > η(R)(k − η̄)+} ⊆ Iη. Note
that Pη is related to the potential Uη defined by Uη(k) := − ∫

R |k − x|η(dx) by
Pη(k) = 1

2(−Uη(k) + (k − η̄)η(R)). For η ∈ P(R) let Fη be the distribution func-
tion of η and let Gη : (0,1) �→ R be the quantile function of η, which is taken to
be left-continuous unless otherwise stated.

Two measures η and χ are in convex order, and we write η ≤cx χ , if and only
if η(R) = χ(R), η̄ = χ̄ and Pη(k) ≤ Pχ(k) on R. Necessarily we must have
�χ ≤ �η ≤ rη ≤ rχ . For any two probability measures η,χ ∈ P(R), we write
π ∈ �(η,χ) if π ∈ P(R2) and has first marginal η and second marginal χ . If
π ∈ �(η,χ) is such that the following martingale condition holds:∫

x∈B

∫
y∈R

yπ(dx, dy) =
∫
x∈B

∫
y∈R

xπ(dx, dy)

=
∫
B

xη(dx) ∀ Borel B ⊆ R,(1)

we write π ∈ �M(η,χ) ⊂ �(η,χ) and say that π is a martingale coupling of η

and χ . By a classical result of Strassen [22], �M(η,χ) is nonempty if and only if
η ≤cx χ .

DEFINITION 1 (Hobson and Neuberger [16]). Suppose μ ≤cx ν.
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Let S = (�,F,P,F = {F0,F1,F2}) be a filtered probability space. We say
M = (M0,M1,M2) = (μ̄,X,Y ) is a (S,μ, ν) consistent stochastic process and
we write M ∈ M(S,μ, ν) if:

1. M is a S-martingale,
2. L(M1) = μ and L(M2) = ν.

We say (S,M) is a (μ, ν)-consistent model if S is a filtered probability space and
M is a (S,μ, ν) consistent stochastic process.

Let (ηn)n≥1 be a sequence of probability measures in P(R). For η ∈ P(R), we
write ηn

w−→ η, and say ηn converges weakly to η, if limn→∞
∫

f dηn = ∫
f dη for

all bounded and continuous functions f on R (see Billingsley [6]). If ηn
w−→ η, if

ηn ≤cx η and if (ηn)n≥1 is increasing in convex order, that is, ηn ≤cx ηn+1 for each
n, then we write ηn ↑cx η.

LEMMA 1. Suppose μ ∈ P(R) is integrable. Then there exists a sequence
(μn)n≥1 of finitely supported integrable measures in P(R) such that μn ↑cx μ.

PROOF. Recall that for any η ∈ P(R), Uη is concave, linear on each interval
I ⊂ R with η(I) = 0, Uη(x) ≤ −|η̄ − x|= Uδη̄

(x) on R, and lim|x|→∞ Uη(x) +
|η̄ − x|= 0. Moreover, μn ↑cx μ if and only if Uμn ↓ Uμ pointwise; see Chacon
[8]. Let Uμ be a set of piecewise linear concave functions Ũ : R → R− such that
Uμ(x) ≤ Ũ (x) ≤ Uδμ̄

(x). Then each Ũ ∈ Uμ corresponds to a finitely supported
integrable probability measure μ̃ on R such that δμ̄ ≤cx μ̃ ≤cx μ. Finally, Chacon
and Walsh [9] provide a sequence of functions (Ũn)n≥1 in Uμ, such that Ũn ↓ Uμ

pointwise, proving our claim. �

3. An extension of the left-curtain mapping to the general case. In this
section, we construct a new representation of the left-curtain martingale coupling
of Beiglböck and Juillet [5]. Our approach is to construct (X,Y ) from a pair of
independent uniform U(0,1) random variables U and V . The construction of X is
straightforward: we set X = Gμ(U).

It remains to construct Y . First, we consider the case of a point mass at w, μ =
δw , and show how to construct functions R = Rμ,ν and S = Sμ,ν with Rμ,ν(u) ≤
Gμ(u) ≤ Sμ,ν(u), such that if X = Gδw(U) = w and Y ∈ {R(U),S(U)} with
P(Y = R(u)|U = u) = S(u)−G(u)

S(u)−R(u)
then Y has law ν. In particular, conditional on

U = u, Y takes values in {R(u), S(u)} and satisfies E[Y |U = u] = Gμ(u). Sec-
ond, we show how this result extends to the case of a measure μ consisting of
finitely many atoms. Third, for the case of general μ we construct an approxi-
mation (μn)n≥1 of μ and associated functions (Rn,Gn,Sn)n≥1 where each μn is
finitely supported. We show that we can define limits (R,G,S) such that (R,G,S)

can be used to construct a martingale M = (M0 = μ̄,M1 = X,M2 = Y) with the
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property that X = G(U) and Y ∈ {R(U),S(U)} and such that L(X) = μ and
L(Y ) = ν. The functions R,S : (0,1) �→R we define have the properties

R(u) ≤ G(u) ≤ S(u);
S is increasing; for 0 < u < v < 1,R(v) /∈ (

R(u), S(u)
)
.(2)

We suppose μ ≤cx ν are fixed and given and we abbreviate the quantile function
Gμ by G. The aim of this section is to prove the following theorem.

THEOREM 1. There exist functions R,S : (0,1) �→R satisfying (2) such that if
we define X(u, v) = X(u) = G(u) and Y(u, v) ∈ {R(u), S(u)} by Y(u, v) = G(u)

on G(u) = S(u) and

(3) Y(u, v) = R(u)I{v≤ S(u)−G(u)
S(u)−R(u)

} + S(u)I{v>
S(u)−G(u)
S(u)−R(u)

}

otherwise, and if U and V are independent U(0,1) random variables then
M = (μ̄,X(U),Y (U,V )) is a F = (F0 = {∅,�},F1 = σ(U),F2 = σ(U,V )})-
martingale for which L(X) = μ and L(Y ) = ν.

In particular, if � = (0,1) × (0,1), F = B(�), P = Leb(�), if F and M are
defined as above and if S = (�,F,F,P) then (S,M) is a (μ, ν)-consistent model.

REMARK 1. For n ≥ 1, let πn
lc be the left-curtain coupling of the initial law

μn (consisting of n atoms) and target law ν. Juillet [18] proved that if (μn)n≥1
converges weakly to μ then (πn

lc)n≥1 converges weakly to the left-curtain coupling
of μ and ν.

Here, we argue differently. We use the fact that πn
lc can be represented by an

explicitly constructed triple (Sn,Gn,Rn). Then, by sending n → +∞, we show
that the limiting functions give rise to the left-monotone martingale coupling, and
thus also to πlc, of μ and ν.

When μ is continuous and f and g are well defined the construction of this
section is related to that of Beiglböck and Juillet [5] (see also Henry-Labordère and
Touzi [11]) via the relationships S = g ◦ Gμ and R = f ◦ Gμ. Suppose ν is also
continuous and fix x. Then under the left-curtain martingale coupling {f (x), g(x)}
with f (x) ≤ x ≤ g(x) are solutions to the mass and mean conditions

∫ x

f
μ(dz) =

∫ g

f
ν(dz),(4)

∫ x

f
zμ(dz) =

∫ g

f
zν(dz).(5)

When μ has atoms, Gμ has intervals of constancy and f and g are multivalued,
but R and S remain well defined. See Figure 1. Then, for general μ and ν, the
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FIG. 1. Sketch of R, G, S and the corresponding f and g. On the atoms of μ, G is flat, and f and
g are multivalued, but R and S remain well defined.

appropriate generalisations of (4) and (5) are
∫
(R(u),G(u))

μ(dz) + λ
μ
u =

∫
(R(u),S(u))

ν(dz) + λν
u + λ

ν
u,(6)

∫
(R(u),G(u))

zμ(dz) + λ
μ
uG(u) =

∫
(R(u),S(u))

zν(dz) + λν
uR(u) + λ

ν
uS(u),(7)

respectively, where the quantities 0 ≤ λ
μ
u ≤ μ({G(u)}), 0 ≤ λν

u ≤ (ν −μ)({R(u)}),
0 ≤ λ

ν
u ≤ ν({S(u)}) are uniquely determined by the triple (R,G,S). Essentially,

(6) is preservation of mass condition and (7) is preservation of mean condition.
Together they give the martingale property.

3.1. The case where μ is a point mass. The goal in this section is to prove
Theorem 1 in the special case where μ is a point mass. We assume that μ is a unit
atom at w and ν is centred at w. Then μ = δw ≤cx ν.

Let P(k) = Pν(k) = ∫ ∞
−∞(k − z)+ν(dz). Then P(k) ≥ (k − w)+. For p ∈

[0,P (w)], define α : [0,P (w)] �→ [w,∞] and β : [0,P (w)] �→ [−∞,w] by

(8) α(p) = arginf
k>w

{
P(k) − p

k − w

}
; β(p) = argsup

k<w

{
p − P(k)

w − k

}
;

see Figure 2. Then α is decreasing and β is increasing. Since the arginf and argsup
may not be uniquely defined (this happens when ν has intervals with no mass)
we avoid indeterminacy by assuming that α and β are right continuous. (We also
set α(P (w)) = inf{z > w : Fν(z) > Fν(w)} and β(P (w)) = sup{z < w : Fν(z) <

Fν(w−)}. Note that α(0) = rν and β(0) = �ν .) If ν has atoms, then α and β may
fail to be strictly monotonic.
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FIG. 2. The definitions of α, β , a and b. ϒ(p) is the difference in the slopes of the tangents to
Pν(k) which pass through (w,p).

For p ∈ (0,P (w)), define also

(9)

a(p) = inf
k>w

P (k) − p

k − w
= P(α(p)) − p

α(p) − w
;

b(p) = sup
k<w

p − P(k)

w − k
= p − P(β(p))

w − β(p)
.

Extend the representations to [0,P (w)] by taking limits. Then a : [0,P (w)] �→
[P ′(w+),1] is decreasing and b : [0,P (w)] �→ [0,P ′(w−)] is increasing. We have
the representations

a(p) = 1 −
∫ p

0

dq

α(q) − w
; b(p) =

∫ p

0

dq

w − β(q)
.

Let ϒ : [0,P (w)] �→ [0,1] be given by ϒ(p) = a(p) − b(p). Then ϒ(0) = 1
and ϒ(P (w)) = ν({w}). ϒ is a decreasing, concave function which is absolutely
continuous on [0,P (w)). We can define an inverse ϒ−1 : [0,1] → [0,P (w)] pro-
vided we set ϒ−1(q) = 1 for q ≤ ν({w}). Where α and β are continuous, we have
ϒ ′(p) = − 1

α(p)−w
− 1

w−β(p)
. See Figure 3.

Define S : (0,1) �→ R by S(u) = (α ◦ ϒ−1)(u) and R : (0,1) �→ R by R(u) =
(β ◦ ϒ−1)(u).

REMARK 2. If ν does not charge an open interval A ⊂ (w,∞), then P is lin-
ear on A. Then α jumps over this set and S does not take values in A. Similarly, if
ν does not charge an open interval B ⊂ (−∞,w), then R jumps over this interval.
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FIG. 3. Sketch of ϒ and ϒ−1.

REMARK 3. By construction, α and β are both right continuous. Since ϒ−1 is
continuous and decreasing, it follows that R and S are left continuous. Moreover,
limu→1 R(u) = �ν and limu→1 S(u) = rν .

Let Y be defined by (3) in Theorem 1. Note that since μ is a point mass G(u) =
w for all u ∈ (0,1).

LEMMA 2. Suppose U , V are independent uniform random variables. Then
Y(U,V ) has law ν.

PROOF. Let φ be a test function: a continuously differentiable function with
support contained in [w + ε,w + ε−1] for some ε ∈ (0,1). We will show that
E[φ(Y )] = ∫

φ(y)ν(dy). We can prove a similar result for test functions ψ with
support in [w − ε−1,w − ε]. It follows that L(Y ) = ν.

By construction,

E
[
φ(Y )

] =
∫ 1

0
du

w − R(u)

S(u) − R(u)
φ

(
S(u)

)

=
∫ 1

0
du

w − β ◦ ϒ−1(u)

α ◦ ϒ−1(u) − β ◦ ϒ−1(u)
φ

(
α ◦ ϒ−1(u)

)

=
∫ P(w)

0
dp

∣∣ϒ ′(p)
∣∣ w − β(p)

α(p) − β(p)
φ

(
α(p)

)
.

But ϒ ′(p) = − α(p)−β(p)
(α(p)−w)(w−β(p))

. Thus, writing ψ(y) = φ(y)
(y−w)

and using the fact

that α−1(y) = P(y) − (y − w)P ′(y) except at the countably many points where
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α−1 is multivalued,

E
[
φ(Y )

] =
∫ P(w)

0
dp

φ(α(p))

α(p) − w
= −

∫ ∞
w

d
(
α−1(y)

)
ψ(y)

=
∫ ∞
w

[
P(y) − (y − w)P ′(y)

]
ψ ′(y) dy

= −
∫ ∞
w

P ′(y)
[
ψ(y) + (y − w)ψ ′(y)

]
dy

= −
∫ ∞
w

P ′(y)φ′(y) dy =
∫

φ(y)ν(dy).

Hence E[φ(y)] = ∫
φ(y)ν(dy). �

REMARK 4. If α and β are strictly monotonic at ϒ−1(u), then conditional
on U ≤ u, Y has law ν conditioned to take values in [β ◦ ϒ−1(u),α ◦ ϒ−1(u)].
Necessarily, ν([β ◦ ϒ−1(u),α ◦ ϒ−1(u)]) = u.

If there is an atom of ν at β ◦ϒ−1(u) or α ◦ϒ−1(u), then we can choose appro-
priate masses λu and λu such that ν((β ◦ ϒ−1(u),α ◦ ϒ−1(u))) + λuδβ◦ϒ−1(u) +
λuδα◦ϒ−1(u) has total mass u and mean w. We must have 0 ≤ λu ≤ ν({β ◦ϒ−1(u)})
and 0 ≤ λu ≤ ν({α ◦ ϒ−1(u)}).

On U ≤ u1 let Yu1 = Yu1(U,V ) be constructed as in (3). On U > u1, let Yu1

be in a graveyard state �. Then L(Y u1) = νu1 + (1 − u1)δ� where νu1 is a mea-
sure on [R(u1), S(u1)] with total mass u1 and mean w. In particular, νu1 = ν on
(R(u1), S(u1)), νu1 ≤ ν on {R(u1), S(u1)} and νu1 = 0 on [R(u1), S(u1)]C .

3.2. The case where μ consists of a finite number of atoms. Suppose μ =∑N
i=1 λiδxi

where x1 < x2 < · · · < xN with λi > 0 and
∑N

i=1 λi = 1. Suppose ν is
an arbitrary probability measure satisfying the convex order condition μ ≤cx ν.

For 0 ≤ p ≤ Pν(x1), we can construct α,β, a and b as in (8) and (9) (but rel-
ative to x1 rather than the mean w) and set ϒ = a − b. For example, α(p) =
arginfk>x1

Pν(k)−p
k−x1

and a(p) = infk>x1
Pν(k)−p

k−x1
. See Figure 4. Note that ϒ(0) =

�1 := infx>x1
Pν(x)
x−x1

and since Pν(x) ≥ Pμ(x) ≥ λ1(x − x1) we have �1 ≥ λ1. The

inverse ϒ−1 can be defined on [0,�1], but we are only interested in ϒ−1 over the
interval [0, λ1]. Using ϒ−1 and the construction of the previous section we can
define S = α ◦ ϒ−1 : (0, λ1] �→ [x1,∞) and R = β ◦ ϒ−1 : (0, λ1] �→ (−∞, x1]
with S increasing and R decreasing.

By the final comments in Remark 4, the construction of R and S on (0, λ1] is
such that if Y is constructed as in (3), then on U ≤ λ1 we find Y has law νλ1 , where
νλ1 = ν on (R(λ1), S(λ1)) and νλ1 ≤ ν on {R(λ1), S(λ1)}.

We now claim that μ̃1 := μ−λ1δx1 = ∑N
i=2 λiδxi

and ν̃1 = ν−νλ1 are in convex
order. By construction νλ1 has mass λ1 and barycentre x1. Hence μ̃1 and ν̃1 also
have the same total mass and barycentre.
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FIG. 4. Calculation of α, β , a and b in this case.

LEMMA 3. μ̃1 ≤cx ν̃1.

PROOF. Let ν̂ = λ1δx1 + ν̃1. Since λ1δx1 ≤cx νλ1 we have ν̂ ≤cx ν. Also
Pμ(k) ≤ Pν̂(k). To see this, note that Pν̂ is continuous everywhere and linear on
intervals [R(λ1), x1] and [x1, S(λ1)], whereas Pμ is continuous and convex on
[R(λ1), S(λ1)]. Moreover, Pμ(R(λ1)) = 0 ≤ Pν̂(R(λ1)), Pμ(x1) = 0 ≤ Pν̂(R(x1))

and Pμ(S(λ1)) ≤ Pν(S(λ1)) = Pν̂(S(λ1)). Hence Pμ̃(k)+λ1(x1 −k)+ = Pμ(k) ≤
Pν̂(k) = Pν̃1(k) + λ1(x1 − k)+ and it follows that Pμ̃(k) ≤ Pν̃1(k) as required. �

We have constructed (R,S) on (0, λ1] with S increasing and R decreasing in
such a way that the point mass at x1 is mapped to νλ1 . It remains to embed ν̃1
starting from μ̃1. Note that by Remark 4, ν̃1 places no mass on (R(λ1), S(λ1)).

As a next step, we embed the atom λ2δx2 of μ̃1 in ν̃1. x2 is the lowest location of
an atom in μ̃1 so we can use the same algorithm as before. In this way, for λ1 < u ≤
λ1 + λ2 we construct S increasing with S(λ1+) ≥ S(λ1−) ∨ x2 and R decreasing
with R(λ1+) ≤ x2. By Remark 2, R jumps over the interval (R(λ1), S(λ1)). We
conclude that for 0 < u < v < λ1 + λ2, R(v) /∈ (R(u), S(u)).

Thereafter, we proceed inductively on the number of atoms which have been
embedded. The initial law is a subprobability μ̃k = ∑N

k+1 λiδxi
which we want to

map to a target law ν̃k where μ̃k ≤cx ν̃k and ν̃k ≤ ν. Since μ consists of a finite
number of atoms the construction terminates. Moreover, the random variable Y we
construct in this way has law ν and R and S have the properties in (2). It follows
that we have proved Theorem 1 in the case where μ consists of a finite number of
atoms.
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3.3. The martingale coupling and its inverse as maps. Given ν centred, (and
μ = δ0) we saw in Section 3.1 how to construct R : (0,1) �→ R− and S : (0,1) �→
R+ such that Y = Y(U,V ) has law ν where Y is given by Y(u, v) = 0 if S(u) = 0
and

(10) Y(u, v) = R(u)I{v≤ S(u)
S(u)−R(u)

} + S(u)I{v>
S(u)

S(u)−R(u)
}

otherwise.
Let P0(R) denote the set of centred probability measures on R. Let V1 denote

the set of pairs of functions R,S with R : (0,1) → R− and S : (0,1) → R+, let
V1

Mon denote the subset of V1 for which R is decreasing and S is increasing and let
V1

Int denote the subset of V1 such that I (R,S) < ∞ where

I (f, g) =
∫ 1

0
du

|f (u)|g(u)

g(u) − f (u)
I{g(u)>0}.

Finally, let V1
Mon,Int = V1

Mon ∩ V1
Int.

The construction in Section 3.1 can be considered as a pair of maps

Q1 : P0(R) �→ V1
Mon,Int,

R1 : V1
Mon,Int �→ P0(R).

Note that E[|Y |] = 2I (R,S) which can be shown using the ideas in the proof of
Lemma 2 to be equal to 2Pν(0). Moreover, under I (R,S) < ∞ we have E[Y ] = 0.

Note that if we take (R,S) ∈ V1
Mon \ V1

Mon,Int then we can still define Y via (10)
but L(Y ) will not be integrable. Then M given by M1 = 0, M2 = Y is a local
martingale, but not a martingale.

Section 3.2 extends these results from initial laws which consist of a single atom
to finite combinations of atoms. Let P0

F (R) be the subset of P0(R) for which the
measure consists of a finite set of atoms and let CF = {(ζ,χ) : ζ ∈ P0

F (R),χ ∈
P0(R); ζ ≤cx χ}. Let

V =
{
(R,G,S);R : (0,1) →R,G : (0,1) →R,

S : (0,1) →R;R(u) ≤ G(u) ≤ S(u);∫ 1

0

∣∣G(u)
∣∣du < ∞,

∫ 1

0
G(u)du = 0

}
.

Consider now the subsets

VF = {
(R,G,S) ∈ V : G nondecreasing and takes only finitely many values

}
,

VMon = {
(R,G,S) ∈ V : (2) holds

}
,

VInt = {
(R,G,S) ∈ V : I (R,G,S) < ∞}

,
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where I (R,G,S) = ∫ 1
0 du(S(u)−G(u))(G(u)−R(u))

S(u)−R(u)
I{S(u)>G(u)}, and consider also

intersections of these subsets, for example, VMon,Int = VMon ∩ VInt. In Sec-
tion 3.2, we constructed a map Q : CF → VF,Mon which we write as Q(ζ,χ) =
(R(ζ,χ),Gζ , S(ζ,χ)). Indeed, since χ ∈ L1 and since E[|Y − X|] ≤ E[|X|] +
E[|Y |] < ∞ we have that E[|Y − X|] = 2I (R(ζ,χ),Gζ , S(ζ,χ)), so that we actu-
ally have a map Q : CF → VF,Mon,Int. Conversely, the arguments after Lemma 3
show that (3) defines a inverse map R : VF,Mon,Int → CF .

Note that given any element (R,G,S) of V we can define the map R : V →
P0(R) × P(R) via R(R,G,S) = (L(X(U)),L(Y (U,V ))) where Y(U,V ) is as
given in the statement of Theorem 1. We will make no further use of this idea, but
different properties of (R,G,S) will lead to different (local)-martingale couplings.
The embedding of Hobson and Neuberger [13] is of this type. In the Hobson and
Neuberger embedding, R and S are both increasing.

3.4. The case of general integrable μ. We assume μ is centred at zero, but the
general case follows by translation.

Our goal in this section is to extend the map Q : CF → VF,Mon,Int with inverse R
to a map Q : C → VMon,Int where C = {(ζ,χ) : ζ ∈ P0(R),χ ∈ P0(R); ζ ≤cx χ}.
For μ a general centred probability measure and ν a centred target measure with
μ ≤cx ν, we construct a sequence (μn)n≥1 of approximations of μ by elements
of P0

F (R). For each μn, we can construct a triple (Rn,Gn,Sn). We show that
(Rn,Gn,Sn)n≥1 converge to a limit (R,G,S) first on the rationals and then (al-
most surely) on (0,1). Convergence of Gn and Sn is straightforward, but conver-
gence of Rn is more subtle, and indeed we only have convergence on {u : S(u) >

G(u)}. Finally, we show that R(R,G,S) = (μ, ν) so that the trio (R,G,S) defines
a martingale coupling between μ and ν.

Let {q1, q2 . . .} be an enumeration of Q ∩ (0,1). Then {Sn(q1)}n≥1 converges
down a subsequence nk1 to a limit S∞(q1) := limk1↑∞ Snk1

(q1). Down a further
subsequence if necessary, we have that Snk2

(q2) converges to S∞(q2). Proceeding
inductively, we have by a diagonal argument (see, e.g., Billingsley [6]) that there is
a subsequence (m1,m2, . . .) such that {Smk

}k≥1 converges to S∞ at every rational
q ∈ Q∩ (0,1). This limit is nondecreasing.

Our first result shows that any limit of Sn is finite valued. Since the ideas behind
the proof are not relevant to the arguments of this section the proof is postponed to
the Appendix.

LEMMA 4. Let μn ↑cx μ. Then lim supSn(u) ≤ J (u) for some function J =
Jμ,ν : (0,1) �→ (−∞,∞).

We want to extend the domain from the rationals to (0,1). To this end, de-
fine S(u) = limqj↑u S∞(qj ). This limit is well defined (and nondecreasing) by the
monotonicity of S∞. Then from the monotonicity of S, we conclude that S has
only countably many discontinuities. Note that, by definition, S is left continuous.
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We can construct G from {Gn} in an identical fashion. In this case, the finiteness
of the limit follows from the tightness of the singleton {G}. Moreover, since Gn ≤
Sn by construction, we have G∞ ≤ S∞ and G ≤ S. Again, the increasing limit G

has at most countably many discontinuities and is left continuous.
Define NS = {u : Sn(u) � S(u)} and NG = {u : Gn(u) � G(u)} where the

subscript n refers to a subsequence down which Sn and Gn converge on rationals.
Define also N�

S = {u : S(u+) > S(u−)} and N�
G = {u : G(+) > G(u−)}.

LEMMA 5. NS ⊆ N�
S and NG ⊆ N�

G . Moreover, Leb(NS ∪NG) = 0.

PROOF. Suppose u is a continuity point of S. Suppose further that there is a
subsequence (nj )j≥1 along which Snj

(u) > S(u) + ε. Using the continuity of S

at u, we may pick q > u such that S(q) < S(u) + ε/2. Take qk ∈ (u, q) with qk ↓
u. Then Snj

(qk) ≥ Snj
(u) > S(u) + ε > S(qk) + ε/2. Letting j ↑ ∞, S∞(qk) >

S(qk) + ε/2. Letting k ↑ ∞, S(u) ≥ S(u) + ε/2 which is a contradiction.
A similar argument (without the need of continuity at u) shows that down

any subsequence limj Snj
(u) > S(u) − ε. Hence, if S(u) = S(u+) then S(u) =

limSn(u). Since the set of points for which S(u+) > S(u) is countable we con-
clude that Leb(NS) = 0.

An identical argument gives that G(u) = limn Gn(u) on G(u+) = G(u) and
Leb(NG) = 0. �

Now consider (Rn)n≥1 and the existence of a possible limit R. By the same
diagonal argument as above, we can define R∞ : Q ∩ (0,1) → R such that on
a subsequence Rnk

(q) → R∞(q) ∈ [−∞,∞] for every q . (From now on, we
work on a subsequence indexed n such that {Sn}n, {Gn}n and {Rn}n converge
for every q ∈ Q ∩ (0,1).) We want to construct R from R∞, but unlike in the
case of S or G we do not have monotonicity. Note that for q ′ > q we have
Rn(q

′) /∈ (Rn(q), Sn(q)) for each n and this implies R∞(q ′) /∈ (R∞(q), S∞(q)).
The following lemma shows that R∞ is finite valued, at least for q such that

G(u+) < S(u).

LEMMA 6. Let μn ↑cx μ. Then lim infRn(u) ≥ j (u) on G(u+) < S(u) for
some function j = jμ,ν : (0,1) �→ (−∞,∞).

Let A = {u ∈ (0,1) : G(u+) < S(u)}. By the above lemma, R∞(q) > j (q) >

−∞ for q ∈ A. If u ∈ A then the left continuity of S implies that there exists an
interval (u − ε,u] ⊆ A; since every such interval must contain a rational we have
that A is a countable union of intervals.

We now show that R∞ is decreasing on each such interval. Suppose not.
Then there exists q < q ′ in the same interval I with R∞(q ′) > R∞(q). Let
v = infq ′′∈Q∩I {q ′′ : R∞(q ′′) > R∞(q)}. Choose q̃m ↑ v with q̃m ≥ q and q̂n ↓ v

with R∞(q̂n) > R∞(q). Then R∞(q̂n) /∈ (R∞(q̃m), S∞(q̃m)), and since R∞(q̂n) >
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R∞(q) ≥ R∞(q̃m) we conclude R∞(q̂n) ≥ S∞(q̃m). Letting n tend to in-
finity we conclude lim infR∞(q̂n) ≥ S∞(q̃m), and letting m tend to infinity
lim infn↑∞ R∞(q̂n) ≥ S(v). However, R∞(q̂n) ≤ G∞(q̂n) and hence
lim supn↑∞ R∞(q̂n) ≤ G(v+) < S(v). These two statements are inconsistent, and
hence R∞ must be decreasing on each interval of A.

Given that R∞ is decreasing on each interval of A, we can define R on A by
R(u) = limq↑u R∞(q). Then the function R is decreasing and, therefore, has only
countably many discontinuities in any interval of A. Away from these discontinu-
ities, we have Rn(u) → R(u) by an argument similar to that in Lemma 5.

Define B= = {u ∈ (0,1) : G(u) = S(u)} and B< = {u ∈ (0,1) : G(u) < S(u)}.
Then B< = A ∪ C where C = {u ∈ (0,1) : G(u) < S(u) ≤ G(u+)}. Since C ⊆
N�

G , we have that B< and A differ by a set of measure zero and we conclude the
following.

LEMMA 7. I{u∈B<}(Rn(u) − R(u)) → 0, except on a set of measure zero.

Note that we cannot expect Rn(u) to converge on B=.
It remains to define R on B= and C in such a way that R satisfies (2). On B=, we

set R(u) = G(u) = S(u). For u ∈ C, we have by the left continuity of S that there
exists ε > 0 such that I = (u − ε,u) ⊂ A. By the same arguments as before, we
conclude that R∞ is decreasing on I and we set R(u) = limq↑u R∞(q). Indeed,
for u ∈ B< we have R(u) = limq↑u R∞(q). Note that for u ∈ C we may have
that R(u+) > R(u) and it is not true in general that R is decreasing on intervals
contained in B<.

Fix u < v. If u or v is in B= then since we have defined R(w) = G(w) =
S(w) on B= we trivially have R(v) /∈ (R(u), S(u)). For u, v ∈ B< choose se-
quences {qm}m with qm < u and qm ↑ u and {ql}l with ql ∈ (u, v) and ql ↑ v.
Then Rn(ql) /∈ (Rn(qm), Sn(qm)), and hence R∞(ql) /∈ (R∞(qm), S∞(qm)). Let-
ting l ↑ ∞, we have R(v) /∈ (R∞(qm), S∞(qm)), and letting m ↑ ∞, we have
R(v) /∈ (R(u), S(u)). Hence, (R,G,S) satisfy (2).

On the space {(r, g, s); r ≤ g ≤ s} ⊆ R3, define �x = �x(r, g, s) by �x(r,

g, s) = I{r≤x<s} s−g
s−r

with the convention that �x(r, g, s) = 0 for g = s. In par-
ticular, �x(g,g, g) = 0.

PROPOSITION 1. If x is such that Leb({u : S(u) = x} ∪ {u : R(u) = x;S(u) >

G(u)}) = 0, then we have
∫ 1

0
du

{
I{Sn(u)≤x} + �x(

Rn(u),Gn(u), Sn(u)
)}

→
∫ 1

0
du

{
I{S(u)≤x} + �x(

R(u),G(u), S(u)
)}

.(11)



1918 D. G. HOBSON AND D. NORGILAS

PROOF. Since Sn(u) → S(u) almost surely and since
∫ 1

0 duI{S(u)=x} = 0 by
hypothesis, we have

∫ 1
0 duI{Sn(u)≤x} → ∫ 1

0 duI{S(u)≤x} by bounded convergence.
Let �< = {u : Sn(u) → S(u),Gn(u) → G(u),Rn(u) → R(u),G(u) < S(u)}

and �= = {u : Sn(u) → S(u),Gn(u) → G(u),G(u) = S(u)}. By Lemmas 5 and
7, Leb(�< ∪ �=) = 1.

Now let �x
< = {u : Sn(u) → S(u) �= x,Gn(u) → G(u),Rn(u) → R(u) �=

x,G(u) < S(u)} and �x= = {u : Sn(u) → S(u) �= x,Gn(u) → G(u),G(u) =
S(u)}. By the hypothesis on x, we still have that Leb(�x

< ∪ �x=) = 1, and by
bounded convergence the result of the proposition will follow if we can show that
�x(Rn,Gn,Sn) → �x(R,G,S) on �x

< ∪ �x=.
This is immediate on �x

<. On �x= we need only note that

�x(Rn,Gn,Sn) = I{Rn≤x<Sn}
(Sn − Gn)

(Sn − Rn)
≤ (Sn − Gn)

(Sn − x)
I{Sn>x} → 0

= �x(R,G,S). �

PROOF OF THEOREM 1. All that remains to show is that (R,G,S) embeds ν.
There are at most countably many x for which Leb({u : S(u) = x}) + Leb({u :

R(u) = x;S(u) > G(u)}) > 0. Hence it is sufficient to prove that
∫ 1

0 du{I{S(u)≤x}+
I{R(u)≤x<S(u)} S(u)−G(u)

S(u)−R(u)
} = ν((−∞, x]) outside this set. For such an x, (11) holds.

Then, since (Rn,Gn,Sn) embeds ν from μn,
∫ 1

0
du

{
I{S(u)≤x} + I{R(u)≤x<S(u)}

S(u) − G(u)

S(u) − R(u)

}

= lim
n

{∫ 1

0
du

{
I{Sn(u)≤x} + I{Rn(u)≤x<Sn(u)}

Sn(u) − Gn(u)

Sn(u) − Rn(u)

}}

= lim
n

ν
(
(−∞, x]) = ν

(
(−∞, x])

as required. �

We would like to thank the anonymous referee for the following idea for an
alternative proof of Theorem 1.

REMARK 5 (Alternative construction). Let (πx
lc)x∈R be the disintegration of

πlc with respect to μ, so that πlc(dx, dy) = μ(dx)πx
lc(dy). It follows that for any

μ′ ≤ μ, π ′(dx, dy) := μ′(dx)πx
lc(dy) is again a left-curtain coupling. Decompose

μ = μc + ∑
n αnδxn into continuous and discrete parts, respectively. The desired

representation of πlc through graphs of functions can then be obtained by pasting
together the representations of πc(dx, dy) := μc(dx)πx

lc(dy) and πd(dx, dy) :=∑
n αnδxn(dx)π

xn

lc (dy). Note that in the case of πc, the result of Theorem 1 follows
from the original theorem of Beiglböck and Juillet [5], while the case of πd follows
from the arguments given in Section 3.
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4. Robust bounds for the American put. Our motivation for the study of the
left-curtain mapping came from a connection with the robust pricing of American
puts. In robust or model-independent pricing (Hobson [12, 15]), the idea is that
instead of writing down a model for the asset price (e.g., geometric Brownian
motion or a stochastic volatility model) we consider the class of all models for
which the discounted asset price is a martingale and which are consistent with the
prices of traded vanilla options. Then, given an exotic option which we would like
to price, we search over this class of models to find the range of feasible model-
based prices.

Typically, the set of traded vanilla options is taken to be the set of European-
style puts and calls. Given a family of European puts and calls for a fixed maturity
and a continuum of strikes, we can infer the law of the asset price at that maturity
(under the market measure used for pricing). Given the prices of puts and calls for
a sequence of maturities, we can infer the marginal distributions of the asset price,
but not the joint distributions. Then, working under the bond-price numeraire, the
class of asset price processes which are consistent with the prices of traded vanilla
options can be identified with the class of martingales with given marginals. The
problem of finding the robust upper bound on the price of an American-style option
becomes a search over consistent martingale models of the model-based price of
the American option; see Neuberger [19], Hobson and Neuberger [14, 16] and
Bayraktar et al. [1]. Crucially, the primal pricing problem can be identified with a
dual hedging problem.

When the American-style option is an American put and the number of candi-
date exercise dates is two, Hobson and Norgilas [17] solve for the robust upper
bound under an assumption that the law of the underlying at the first exercise date
is continuous. It turns out that the consistent model for which the American put has
highest price is the model associated with the left-curtain coupling of Beiglböck
and Juillet [5]. Here, we briefly explain how the results of Hobson and Norgilas
extend to the atomic case, and why the atomic case is important. There is a subtlety
in the case with atoms which is not present when there are no atoms, and to deal
with this subtlety we need the extension of the left-curtain coupling to the atomic
case as constructed in this paper.

We are interested in pricing the American put which, in discounted units has
strike K1 at maturity 1 and strike K2 at maturity 2, with K2 < K1; see Hobson and
Norgilas [17]. The expected payoff arising from a given joint law π ∈ �M(μ,ν)

and a given stopping rule τ taking values in {1,2} is

φπ(τ) = EL(X1,X2)∼π [
(K1 − X1)

+I{τ=1} + (K2 − X2)
+I{τ=2}

]
.

Here, X represents the discounted asset price, and is a martingale with joint law π .
For a Borel set B , we can let τB be the stopping rule τB = 1 if X1 ∈ B and

τB = 2 otherwise. Then the payoff under the stopping rule τB is �π(B) := φπ(τB)

and the American put price under the model is �π = supB �π(B).
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Bayraktar et al. [1]1 define the upper bound on the price of the American put to
be

PBHZ = sup
π∈�M(μ,ν)

�π = sup
π∈�M(μ,ν)

sup
B

�π(B).

The definition of the model-independent upper bound on the price of the Amer-
ican put given by Neuberger [19] and Hobson and Neuberger [16] is different.
Suppose (S = (�,F,F,P),X = (X0,X1,X2)) is a (μ, ν)-consistent model. The
model-based price of the American put is

A(S,X) = sup
τ∈T1,2(S)

ES,X[
(Kτ − Xτ)

+]
,

where T1,2(S) is the set of all F-stopping times taking values in {1,2}. Then (Neu-
berger [19], Hobson and Neuberger [16]) the highest model-based price is

(12) PN = sup
S,X

A(S,X),

where the supremum is taken over (μ, ν)-consistent models.
Set � = R × R = {ω = (ω1,ω2)}, F = B(�) and (X1(ω),X2(ω)) = (ω1,ω2),

and let P be such that L(X1) = μ and L(X2) = ν. Let F0 = {∅,�}, F1 = σ(X1)

and F2 = σ(X1,X2). If S = (�,F,F,P), then (S,X) is a (μ, ν)-consistent
model.

Consistent models of the form (S,X) can be identified with martingale cou-
plings π . It follows that PBHZ ≤ PN , the inequality following from the fact that
in principle we could work on a richer probability space. It follows from the work
of Hobson and Norgilas [17] that if μ is continuous then the martingale coupling
associated with the optimiser for either PBHZ or PN is the left-curtain coupling
and PBHZ = PN . Our interest in extending the left-curtain mapping arose from the
fact that when μ has atoms we may have PBHZ < PN . Then, in order to construct
the optimiser for PN we need an appropriate extension of the left-curtain coupling.

4.1. The trivial law for μ. The difference between the modelling approaches
of Bayraktar et al. [1] and Hobson and Neuberger [16] can be illustrated most
simply when μ = δw . Also for simplicity, we assume ν has a continuous law with
mean w.

In the framework of Bayraktar et al. [1], since the filtration generated by X is
still trivial at time 1, the only choices facing the holder of the American put are
either to always stop at time 1, or to never stop at time 1. The expected payoff of
the American put does not depend on the martingale coupling, and thus

PBHZ = sup
π∈�M(μ,ν)

max
{
�π(�),�π(∅)

} = sup
π∈�M(μ,ν)

max
{
φπ(1), φπ(2)

}

= max
{
(K1 − w)+,

∫
(K2 − z)+ν(dz)

}
.

1[1] contains many interesting and important results and this is just a small element of the paper.
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On the other hand, we can construct a richer model which is (δw, ν) consistent.
Set � = (0,1) × (0,1) and let P be Lebesgue measure on �. Let (U,V ) be a pair
of independent uniform random variables, let (F0 = {∅,�}, F1 = σ(U), F2 =
σ(U,V )) and let X0 = X1 = w and X2 = Y , where Y = Y(U,V ) is as given in (3)
with G(u) ≡ w. Here, (R,S) are a pair of monotonic functions with

(13) u =
∫ S(u)

R(u)
ν(dz), 0 =

∫ S(u)

R(u)
(z − w)ν(dz).

In this way, we construct a (μ, ν)-consistent model.
Under this model, the value A(u) of the American put under the stopping rule

τu where τu = 1 if U < u and τu = 2 otherwise is

A(u) = E
[
(K1 − X1)

+I{τu=1} + (K2 − X2)
+I{τu=1}

]

= (K1 − w)u +
∫ R(u)

−∞
(K2 − z)+ν(dz) +

∫ ∞
S(u)

(K2 − z)+ν(dz).

It follows that PN ≥ supu∈[0,1] A(u). (In the next section, we will argue that there
is equality here.) Note that PBHZ = A(0) ∨ A(1), so that PN > PBHZ will follow
if supu∈[0,1] A(u) > A(0) ∨ A(1).

For a simple example, suppose w = 1 and ν = U [0,2]; suppose K1 = 5
4 and

K2 = 1. Then R(u) = 1 − u and S(u) = 1 + u. We have

A(u) = u

4
+

∫ 1−u

0
(1 − z)

dz

2
= 1 + u − u2

4
.

Then PN ≥ maxu∈[0,1] A(u) = 5
16 > 1

4 = A(0) ∨ A(1) = PBHZ.

REMARK 6. In our set-up, there are two possible exercise times for the Amer-
ican put, denoted 1 and 2, and we construct a martingale (X0 = w,X1,X2) to
match the marginals at these times. But if L(X1) = δX0 the problem can be re-
cast as a problem for a stochastic process X̃ = (X̃0, X̃1) where X̃0 = X0 = X1
and X̃1 = X2. We also set τ̃ = τ − 1; then τ̃ ∈ {0,1} and τ̃ = 0 corresponds to
immediate exercise. Put another way, one way to allow for immediate exercise of
the American put, is to introduce an additional point (labelled 1) into the time-
indexing set and to require L(X1) = δX0 . For this reason, it is very natural for μ to
have a trivial law, if we want to allow immediate exercise.

4.2. Tightness of the bound for a trivial law μ. Our goal in this section is
to show that PN = supu∈[0,1] A(u). We do this by finding an upper bound on
the American put pricing problem and then showing that this bound is equal to
supu∈[0,1] A(u).

Let ψ be a convex function with ψ(z) ≥ (K2 − z)+. Let φ(z) = ((K1 − z)+ −
ψ(z))+ and let θ(z) = −ψ ′+(z), where ψ ′+ is the right derivative. Then, for all x1
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and x2,

(K1 − x1)
+ ≤ φ(x1) + ψ(x2) + (x2 − x1)θ(x1),

(K2 − x2)
+ ≤ φ(x1) + ψ(x2).

It follows that for any set B ∈ F and for every ω,

(K1 − X1)
+IB + (K2 − X2)

+IBC ≤ φ(X1) + ψ(X2) + (X2 − X1)θ(X1)IB.

In particular, if we think of B as the set of scenarios on which the put is exercised
at time 1 then we have that the payoff of the American put is bounded above by
the sum of the European-style payoffs φ and ψ and the gains from trade from
a strategy which involves holding θ(X1) units of the underlying over the time-
interval (1,2], provided the put was exercised at time 1. Then, for B ∈ F1,

E
[
(KτB

− XτB
)+

] ≤ E
[
φ(X1)

] +E
[
ψ(X2)

]

=
∫ (

(K1 − x)+ − ψ(x)
)+

μ(dx) +
∫

ψ(y)ν(dy).

In our context with μ = δw , this simplifies to ((K1 − w)+ − ψ(w))+ + ∫
ψ(y)×

ν(dy) =: D(ψ). Let D = infψ D(ψ) (where the infimum is taken over convex ψ

with ψ(z) ≥ (K2 − z)+). D forms an upper bound for the price of the American
option under any consistent model, and hence PN ≤ D.

Let R and S be defined as in Section 3.1. Let Pν(z) = ∫
(z − x)+ν(dx). Then

(13) can be rewritten as u = P ′
ν(S(u)) − P ′

ν(R(u)) together with

(14)
(
S(u) − w

)
P ′

ν

(
S(u)

) − Pν

(
S(u)

) = (R − w)P ′
ν

(
R(u)

) − Pν

(
R(u)

)
.

Fix K2 < K1 with K1 > w and define �w : (−∞,K2 ∧ w) × (K1,∞) �→R by

�w(r, s) = K1 − w

s − w
− (K2 − r) − (K1 − w)

w − r
.

Since ν is continuous by assumption, R and S are strictly decreasing and strictly
increasing, respectively. Define uw = inf{u ∈ (0,1) : R(u) < K2 and S(u) > K1},
and for u ∈ (uw,1) set �̄w(u) = �w(R(u), S(u)). It follows that �̄w is strictly
decreasing.

Suppose that Iν = [�ν, rν] is such that K1−w
rν−w

< (K2−�ν)−(K1−w)
w−�ν

(e.g., this will
follow if 0 = �ν < w < rν = ∞ and K2 > K1 − w). This assumption is suffi-
cient to guarantee that there exists u∗ ∈ (uw,1) such that �̄w(u∗) = 0. Then S∗ :=
S(u∗) > K1 > K2 > R(u∗) =: R∗. Also �̄w(u∗) = 0 implies K1−w

S∗−w
= K2−R∗

S∗−R∗ . For
the model constructed in Section 3.1, we have

sup
u∈[0,1]

A(u) ≥ A
(
u∗) = (K1 − w)+u∗ +

∫ R∗

−∞
(K2 − z)+ν(dz)

= (K1 − w)
[
P ′

ν

(
S∗) − P ′

ν

(
R∗)]

+ Pν

(
R∗) + (

K2 − R∗)
P ′

ν

(
R∗)

.
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Conversely, let � = K1−w
S∗−w

= K2−R∗
S∗−R∗ = (K2−R∗)−(K1−w)

w−R∗ ∈ (0,1) and let
ψ∗(x) = �(S∗ − x)+ + (1 − �)(R∗ − x)+. Note that by design ψ∗(R∗) =
�(S∗ − R∗) = (K2 − R∗) so that ψ∗(z) ≥ (K2 − z)+. Further, ψ∗(w) = �(S∗ −
w) = (K1 − w) so that φ∗(w) = 0 where φ∗(z) = ((K1 − z)+ − ψ∗(z))+. Then
D ≤ �Pν(S

∗) + (1 − �)Pν(R
∗) = D(ψ∗).

Now consider D(ψ∗)−A(u∗). Using (14) for the second equality and the alter-
native characterisations of � for the third, we have

D
(
ψ∗) − A

(
u∗) = �

(
Pν

(
S∗) − Pν

(
R∗)) − (K1 − w)

[
P ′

ν

(
S∗) − P ′

ν

(
R∗)]

− (
K2 − R∗)

P ′
ν

(
R∗)

= P ′
ν

(
S∗)[

�
(
S∗ − w

) − (K1 − w)
]

− P ′
ν

(
R∗)[

�
(
w − R∗) − (K1 − w) + (

K2 − R∗)]
= 0.

Then D(ψ∗) = A(u∗) ≤ supu∈[0,1] A(u) ≤ PN ≤ D ≤ D(ψ∗). It follows that this
chain of inequalities is in fact a chain of equalities and PN = supu∈[0,1] A(u).
Moreover, we have identified an optimal model and an optimal stopping rule. The
model which yields the highest price for the American put is our extension of the
left-curtain coupling.

4.3. American puts with a general time-1 law. We seek to generalise the
arguments of the previous section to allow for nontrivial initial laws. Define
� = �(r, g, s) via

�(r, g, s) = K1 − g

s − g
− (K2 − r) − (K1 − g)

g − r
.

Suppose we are in the case of continuous μ. Define �̂(x) = �(f (x), x, g(x))

where f and g are the lower and upper functions which arise in the Beiglböck–
Juillet [5] characterisation of the left-curtain martingale coupling. In our notation,
this can be written as �̂(x) = �((R ◦G−1)(x), x, (S ◦G−1)(x)). The fundamental
insight in Hobson and Norgilas [17] is that, in the case of continuous μ, the cheap-
est superchedge can be described in terms of a simple portfolio of European-style
puts whose strikes depend on quantities which arise from looking for the root x∗,
if any, of �̂(·) = 0. Moreover, the most expensive model is the model described
by the left-curtain coupling, and an optimal exercise rule is to exercise at time-
1 if and only if X1 < x∗. Hobson and Norgilas [17] identify four archetypes of
hedging portfolios. The first two cases correspond to when there is a root to �̂ = 0
and when �̂ < 0 for all x. (The remaining cases correspond to cases where �̂ is
discontinuous, and jumps downwards over the value 0.)
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FIG. 5. Finding the optimal hedge for general measures. μ has an atom of size u − u. Moreover,
the piecewise linear curve joining (R(u),K2 − R(u)), (G(û),K1 − G(û)) and (S(u),0) is concave
(where û is any element of (u,u]), whereas the piecewise linear curve joining (R(u),K2 − R(u)),
(G(û),K1 −G(û)) and (S(u),0) is convex. There exists u∗ ∈ (u,u] such that (R(u∗),K2 −R(u∗)),
(G(û),K1 −G(û)) and (S(u∗),0) all lie on a straight line. The figure describes the optimal coupling
(via (U,V ) and (3)) and the optimal exercise strategy for the American put is to exercise at time-1 if
U ≤ u∗.

In the case with atoms in μ, we cannot use �̂ directly since G−1 has jumps.
Instead, following the analysis in Section 4.1 we define �̄(u) = �(R(u),u,S(u)),
and look for solutions, if any, to �̄(·) = 0. We may still have the cases where
�̄ < 0 for all u ∈ (0,1) or where �̄(·) jumps over zero, but these cases can be
dealt with as in [17]. The new case is when the root u∗ of �̄ = 0 occurs in an
interval (u,u] over which G is constant. This means that there is an atom of μ

at G(u∗); see Figure 5. A model which maximises the price of the American put
is the extended left-curtain martingale coupling model, and the optimal stopping
rule is to exercise at time-1 whenever X1 < G(u) and to sometimes exercise when
X1 = G(u). When X1 = G(u), the optimal stopping rule is to exercise precisely
when U ∈ (u,u∗] and to wait if U ∈ (u∗, u]. Because R and S are monotonic over
(u,u] paths with low future variability are exercised at time-1 whereas on paths
with high future variability exercise is delayed to time-2.
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APPENDIX: PROOFS

PROOF OF LEMMA 4. We begin our study of the upper bound on Sn by con-
sidering the case of a single starting measure μ and fixed target law ν. First, we
assume that μ and ν are regular (no atoms and no intervals within the support with
no mass), before extending to the general case. Then we consider what happens
when we consider μn ↑cx μ.

Suppose μ and ν have no atoms and no intervals within the support with no
mass. Then Gμ is continuous and strictly increasing. Fix u ∈ (0,1) and let �1 ≡ �u

1
be the tangent to Pμ with slope u; see Figure 6. By construction this tangent meets
Pμ at G = Gμ(u). Let H = H(u) be the point where the tangent crosses the x-axis.
Let �2 ≡ �u

2 be the tangent to Pν with slope greater than u which passes through
(G,Pμ(G)); this tangent meets Pν at the x-coordinate J = J (u) = Jμ,ν(u).

We now show that S(u) ≤ J .
Choose γ ∈ [H,G). Let �

γ
3 be the tangent to Pμ which passes through

(γ, �1(γ )) and has slope less than u. Suppose this tangent meets Pμ at r = r(γ );

FIG. 6. Construction of function J that bounds the upper function S on (0,1).
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the slope of the tangent is P ′
μ(r). Let �

γ
4 be the tangent to Pν at r . Finally, let �

γ
5

be the line passing through (γ, �r
4(γ )) with slope u + P ′

ν(r) − P ′
μ(r).

If there exists γ such that �
γ
5 is a tangent to Pν (meeting Pν at s say), then

(r,G, s) satisfy

(15)
∫ G

r
wiμ(dw) =

∫ s

r
wiν(dw), i = 0,1

(and moreover γ = ∫ G
r wμ(dw)/

∫ G
r μ(dw) = ∫ s

r wν(dw)/
∫ s
r ν(dw) is the bary-

centre of the measures μ|(r,G) and ν|(r,s)).
For each u, there may be multiple γ which lead to a triple (r,G, s) which satis-

fies (15). We show that in each case s ≤ J . It follows that S(u) ≤ J .
Suppose �

γ
4 (γ ) ≤ �

γ
3 (γ ) = �1(γ ). Then necessarily P ′

ν(r) < P ′
μ(r) and �

γ
5 lies

below �1 to the right of γ ; in particular �
γ
5 stays below Pμ to the right of γ and

cannot be a tangent to Pν . Hence if (r,G, s) satisfies (15) we must have �
γ
4 (γ ) >

�1(γ ). Then, if �
γ
5 is a tangent to Pν we must have that the point of tangency is

below J .
In the above, we used the regularity assumptions on μ and ν to conclude that

there was a unique tangent to P· ∈ {Pμ,Pν} at a given point, and that there was a
unique point at which P· had a given slope. If μ or ν is not regular then, for fixed
u, there may be multiple quintiles G, multiple points r and multiple tangents to
Pν at r . The point is that although there are multiple versions of the construction
in this case each candidate triple (r,G, s) satisfying (15) has s ≤ J where J is
defined using an arbitrary point G ∈ [Gμ(u),Gμ(u+)]. We define J− = J−(u) to
be the smallest x-coordinate at which the tangent to Pν with slope greater than
u passing through (G(u),Pμ(G(u))) meets Pν and J+ = J+(u) to be the largest
x-coordinate at which the tangent to Pν with slope greater than u passing through
(G(u+),Pμ(G(u)+)) meets Pν . We have S(u) ≤ J−(u) ≤ J+(u).

Finally, we want to show that if we approximate μ by μn (with μn ↑cx μ) then
the bound lim supSn ≤ J+ remains valid, where J+ is constructed from μ and ν.

Define K(k) = argsupκ
Pν(κ)−Pμ(k)

κ−k
. The notation argsup is used to indicate that

where there are multiple elements in the argsup we choose the largest one. Then K

is increasing and right continuous in k. Note that J+(u) = K(G(u+)). In a similar
fashion, we can define Kn and Jn using Pμn in place of Pμ. (The target law is
assumed fixed throughout.) Since Pμn(k) ↑ Pμ(k) and K is right continuous, we
have Kn(k) ↓ K(k). Then, for ε > 0,

lim sup
n

Jn(u) = lim sup
n

Kn

(
Gn(u+)

) ≤ lim sup
n

Kn

(
G(u+)+ε

) ≤ K
(
G(u+)+ε

)
.

Since ε is arbitrary and K is right continuous, lim supSn(u) ≤ lim supn Jn(u) ≤
J+(u). �

PROOF OF LEMMA 6. As for the proof of Lemma 4, we begin by considering
a single initial law μ, and supposing that μ and ν are regular.
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Fix u ∈ (0,1) and let �1 be the tangent to Pμ with slope u. Let H = H(u) be
the point where this tangent crosses the x-axis. Suppose that �1 is not a tangent to
Pν . Then �1 must lie strictly below Pν . There exists ε = ε(u) > 0 such that the line
passing through (H, ε) with slope u+ ε lies below Pν . Now choose j = j (u) such
that the tangents to Pμ and Pν at j both have slope less than ε and both cross the
line y = x below ε. Then R(u) ≥ j .

To see this, let γ be the x-coordinate of the point where the tangent to Pμ at
j crosses �1. Then if �4 is the tangent to Pν at j then �4(γ ) < ε; if �5 is the line
passing through (γ, �4(γ )) with slope u + P ′

ν(j) − P ′
μ(j) < u + ε, then by our

defining assumption on ε, �5 lies below Pν . Hence R(u) > j .
We can extend the result to irregular measures, and to lim infRn(u) by similar

techniques as for S. The only extra issue that arises is our assumption that �1 is not
a tangent to Pν . But, if for each n, �1 is a tangent to Pν , then the same is certainly
true in the limit. Then there must exist x such that �1(x) = Pμ(x) = Pν(x) and
then S(u) ≤ x ≤ G(u+). This case is excluded by hypothesis. �
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