Pricing American options with stochastic volatility and model uncertainty

Saul Jacka
(joint with Sigurd Assing and Adriana Ocejo)

Presented at KCL
3 June, 2013
Problem: solving the optimal stopping problem We want to find the payoff (and stopping time) for the following (stochastic volatility) optimal stopping problem:

\[
v(x, y, T) = \sup_{\tau \leq T} \mathbb{E}_{x,y}[e^{-q \tau} g(X_\tau)]
\]

or

\[
v(x, y, T) = \sup_{\tau \leq T} \mathbb{E}_{x,y}[e^{-r \tau} g(e^{r \tau} X_\tau)]
\]

where

\[
X_t = x + \int_0^t \sigma(X_s) Y_s dB_s,
\]

\(Y\) is independent of \(B\) and either

\[
Y_t = y + \int_0^t \eta(Y_s) dW_s + \int_0^t \mu(Y_s) ds
\]

or \(Y\) is a skip-free Markov chain on \(E\), a countable subset of \((0, \infty)\)
Motivated by Jobert and Rogers (2006), where they show the optimal continuation region in the perpetual American put/infinite problem is of the form

\[C = \{ (x, y) \in \mathbb{R} \times E : x > b(y) \} \quad (1) \]

and give an algorithm to find \(b \).

When \(E \) is large, the algorithm can become very intensive if the ordering of the values of \(\{ b(e) : e \in E \} \) is not known.
Our aim is first to show that, under fairly general conditions,
\(\nu(x, \cdot, T) \) is increasing and hence if (1) holds then \(b \) is decreasing.

We do this by a coupling argument.

Hobson makes very similar arguments for comparison in the European case.

From now on specialise to stochastic volatility case.

The idea: timechange \(X \) to \(G \) which solves the sde

\[
G_t = x + \int_0^t \sigma(G_s) d\tilde{B}_s
\]

using the timechange \(\Gamma^y = (A^y)^{-1} \) where \(A^Y_t = \int_0^t (Y_s^y)^2 ds \).

Notice that, since \(Y \) is skip-free, \(y' > y \) implies \(A^{y'} \geq A^y \) and \(\Gamma^{y'} \leq \Gamma^y \).
It follows that

\[v(x, y, t) = \sup_{\rho \leq \Lambda_T^y} \mathbb{E}_x \left[e^{-q \Gamma^y_\rho} g(G_\rho) \right] \] \hspace{1cm} (2)

or

\[v(x, y, t) = \sup_{\rho \leq \Lambda_T^y} \mathbb{E}_x \left[e^{-r \Gamma^y_\rho} g(e^{r \Gamma^y_\rho} G_\rho) \right]. \] \hspace{1cm} (3)

In the first case, increasing \(y \) increases the index set and decreases the discount. In the second case we need \(g \) decreasing since the argument of \(g \) increases when \(y \) increases.

The correct coupling argument starts the construction in reverse, by first constructing \(G \) and time-changed versions of \(Y_\rho^y \) and \(Y_\rho^y' \).
Recall that Y satisfies

$$Y_t = y + \int_0^t \eta(Y_s) dW_s + \int_0^t \mu(Y_s) ds.$$

Drift rates are hard to estimate, so suppose we only know $\mu_\ast \leq \mu \leq \mu^\ast$ and we wish to price the American option. The superhedging price will be

$$V^s(x, y, T) = \sup_{\mu \in \mathcal{M}, \tau \leq T} \mathbb{E}_{x,y}[e^{-q\tau} g(X_\tau)]$$

where

$$\mathcal{M} = \{ \text{adapted processes } \mu \text{ such that } \mu_\ast(Y_t) \leq m_t \leq \mu^\ast(Y_t) \}.$$

Conversely, the client’s price will be

$$V^b(x, y, T) = \inf_{\mu \in \mathcal{M}} \sup_{\tau \leq T} \mathbb{E}_{x,y}[e^{-q\tau} g(X_\tau)]$$
Point is that as soon as we know that V is increasing in y the candidate drift control is obvious: choose maximum drift to achieve supremum and minimal drift for infimum!

Sketch proof (superhedging case): look at HJB equation for stochastic control + optimal stopping problem

$$\max \left(\sup_{m \in [\mu^*, \mu^*]} \left[\frac{1}{2} y^2 \sigma^2(x) V_{xx}^s + \frac{1}{2} \eta^2(y) V_{yy}^s + m V_y^s - V_t^s - q V^s \right], \right)$$

$$g - V^s = 0$$

(4)

If we take V^s to be the corresponding value of v with $\mu = \mu^*$ then, since v is increasing in y, $V_y^s \geq 0$ and so the sup in (4) is attained at $m = \mu^*(y)$.

Saul Jacka (joint with Sigurd Assing and Adriana Ocejo)

Options with stock vol and model uncertainty
So, since v solves the optimal stopping problem, $e^{-qt}v(X_t, Y_t, T - t)$ is a martingale on the continuation region and equals g on the stopping region.

It follows that

$$\frac{1}{2}y^2\sigma^2(x)V_{xx}^s + \frac{1}{2}\eta^2(y)V_{yy}^s + \mu^*V_y^s - V_t^s - qV_s^s = 0$$

on the continuation region and $g = V^s$ on the stopping region so that V^s satisfies the HJB equation.
Now, what happens if we are only 95% certain that μ lies in the interval $[\mu_*, \mu^*]$?

If we assume that the payoff is zero when this constraint is broken and denote the stopping time at which the constraint is broken is σ, then the Lagrangian for the superhedging/pricing problem is

$$V(x, y, T) = \sup_{m \in \mathcal{M}} \sup_{\tau \leq T} \sup_{\sigma} \mathbb{E}_{x, y} [e^{-q\tau} g(X_\tau)1_{\tau < \sigma} + \lambda 1_{\sigma \leq \tau}].$$

It’s (fairly) obvious that this means that

$$V^s(x, y, T) = \sup_{m \in \mathcal{M}} \sup_{\tau \leq T} \mathbb{E}_{x, y} [\max(e^{-q\tau} g(X_\tau), \lambda)].$$
Similarly, get

$$V^b(x, y, T) = \inf_{m \in M} \sup_{\tau \leq T} \mathbb{E}_{x, y} \left[\min \left(e^{-q\tau} g(X_\tau), \lambda \right) \right].$$

In either case, presence of max or min does not affect monotonicity argument for V and hence for optimal choice of m. Continuity of V in λ allows calibration in λ to obtain the appropriate constrained optimum.