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Technical Analysis: based on idea that history of price process
(alone) enables (good) predictions about its future movement.

Example is identi�cation of resistance and support levels.

I Resistance level is a critical level which lq`price struggles to
exceed� (e.g. because of large number of sellers at that price
level). Price can `break through' eventually. Breakthrough
identi�ed by hitting higher level or time spent above
`resistance level'.

I Support level very similar but `breakthrough' means price
deteriorating.

Saul Jacka and Jun Maeda, University of Warwick Modelling Technical Analysis
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Our model for the stock price process:

I Two regimes: positive and negative;

I Two levels L and H with L < H (think of support and
resistance levels both being L+H

2
and breakthrough occurs if

reach L (downwards) or H(upwards));

I current regime denoted by a �ag process Ft , values in {−,+}.
I when process in negative regime (Ft = −), dynamics

correspond to the in�ntesimal generator:

L− : g 7→ 1

2
σ2−g

′′ + µ−g
′,

similar for positive regime. So

St = S0 +

∫ t

0

σFs (Ss)dBs +

∫ t

0

µFs (Ss)ds.
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Assume that σ+, σ−, µ+ and µ− are Lipschitz (each f ) and σ+,
σ− are uniformly elliptic (at least on any compact not containing
0). We assume price process is absorbed at 0.

Finally, we assume that risk-free rate is r and that

µ− ≤ r ≤ µ+,

so that discounted stock price is �a submg in positive regime� and
�a supermg in negative regime� and inequality is somewhere strict .

Ft-dynamics are simple:

I if Ft− = + and St− = L then Ft = −;
I conversely, if Ft− = − and St− = H then Ft = −.

Saul Jacka and Jun Maeda, University of Warwick Modelling Technical Analysis
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Easy to see under these assumptions that

I Xt
def
= (St ,Ft) is Feller with statespace

E = [0,H)× {−} ∪ (L,∞)× {+}.
I corresponding topology: so e.g. neighbourhoods of (H,+) are

of the form (x ,H)× {−} ∪ [H, y)× {+})
I X has in�nitesimal generator G given by

G : g 7→ Lf g

for functions g which are C 2 in x and cts on E (so
g(L−,+) = g(L,−) and g(H−,−) = g(H,+)).

Saul Jacka and Jun Maeda, University of Warwick Modelling Technical Analysis
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• Assume trader holds one unit of stock and seeks to optimize
expected discounted proceeds at time of sale τ : e−rτSτ . They
must take pro�t if the price reaches M > H.

• So we seek V , payo� to optimal stopping problem:

V (x , f )
def
= sup

optionalτ≤τ[M,∞)

Ex ,f [e−rτSτ ],

where (for A closed subset of R+) τA is the �rst hitting time of A
by S .

•Will discuss buying problem later.

Saul Jacka and Jun Maeda, University of Warwick Modelling Technical Analysis
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Positive Regime

Claim (1)

Optimal to continue in positive regime unless at (or above) M.

Remark
Use repeatedly that

I V is continuous;

I V (x , f ) ≥ x ;

I de�ning D
def
= inf{t : V (Xt) = St}, τD is the a.s. smallest

optimal stopping time and e−r(t∧τD)V (Xt∧τD ) is a martingale..

Saul Jacka and Jun Maeda, University of Warwick Modelling Technical Analysis
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Proof of Claim (1).

Suppose not, so that there is an x ∈ (L,M) with V (x ,+) = x . Let
σ = inf{t : St = L or M}. Then using locally submg property of

gains process Gt
def
= = e−rtSt in +ve regime, we see that

x = G0 < Ex ,+[Gσ]

so it is strictly suboptimal to stop at x . ♦

Saul Jacka and Jun Maeda, University of Warwick Modelling Technical Analysis
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Negative Regime De�ne D− = {x : V (x ,−) = x}.

Claim (2)

There is an m ∈ [0,H) such that

D− = [0,m].

Saul Jacka and Jun Maeda, University of Warwick Modelling Technical Analysis
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Proof.
Show D− is a closed subinterval of [0,H) containing 0.
• By cty, D is closed.
• Since V (H−,−) = V (H,+) > H (by Claim (1)), so (H,+) 6∈ D.
Follows that D− is closed in normal topology.
• Since S is absorbed at 0, V (0,−) = 0 so 0 ∈ D−.

• C−
def
= [0,H) \ D− is open. Hence a union of (disjoint) open

intervals. Suppose D− is not an interval, then there exist y , z ∈ D−
with (y , z) ⊆ C−.
• Take an x ∈ (y , z) and let σ = min(τy , τ

z), then this is optimal
for the problem started at (x ,−).
• So

V (x ,−) = Ex ,−[Gσ].

But on [0, σ] G �is a supermg�, so G0 = x ≥ Ex ,−[Gσ] = V (x ,−)
and so x ∈ D−. ♦

Saul Jacka and Jun Maeda, University of Warwick Modelling Technical Analysis
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So optimal policy is to wait until hit level M unless price goes too
low in -ve regime (below m) in which case give up.

How do we identify threshold m?

Claim (Smooth Pasting)

Either m = 0 or else V (·,−) is C 1 at m so that V (·,−) is the

(unique) solution to the free-boundary problem:

L−V − rV =0 : on (m,H)

V (x ,−) =x : on (0,m]

V (H−,−) =V (H,+)

V ′(m,−) =1 (1)

Saul Jacka and Jun Maeda, University of Warwick Modelling Technical Analysis
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Proof.
• Standard except for smooth pasting/C 1 condition at m.
• Since gains function is in domain of martingale generator, G, of
X , V is also in domain (Norgilas and Jacka).
• Ito-Tanaka formula and fact that E−rtV (Xt) is a supermg and a
mg on (m,H)× {−} now gives us that V (·,−) is C 2 on (m,H)
and ∆V ′(m) ≤ 0 (if m > 0).

• Conversely, fact that V (x ,−) ≥ x shows that ∆V ′(m,−) ≥ 0.

• [Uniqueness] Argument based on strong maximum principle shows
any solution, φ, to (1) must have φ(x)− x increasing , and hence
non-negative, on [m,H]. Snell's characterisation of V then tells us
that φ = V so m must be unique free-boundary. ♦

Saul Jacka and Jun Maeda, University of Warwick Modelling Technical Analysis
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Provided with seller's payo� V , can now de�ne the buyer's
problem��nd optimal time to buy to maximise expected pro�t.

• Problem is to �nd W given by

W (x , f ) = sup
optionalτ≤τ[M,∞)

Ex ,f [e−rτ (V (Xτ )− Sτ ].

Remark
Could consider revised problem where not restricted to buying

before τ[M,∞). Does not change form of solution much.

De�ne gains function F : (x , f ) 7→ V (x , f )− x and then set

D ′
def
= {(x , f ) : W (x , f ) = F (x , f )}.

Claim

D ′ = {(x ,+) : x ∈ [R,M]}

for some R ∈ (L,M).
Saul Jacka and Jun Maeda, University of Warwick Modelling Technical Analysis
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Remark
In case where not restricted to buying before τ[M,∞): change

interval to [R,R ′] with R ′ < M.

Proof.
• Gains process G ′t = e−rtF (Xt) is a submg until �rst exit by X
from [0,H)× {−} so clearly not optimal to stop in -ve regime.

• Similar argument to proof of Claim (2) shows {x : (x , f ) ∈ D ′}
must be a closed interval I (in the normal topology on R).

• Finally, (M,+) ∈ D ′ so result follows. ♦

Remark
Same techniques will show smooth pasting at R (and R ′).

Saul Jacka and Jun Maeda, University of Warwick Modelling Technical Analysis
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Example

We take L = 1, H = 3 and M = 4;
• with σ+(x) = σ−(x) = .2x
• µ+(x) = .05x , µ−(x) = −.01x and r = .02.

• The (selling) solution is V (x ,+) = 63

31
x

1

2 − 32

31
x−2 and

V (x ,−) =

{
3

5mx2 + 2m
3

2

5
x−

1

2 x ∈ (m, 3)

x x ∈ [0,m]

where m is root (≈ 1.94237) of 27

5m + 2m
3

2

5
√
3

=
63
√
3− 32

9

31
.
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Example (cont.)

It then follows that W (x ,−) = 5−6R
1

2+R3

5
x2 and

W (x ,+) =

{
(63
31
− 6R

1

2

5
)x

1

2 − (32
31
− R3

5
)x−2 x ∈ (1,R)

V (x ,+)− x x ∈ [R, 4]

with R is the root (≈ 2.06888) of R3 − 6R
1

2 = 5

9

63
√
3− 32

9
−93

31
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I Deliberately chose price model equivalent to risk-neutral one.
Follows this model at least weakly consistent with a market.

I What happens under this model? Stocks are sold in the
negative regime (depressing price) and are bought in the
positive regime (increasing price) so not unbelievable.

I What about resistance and support levels? If µ+ >> 0 in
neighborhood of L+H

2
and µ− << 0 in a neighborhood of L+H

2

then get something like resistance and support. Can take
limits and get skew di�usion with skewness at L and H.

I Can consider concave utility with L+u − ru positive on some
interval (L,A) only. Get similar results (joint work with
Henderson and Liu).

I Nothing special about constant r .

I Can look for endogenous speci�cation of price process...

Saul Jacka and Jun Maeda, University of Warwick Modelling Technical Analysis
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Example (Second)

We take L = 1, H = 2 and M = 8;
• with σ+(x) =

√
.06x , σ−(x) = .1x

• µ+(x) = .04x , µ−(x) = .005x and r = .02.

• The (selling) solution is V (x ,+) = (2γ+1)m3

8γ x−1 + 42m−1−m3

8γ x
2

3

and

V (x ,−) =

{
3m−1

4
x2 + m3

4
x−2 x ∈ (m, 2)

x x ∈ [0,m]

where m is ≈ .09524 and γ = 2
5

3 − 1.
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