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Abstract

We provide a dual characterisation of the weak∗-closure of a finite sum of cones in L∞ adapted
to a discrete time filtration Ft: the tth cone in the sum contains bounded random variables that
are Ft-measurable. Hence we obtain a generalisation of Delbaen’s m-stability condition [7] for the
problem of reserving in a collection of numéraires V, called V-m-stability, provided these cones arise
from acceptance sets of a dynamic coherent measure of risk [2, 3]. We also prove that V-m-stability
is equivalent to time-consistency when reserving in portfolios of V, which is of particular interest to
insurers.
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1 Introduction

Insurers reserve for future financial risks by investing in a suitably prudent asset. Reserving is done in
a particular unit of account, typically cash, or any other asset universally agreed to always hold positive
value. We call such assets numéraires, examples of which include paper assets, such as currencies, or
physical commodities. Reserving a sufficient amount ensures that the risk carried by the insurer is
acceptable. In some circumstances, the choice of numéraire is clear; in others, it is not, for example
insurers reserving for claims in multiple currencies. The sufficient amount to reserve is modelled by a
coherent measure of risk.

Coherent risk measures were first introduced by Artzner, Delbaen, Eber and Heath [2, 3], in order
to give a broad axiomatic definition for monetary measures of risk. Financial positions are modelled as
essentially bounded random variables on a suitable probability space (Ω,F ,P). A coherent risk measure
is a real-valued functional on L∞(Ω,F ,P) that is cash invariant, monotone, convex, and positive homo-
geneous; see [10]. A coherent risk measure assigns a real value to every financial position: those with
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non-positive risk are deemed acceptable. We denote by A the set of acceptable claims. It is easily shown
that A is a cone in L∞.

A coherent risk measure is a reserving mechanism: we assume that an insurer is making a market in
(or at least reserving for) risk according to a coherent risk measure ρ and they charge for or reserve for a
random claim X the price ρ(X). Thus the aggregate position of holding the risky claim X and reserving
adequately should always be acceptable to the insurer.

A coherent risk measure ρ satisfies the Fatou property if, for any unifformly bounded sequence Xn

converging to X in probability,
lim inf

n
ρ(Xn) ≥ ρ(X).

A coherent risk measure satisfies the Fatou property if and only if, for some set of probability measures
Q absolutely continuous with respect to P, we can represent ρ as

ρ(X) = sup
Q∈Q

EQ[X].

Recall that the dual of L∞(Ω,F ,P) is the space of all finitely additive measures on (Ω,F) that are
absolutely continuous with respect to P. The Fatou property allows us to restrict our search for dual
optimisers to elements in L1(Ω,F ,P), identified with probability measures through their Radon-Nikodym
derivative. We equip the space L∞ with the weak∗ topology σ(L∞, L1), so the topological dual is L1.
The acceptance set A is weak∗-closed.

We assume that the insurer can trade at finitely many times {0, 1, . . . , T}. At each time t, the insurer
can re-evaluate the risk, conditional on the information in the sigma algebra Ft. A conditional coherent
risk measure is the natural generalisation of a coherent risk measure; again, such a measure ρt satisfies
the Fatou property if and only if, for a set Qt of P-absolutely continuous probability measures we may
represent ρt by

ρt(X) = ess sup
Q∈Qt

EQ[X|Ft].

In what follows, we fix Qt = Q for all t, and define the time t-acceptance set, At, to be the set of all
claims X ∈ L∞(Ω,F ,P) with ρt(X) ≤ 0.

The simplest act of reserving is to hold a set amount of cash ρ(X) until the insurer must pay the
claim X. More generally, starting with an amount ρ(X) of cash, an insurer trades in any financial asset
available, constructing a self-financing strategy with a terminal value equal to or exceeding the value of
the claim X at maturity. If this strategy is built by trading in the set of assets V = (v0, . . . , vd) as
numéraires, then we shall say that the claim may be represented by the vector V. If we allow ourselves a
large enough collection of assets, then representation is always possible: to hedge the bounded claim X
we need only buy and hold a claim whose value is X. Interest, therefore, should be focused on choosing
a parsimonious collection of representing numéraires V, and in identifying when such a collection is
representing.

We will define a claim X to be predictably representable by V if, starting from a reserve ρ(X), we
may transfer risk through each time period by trading in V in an acceptable manner, such that the
terminal wealth equals the value of the claim: for portfolios Yt ∈ L∞(Ω,Ft,P;Rd+1), we have

X = ρ0(X) +

T−1∑
t=0

(Yt+1 − Yt) ·V,

where each increment satisfies ρt((Yt+1 − Yt) · V) ≤ 0. We write At(V) for the set of all portfolios in
V that are time-t acceptable. The acceptance set A0 is predictably V-representable if it is the weak∗

closure of the sum of the cones Kt(A,V) := At(V) ∩ L∞(Ω,Ft+1,P;Rd+1),

A0(V) = ⊕T−1
t=0 Kt(A,V).

For X to be predictably representable, we mean that X is attainable (representable) as a sum of claims
X =

∑
t Ct, where each Ct is realised over the time period (t, t + 1], and pays out at time t + 1. Or

equivalently, every element of A0 is attainable by a collection of one-period bets in units of V at times
0, 1, . . . , T − 1, and trades at time 1, . . . , T .

A key contribution of this paper is to provide the dual characterisation of V-representability. Recall
Delbaen’s multiplicative stability (henceforth m-stability) condition, on the set of probability measures
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Q. We identify probability measures in Q, via their Radon-Nikodym derivative, with random variables
in the dual cone

A∗0 = {Z ∈ L1 : E[ZX] ≤ 0 ∀X ∈ A0}.

The dual cone A∗0 is m-stable if, for any stopping time τ and Z1, Z2 ∈ A∗0 such that E [Z1 | Fτ ] =
αE [Z2 | Fτ ], then αZ2 ∈ A0(V)∗. See [7]. Likewise, the dual cone A0(V)∗ is V-m-stable if, for any
stopping time τ and Z1, Z2 ∈ A0(V)∗ such that E [Z1 | Fτ ] = αE [Z2 | Fτ ], then αZ2 ∈ A0(V)∗. To show
the equivalence of V-m-stability and V-representability, we present an elegant dual of each summand
in the representation Kt(A,V)∗ = Mt(A(V)∗), called the predictable pre-image of A0(V)∗ at time t.
Aside from being useful in proving the equivalence of V-predictable representability and predictable
V-m-stability, the predictable pre-image of a predictably m-stable convex cone A0(V)∗ at time t is a
concrete description of the dual of the set of portfolios held at time t in order to maintain an acceptable
position until time t+ 1.

We prove that V-representability is equivalent to time-consistency of the risk measure. A risk measure
is time-consistent if ρt = ρt ◦ ρt+1. That is, today’s reserve for a claim X is precisely enough to reserve
for tomorrow’s reserve for X; see [11, 7, 13, 15] for examples of such measures. The sequence (ρt) is
not necessarily time-consistent; see for example [5, 6]. Considerations of time-consistency are important
for banks modelling Risk-Weighted Assets (RWAs) under the Basel III accords. A recent consultative
document [12] highlights the change in methodology from using risk measures based on Value at Risk
(VaR) to those based on Expected Shortfall (ES), also known as Average Value at Risk (AVaR, see [9]).
As shown by Cheridito and Stadje [6], AVaR is not time-consistent.

In section 2, we elaborate on our generalisations of the three properties: namely V-time-consistency,
V-representability, and V-m-stability. Throughout the section we illustrate our definitions with a toy
example of Average Value at Risk. The main result of this paper is the equivalence of the three properties.

In section 3, we provide some examples. In section 4, we prove the main result. We highlight the role
that the filtration (Ft)t=0,...,T plays.

2 Pricing measures

We recall some definitions and concepts. We fix a terminal time T ∈ N, a discrete time set T :=
{0, 1, . . . , T}. We fix a probability space (Ω,F ,P), where P is the reference measure or objective measure.
The filtration (Ft)t∈T describes the information available at each time point. The space of all P-essentially
bounded F-measurable random variables is L∞ = L∞(Ω,F ,P); we abbreviate L∞(Ω,Ft,P) to L∞t . The
space of essentially bounded Rd-valued random variables is L∞(Rd) = L∞(Ω,F ,P;Rd). We denote
the cone of non-negative (respectively strictly positive) essentially bounded random variables by L∞+
(respectively L∞++). We denote the canonical basis vectors in Rd+1 by e0, . . . , ed.

At each time t ∈ T, we wish to price monetary risks using all information available at that time.
Recall the following definition, adapted from [8]:

Definition 2.1. A map ρt : L∞ → L∞t for t ∈ T is a conditional convex risk measure if, for all X,Y ∈ L∞,
it has the following properties:

• Conditional cash invariance: for all m ∈ L∞t ,

ρt(X +m) = ρt(X) +m P-almost surely;

• Monotonicity: if X ≤ Y P-almost surely, then ρt(X) ≤ ρt(Y );

• Conditional convexity: for all λ ∈ L∞t with 0 ≤ λ ≤ 1,

ρt(λX + (1− λ)Y ) ≤ λρt(X) + (1− λ)ρt(Y ) P-almost surely;

• Normalisation: ρt(0) = 0 P-almost surely.

Furthermore, a conditional convex risk measure is called coherent if it also satisfies

• Conditional positive homogeneity: for all λ ∈ L∞t with λ ≥ 0,

ρt(λX) = λρt(X) P-almost surely.
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Our interest lies chiefly in reserving for and pricing liabilities. We see a positive random variable X
as a gain, and a negative X as a loss, which explains the choice of sign in the cash invariance property,
and the direction of monotonicity.

Definition 2.2. A convex risk measure satisfies the Fatou property if, for any bounded sequence (Xn)n≥1 ⊂
L∞ converging to X ∈ L∞ in probability, we have

ρt(X) ≤ lim inf
n→∞

ρt(X
n).

The Fatou property is equivalent to continuity from above: ρt is continuous from above if, whenever
(Xn)n≥1 ⊂ L∞ is a non-increasing sequence such that Xn ↓ X P-a.s., then

ρt(X
n) ↓ ρt(X) P-a.s. as n→∞

Definition 2.3. A dynamic coherent risk measure is a collection ρ = (ρt)t=0,...,T , where each ρt is a
conditional coherent risk measure satisfying the Fatou property with representing set of measures Q:

ρt(X) = ess sup
Q∈Q

EQ[X|Ft].

The acceptance set of a conditional coherent risk measure ρt : L∞ → L∞t is

At = {X ∈ L∞ : ρt(X) ≤ 0}.

For the following results, we refer the reader to [10] and [8]. We equip the space L∞ with the weak∗

topology σ(L∞, L1), so that the topological dual will be L1. Recall that a set C of claims is arbitrage-free
whenever

C ∩ L∞+ = {0}.

Proposition 2.4. For each t, define At to be the acceptance set of the dynamic conditional coherent
risk measure ρt : L∞ → L∞t satisfying the Fatou property.

Then At is a weak∗-closed1 convex cone that is stable under multiplication by bounded positive Ft-
measurable random variables, contains L∞− , and is arbitrage-free.

Remark 2.5. From now on, to emphasis that a coherent risk measure is, in general conditional, we shall
refer to the acceptance set A0 rather than A

Numéraires A numéraire is defined to be a random variable v ∈ L∞++ such that 1/v ∈ L∞++. We shall
from here on fix a finite collection of numéraires V = (v0, . . . , vd), with v0 ≡ 1.

2.1 Time-consistency

In this and the subsequent sections we identify the probability measures Q of the set Q with their Radon-
Nikodym derivatives dQ

dP . We trust that which version is to be used will be clear from the context. The
following definition is taken from Acciaio et al. [1].

Definition 2.6. A dynamic coherent risk measure for random variables (ρt)t∈T is (strongly) time-
consistent if for all t ≤ T − 1, and for all X ∈ L∞,

ρt(X) = ρt(ρt+1(X)).

We note that the reserve for X at time t is ρt(X). The generalisation of strong time-consistency to
V-time-consistency is:

Definition 2.7. A dynamic convex risk measure ρ = (ρt)t=0,...,T is predictably V-time-consistent if, for
any X ∈ L∞ and any t < T , we have

ρt(X) = ess inf{ρt(Y.V ) : Y ∈ L∞(Ft+1,Rd+1) and X − Y ·V ∈ At+1} (1)

1in L∞, i.e., At is closed in the topology σ(L∞, L1)
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It is easy to check that if V ≡ 1, then strong time-consistency is V-time-consistency. In general,
strong time-consistency implies V-time-consistency. To see this, first assume strong time-consistency. If
we take Y0 = ρt+1(X) all other components of Y to be zero, so that ρt(Y ·V) = ρt(ρt+1(X)) = ρt(X) and
X −Y ·V = X − ρt+1(X) ∈ At+1. Conversely, ρt(X) = ρ(Z ·V + (X −Z ·V)) ≤ ρ(Z ·V) + ρ(X −Z ·V)
so if X − Z ·V ∈ At+1 then ρt(X) ≤ ρt(Z ·V).

We illustrate predictable time-consistency in a finite sample space Ω with a sign-changed version of
Average Value at Risk.

Example 2.8 (Average Value at Risk). Consider the filtered probability space Ω = {1, 2, 3, 4} with F0

trivial, F1 = σ({1, 2}, {3, 4}), F2 = 2Ω = F (describing a binary branching tree on two time steps).
Define AVaR, the Average Value at Risk pricing measure, by

AVaR(X) :=
1

λ

∫ λ

0

qX(α) dα,

where qX(α) = inf{x ∈ R : P[X ≤ x] > α}. We may represent AVaR as

AVaR(X) = sup
Q∈Qλ

EQ[X], where Qλ =

{
probability measures Q� P :

dQ
dP
≤ 1

λ

}
,

noting the sign change to make AVaR a pricing measure; see section 4.4 of [10]. We set λ = 1
50 , while

the objective measure is given by

P[{1}] =
1

100
, P[{2}] = P[{3}] =

9

100
, and P[{4}] =

81

100
.

For notational convenience, we represent a probability measure Q by the quartuple of its values on atoms,
Q({i}) =: qi, and similarly we write X(i) = xi for a random variable X : Ω → R. It is easy to see that
the representing set Qλ is

Qλ = {Q = (q1, q2, q3, q4) :

4∑
i=1

qi = 1, 0 ≤ q1 ≤
1

2
, qi ∈ [0, 1] for i = 2, 3, 4}.

Qλ is the convex hull of 6 points:

Qλ = conv{( 1
2 ,

1
2 , 0, 0), ( 1

2 , 0,
1
2 , 0), ( 1

2 , 0, 0,
1
2 )

(0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)}

The set of time-0 acceptable claims is

A0 = {X = (x1, x2, x3, x4) :

4∑
i=1

qixi ≤ 0 for Q ∈ Qλ}.

Clearly, X ∈ A0 if and only if
∑4
i=1 qixi ≤ 0 for each of the six extreme points Q of Qλ. These six

inequalities are neatly summarised as

A0 = {X = (x1, x2, x3, x4) : xi ≤ 0 for i = 1, 2, 3, 4; or x1 ≥ 0 and xi ≤ −x1 for i = 2, 3, 4}.

Define X0 := 1{1} − 1{2,3,4}. Then it is clear that

A0 = {αX0 − β : α ≥ 0, β ∈ L∞+ }.

The time-1 acceptance set is

A1 = {X = (x1, x2, x3, x4) : q1x1 + q2x2 ≤ 0 and q3x3 + q4x4 ≤ 0 for Q ∈ Qλ}
= L∞− .
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Claim (AVaR0,AVaR1) is not time-consistent.

Proof. It is easy to check that we have AVaR0(X0) = 0, AVaR1(X0) = 1{1,2} − 1{3,4}, and thus

AVaR0(AVaR1(X0)) = AVaR0(1{1,2} − 1{3,4}) = 1 > 0 = AVaR0(X0).

Now we set V = (v0, v1), where v0 ≡ 1 by convention, and v1 = X0 + 2, so that

v1 = 31{1} + 1{2,3,4} > 0.

Claim AVaR is predictably V-time-consistent.

Proof. For any acceptable risk X ∈ A0 we may set X = αX0 − β, where β is some non-negative random
variable taking the value 0 on the event {1}. We reserve for X by holding α in v1 and −2α in cash v0,
giving a mapping Y0 from acceptable risks X to initial reserving portfolios in V:

Y0 =

(
−2α
α

)
. (2)

Clearly Y0 ·V = αX0.
Set

Y1 =

(
−(2α+ 3

2β(2))1{1,2} − (α+ β(3) ∧ β(4))1{3,4}
(α+ 1

2β(2))1{1,2}

)
, (3)

so that
Y1 ·V = αX0 − β(2)1{2} − β(3) ∧ β(4)1{3,4}.

Now, we have AVaR0(X − Y0 ·V) ≤ 0, AVaR1(X − Y1 ·V) ≤ 0 and AVaR0(Y0 ·V) = AVaR0(X) and
AVaR1(Y1 ·V) = ρ1(X) as required. Thus AVaR is predictably V-time-consistent.

2.2 Predictable representability

Given any cone D in L∞ and our vector V of numéraires, we define the collection of portfolios attaining
D to be

D(V) = {Y ∈ L∞(Ω,F ,P;Rd+1) : Y ·V ∈ D}.

The set of time-t acceptable portfolios that are Ft+1-measurable is Kt(A0,V) := A0(V) ∩ L∞t+1(Rd+1).

Definition 2.9. The cone A0(V) is predictably decomposable if

A0(V) = ⊕T−1
t=0 Kt(A0,V),

where the closure is taken in the weak∗-topology. In this case, we say that the cone A0 is predictably
represented by V.

Example 2.8 (Continued). [Average Value at Risk] We return to the setting of Example 2.8.

Claim The acceptance set A0 is not predictably represented by 1.

Proof. We note that

K0(A0, 1) = {X ∈ L∞(F1) : X ∈ A0} = L∞− (F1)

K1(A0, 1) = A1 = L∞−

If A0 is to be predictably represented by 1, we must have that A0 = K0(A0, 1) + K1(A0, 1) = L∞− ;
however A0 contains X0 which is not in L∞− .

Now set V = (1, 31{1} + 1{2,3,4}) as before.
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Claim The set A0 is predictably represented by V.

Proof. For any X ∈ A0 we may write X = αX0 − β, for α ≥ 0 and β ∈ L∞+ . Defining π0 = Y0 and
π1 = Y1−Y0 for Y0, Y1 as in eqs. (2) and (3), we have that X ≤ π0 ·V+π1 ·V ∈ K0(A0,V)⊕K1(A0,V).
Any non-positive random variable is in any of the Kt(A0,V) for t = 0, 1, so X is in the sum, proving
that A0 ⊆ K0(A0,V)⊕K1(A0,V). The reverse inclusion is clear.

2.3 Stability properties

We recall Delbaen’s m-stability condition, on a standard stochastic basis (Ω,F , (Ft)t,P):

Definition 2.10 (Delbaen [7]). A set of probability measures S ⊂ L1(Ω,F ,P) is m-stable if for elements

QZ ∈ S and P ∼ QW ∈ S, with associated density martingales Zt = E
[
dQZ
dP

∣∣∣Ft] and Wt = E
[
dQW
dP

∣∣∣Ft],
and for each stopping time τ , the martingale L defined as

Lt =

{
Zt for t ≤ τ
Zτ
Wτ

Wt for t ≥ τ

defines an element in S.

Note that a set S is m-stable if, whenever τ is a stopping time, and Z,W ∈ S are such that Zτ = αWτ ,
then αW ∈ S. Just take α = Zτ

Wτ
, and then L = αW in the above definition. We now define a vector-

valued generalisation of m-stability, for a subset D ⊂ L1
+(Rd+1).

Definition 2.11. The subset D ⊂ L1
+(Rd+1) is predictably m-stable if, whenever τ ≤ T is a stopping

time, and whenever Z,W ∈ D with

E [Z | Fτ ] = αE [W | Fτ ] , (4)

for some scalar α, then αW is also in D.

Note that (4) implies that α is Fτ -measurable and non-negative.

Remark 2.12. If (Gs)s=t,...,S is a filtration with Gu ⊂ Fu for each u, and D is predictably m-stable with
respect to (F) then it is also the case that D is predictably m-stable with respect to (G).

Definition 2.13. The cone D ⊂ L1
+ is said to be predictably V-m-stable if DV = {YV : Y ∈ D} is

predictably m-stable.

Remark 2.14. In the case d = 0, we have V ≡ 1 and so the requirement that a set of Radon-Nikodym
derivatives D ⊂ L1

+ is 1-m-stable is precisely the requirement that D is m-stable.

Every random vector Z in A0(V)∗ can be written as a multiple of V, that is, Z = Z̃V with Z̃ ∈ A∗0.

Lemma 2.15. Suppose that V is a collection of d+ 1 numéraires, and D is a convex cone in L∞. Then

D(V)∗ = D∗V.

Proof. First take Z ∈ D∗. For any X ∈ D(V) we have E[ZV · X] ≤ 0 and so ZV ∈ D(V)∗, thus
D(V)∗ ⊇ D∗V.

For the reverse inclusion, recall that ei denotes the ith canonical basis vector in Rd+1. First, since
V · α(viej − vjei) = 0, we have

α(viej − vjei) ∈ D(V) ∀α ∈ L∞.

Take Z ∈ D(V)∗. Now, for any i, j ∈ {1, . . . , d}, α ∈ L∞, we have

E[Z · α(viej − vjei)] ≤ 0.

Reversing i and j in the above, we may write E[Z · α(viej − vjei)] = 0, and allowing first α =
1{Z·(viej−vjei)>0} then α = 1{Z·(viej−vjei)<0}, we see that in fact,

Z · (viej − vjei) = 0 a.s. for any i, j,
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and so, taking i = 0 we have Zj = Z0vj a.s. for each j, thus any Z ∈ D(V)∗ must be of the form Z0V
for some Z0 ∈ L1. Now, given C ∈ D, take X such that X ·V = C (which implies that X ∈ D(V)), then

0 ≥ E[WV ·X] = E[WC],

and since C is arbitrary, it follows that W ∈ D∗. Hence D(V)∗ ⊆ D∗V.

Remark 2.16. In light of Lemma 2.15, we may check that A0(V)∗ ≡ A∗0V is predictably stable in the
following way. We first associate to each Z ∈ A∗0 the probability measure QZ , defined through its
Radon-Nikodym derivative

dQZ

dP
=

Z

E[Z]
.

We note that if Z,W ∈ A0(V)∗, then we may find Z̃, W̃ ∈ A∗0 such that Z = Z̃V and W = W̃V.
The assumption that v0 ≡ 1 gives the equivalence of the condition E [Z | Fτ ] = mE [W | Fτ ] with the
condition

EQZ̃ [V|Fτ ] = EQW̃ [V|Fτ ]. (5)

The set A0(V)∗ is predictably V-m-stable if, for any stopping time τ ≤ T , whenever Z̃, W̃ ∈ A∗0 are such
that (5) holds, then

E
[
Z̃
∣∣∣Fτ]

E
[
W̃
∣∣∣Fτ]W ∈ A∗0(V).

Example 2.8 (Continued). We return to the setting of Example 2.8.

Claim A∗0 is not m-stable.

Proof. Define measures Q1 = ( 1
2 ,

1
2 , 0, 0) ∈ Qλ and Q2 = (1

2 , 0,
1
2 , 0) ∈ Qλ. We form the time-1 pasting

of the measures Q1 and Q2 by setting

dQ̃
dP

=
E
[
dQ1

dP

∣∣∣F1

]
E
[
dQ2

dP

∣∣∣F1

] dQ2

dP

so that Q̃ = (1, 0, 0, 0). Now q̃1 = 1 > 1
2 which shows Q̃ 6∈ Qλ, and so Qλ is not m-stable.

Now set V = (1, 31{1} + 1{2,3,4}) as before.

Claim A∗0 is V-m-stable.

Proof. First, consider the pasting Q̃ = Q⊕τ Q′ of measures Q and Q′ in Qλ at the stopping time τ :

dQ̃
dP

=
E
[
dQ
dP
∣∣Fτ ]

E
[
dQ′
dP
∣∣Fτ ] dQ

′

dP

=
dQ′

dP
1{τ=0} +

E
[
dQ
dP
∣∣F1

]
E
[
dQ′
dP
∣∣F1

] dQ′
dP

1{τ=1} +
dQ
dP

1{τ=2}.

By Remark 2.16, we fix Z̃ and Z̃ ′ in A∗0 with associated probability measures Q and Q′ that additionally
satisfy

EQ[v1|Fτ ] = EQ′ [v
1|Fτ ],

and we aim to show that Q̃ ∈ Qλ. On the event {τ = 0} (respectively {τ = 2}), we have that Q̃ = Q′

(respectively Q̃ = Q) and the bound Q̃(1) ≤ 1
2 is trivially satisfied. The event {τ = 1} is one of ∅, {1, 2},

{3, 4}, Ω. Writing Q = (qi)
4
i=1, for ω ∈ {1, 2, 3, 4},

EQ[v1|F1](ω) =
3q1 + q2

q1 + q2
1{q1+q2>0}1{1,2}(ω) + 1{q3+q4>0}1{3,4}(ω)
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We may paste measures Q and Q′ that satisfy

3q1 + q2

q1 + q2
1{q1+q2>0}1{1,2} + 1{q3+q4>0}1{3,4} =

3q′1 + q′2
q′1 + q′2

1{q′1+q′2>0}1{1,2} + 1{q′3+q′4>0}1{3,4}

on {τ = 1}, which simplifies to the requirement that

q1

q2
1{q1+q2>0}1{1,2}∩{τ=1}+1{q3+q4>0}1{3,4}∩{τ=1} =

q′1
q′2
1{q′1+q′2>0}1{1,2}∩{τ=1}+1{q′3+q′4>0}1{3,4}∩{τ=1}.

(6)

On {τ = 1} ⊃ {1}, the pasting Q̃ weights {1} as

Q⊕τ Q′({1}) = (q1 + q2)
q′1

q′1 + q′2
1{q′1+q′2>0} = (q1 + q2)

q′1
q′2

q′1
q′2

+ 1
1{q′1+q′2>0}

(6)
= q11{q1+q2>0}

The other cases are easy to check. Thus Q⊕τ Q′ ∈ A∗0, and A∗0 is V-m-stable.

2.4 Main result

We fix numéraires V, a coherent risk measure ρ = (ρt)t with convex representing set of probability
measures Q, and take At to be the acceptance set of ρt for t ∈ T. The main result is

Theorem 2.17. The following are equivalent:

(i) (ρt)t∈T is predictably V-time-consistent;

(ii) A0 is predictably represented by V;

(iii) A0(V)∗ is predictably m-stable.

The proof will be given in Section 4.
We now highlight waypoints in the proof of Theorem 2.17.
Thinking of the conditional expectation E[·|Ft+1] as a projection from L1(Rd+1) to L1

t+1(Rd+1), we
define the predictable pre-image of D at time t by first projecting D to L1

t+1(Rd+1), then taking the
Ft-cone, and finally taking the pre-image under the projection E[·|Ft+1]. The Ft-cone of a set E is

coneFt E = {αw1 + βw2 : α, β ∈ L∞+ (Ft), w1, w2 ∈ E}.

More concisely:

Definition 2.18. For D ⊂ L1
+(Rd+1), we define for each time t the predictable pre-image of D by

Mt(D) := {Z ∈ L1(Rd+1) :∃αt ∈ L0
t,+,∃Z ′ ∈ D

such that αtZ
′ ∈ L1(Rd+1) and E [Z | Ft+1] = αtE [Z ′ | Ft+1]}. (7)

The predictable pre-image of a set D ⊂ L1
+(Rd+1), is key to understanding predictably stable convex

cones, as shown in the following three lemmas. The first gives an alternative characterisation of stability:

Lemma 2.19. Let D ⊂ L1
+(Rd+1). The following are equivalent:

(i) for each t ∈ {0, 1, . . . , T}, whenever Y,W ∈ D are such that there exists Z ∈ D, a set F ∈ Ft,
positive random variables α, β ∈ L0(Ft) with αY, βW ∈ L1(Rd+1) and

X := 1FαY + 1F cβW satisfies E [X | Ft] = E [Z | Ft] ,

then X is also a member of D;

(ii) D is predictably stable, that is, for each stopping time τ ≤ T , whenever Z,W ∈ D are such that

E [Z | Fτ ] = mE [W | Fτ ] ,

then mW is also a member of D.

9



Proof. (ii) =⇒ (i): We suppose that (ii) holds, and fix t ∈ T. We aim for a triple of random variables
Y,W,Z in D, together with an F ∈ Ft, and α, β as required in condition (i), such that we can apply (ii)
twice to show that the resulting X defined in condition (i) is a member of D.

First, let τ = T1F + t1F c and suppose Z,W ∈ D satisfy E
[
Zi
∣∣Fτ ] = mE

[
W i
∣∣Fτ ] for all i. By (ii),

we have X̃ := mW ∈ D. Writing

β :=
E
[
Zi
∣∣Ft]

E [W i | Ft]
1{E[W i |Ft]>0},

we may express X̃ = Z1F + βW1F c .

Second, let τ̃ = t1F + T1F c and suppose Y ∈ D satisfies E
[
X̃i
∣∣∣Fτ] = m̃E

[
Y i
∣∣Fτ ] for all i. By

(ii), we have X := m̃Y ∈ D. Writing

α :=
E
[
X̃i
∣∣∣Ft]

E [Y i | Ft]
1{E[Y i |Ft]>0},

we may express X = αY 1F + βW1F c .
Now, we have a t fixed, Y,W,Z ∈ D, a set F ∈ Ft, and positive r.v.s α, β ∈ L0(Ft). We have already

that X ∈ D, thus it remains to check2 that X and Z as defined above satisfy E [X | Ft] = E [Z | Ft].

E [X | Ft] = 1FE [αY | Ft] + 1F cE [βW | Ft]

= 1FE

 E
[
X̃i
∣∣∣Ft]

E [Y i | Ft]
1{E[Y i |Ft]>0}Y

∣∣∣∣∣∣Ft


+ 1F cE

[
E
[
Zi
∣∣Ft]

E [W i | Ft]
1{E[W i |Ft]>0}W

∣∣∣∣∣Ft
]

= 1FE
[
X̃
∣∣∣Ft]+ 1F cE [Z | Ft]

= E [Z | Ft] ,

which establishes statement (i).
(i) =⇒ (ii): Say (i) holds; then (ii) holds for when τ = T trivially. Now suppose that (ii) holds for

any stopping time τ ≥ k+ 1 a.s., and proceed by backward induction on the lower bound of the stopping
times. Fix an arbitrary stopping time τ̃ ≥ k a.s., and define F = {τ̃ ≥ k + 1} and the stopping time
τ∗ := τ̃1F + T1F c . Note that τ∗ ≥ k + 1, since F c = {τ̃ = k}.

We shall now take Z,W ∈ D that satisfy E
[
Zi
∣∣Fτ̃ ] = mE

[
W i
∣∣Fτ̃ ] for all i, and aim to show that

mW is indeed an element of D, with the help of condition (i).
To this end, define

Y := W
E
[
Zi
∣∣Fτ∗]

E [W i | Fτ∗ ]
1{E[W i |Fτ∗ ]>0} = 1FW

E
[
Zi
∣∣Fτ̃ ]

E [W i | Fτ̃ ]
1{E[W i |Fτ̃ ]>0} + Z1F c .

By the inductive hypothesis, Y is in D, thanks to the bound τ∗ ≥ k + 1, .
Now, we have t = k fixed, Y,W,Z ∈ D, a set F ∈ Ft, and positive random variables α ≡ 1,

β := 1F c
E[Zi |Fk]
E[W i |Fk] . Define

X := 1FαY + 1F cβW

= W1F

E
[
Zi
∣∣Fτ̃ ]

E [W i | Fτ̃ ]
1{E[W i |Fτ̃ ]>0} +W1F c

E
[
Zi
∣∣Fk]

E [W i | Fk]
1{E[W i |Fk]>0}

= W
E
[
Zi
∣∣Fτ̃ ]

E [W i | Fτ̃ ]
1{E[W i |Fτ̃ ]>0}.

It is elementary to check that X and Z as defined above satisfy E [X | Fk] = E [Z | Fk]. Thus by (i), X
is an element of D, which completes the inductive step.

2the integrability conditions αY, βW ∈ L1(Rd+1) are easily verified.
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Lemma 2.20. Suppose D ⊂ L1
+(Rd+1). If D is a predictably stable convex cone, then

D =

T−1⋂
t=0

Mt(D).

Proof. The inclusion D ⊂ ∩T−1
t=0 Mt(D) is trivial. In the following, we write Z|t for E [Z | Ft].

Now Z ∈ ∩T−1
t=0 Mt(D), and we aim to show that Z ∈ D. So, for all t ∈ {0, 1, . . . , T − 1}, there exist

βt ∈ L0
t,+ and Zt ∈ D such that βtZ ∈ L1

+(Rd+1) and Z|t+1 = βtZ
t|t+1.

Define

ξT−1 = ZT−1

ξt = 1Ftκtξ
t+1 + 1F ct

Zt for t ∈ {0, 1, . . . , T − 2},

where Ft = {βt > 0} and κt = βt+1/βt.
Note Z = Z|T = βT−1Z

T−1|T = βT−1ξ
T−1 and

Z = β0κ0κ1 · · ·κT−2ξ
T−1 = β0ξ

0.

Thus we only need to show ξ0 is in the cone D to deduce that Z = β0ξ
0 is in D.

Claim For all t ∈ {0, 1, . . . , T − 1}, we have ξt|t+1 = Zt|t+1 and ξt ∈ D.
We shall proceed by backwards induction, starting from the observation ξT−1 = ZT−1 ∈ D. Suppose

that for s ≥ t+ 1, we have ξs|s+1 = Zs|s+1 and ξs ∈ D.

ξt|t+1 = E
[
1Ftκtξ

t+1 + 1F ct
Zt
∣∣Ft+1

]
= E

[
1FtκtZ

t+1 + 1F ct
Zt
∣∣Ft+1

]
Now, whilst βt > 0, i.e. on the event Ft,

E
[
κtZ

t+1
∣∣Ft+1

]
=

1

βt
E
[
βt+1Z

t+1
∣∣Ft+1

]
=

1

βt
E [Z|t+2 | Ft+1] =

Z|t+1

βt
= Zt|t+1

allowing us to conclude
ξt|t+1 = E

[
1FtZ

t|t+1 + 1F ct
Zt
∣∣Ft+1

]
= Zt|t+1.

By hypothesis D is stable, so by Lemma 2.19 we see that ξt ∈ D.

Lemma 2.21. For D ⊂ L1
+(Rd+1), define

[D] :=

T−1⋂
t=0

(convMt(D)) ,

where Mt(D) is as defined in (7), the symbol conv denoting the closure in L1
+(Rd+1) of the convex hull.

(a) [D] is the smallest predictably m-stable closed convex cone in L1
+(Rd+1) containing D;

(b) D = [D] if and only if D is a predictably m-stable closed convex cone in L1
+(Rd+1).

Proof. It is clear that [D] is a closed convex cone in L1. To see that [D] is stable, we use the definition
of stability according to Lemma 2.19. Fix t ∈ {0, 1, . . . , T}, and suppose Y,W ∈ [D] are such that there
exists Z ∈ [D], a set F ∈ Ft, positive processes α, β ∈ L0(Ft) with αY, βW ∈ L1(Rd+1) and

X := αY 1F + βW1F c

satisfies E [X | Ft] = E [Z | Ft]. We aim to show X is also a member of [D], that is,

X ∈ convMs(D) ∀0 ≤ s ≤ T − 1.

First consider s ∈ {0, 1, . . . , t− 1}. From the definition of Ms(D),

Z ∈ convMs(D) and E [X | Ft] = E [Z | Ft] =⇒ X ∈ convMs(D),
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since the membership of an integrable Z inMs(D) only depends on its conditional expectation E [Z | Fs+1].
More generally, we show

Z ∈ convMs(D) and E [X | Ft] = E [Z | Ft] =⇒ X ∈ convMs(D).

Take a sequence (Zn) ⊂ convMs(D) such that Zn → Z in L1. Define the sequence

Xn := E [Zn | Ft] +X − E [X | Ft] .

Note that Xn → X as n → ∞ and for each n, E [Xn | Ft] = E [Zn | Ft]. So Xn ∈ convMs(D), thus
X ∈ convMs(D).

Now consider s ∈ {t, t + 1, . . . , T − 1}. We begin by choosing sequences (Y n), (Wn) ⊂ convMs(D)
such that Y n → Y and Wn →W in L1. Define, for n,K ∈ N,

Xn,K := 1{α≤K}αY
n
1F + 1{β≤K}βW

n
1F c .

The fact that Xn,K ∈ convMs(D) follows from the following two elementary properties:

1. if Z ∈ convMs(D) and g ∈ L∞+ (Ft), then gZ ∈ convMs(D);3 and

2. if Zi ∈ convMs(D) for i = 1, 2, then Z1 + Z2 ∈ convMs(D).

Now, for anyK fixed, 1{α≤K}αY
n → 1{α≤K}αY as n→∞, and similarly 1{β≤K}βW

n → 1{β≤K}βW .
Since αY and βW are integrable, we now send K →∞ to see that

X = lim
K→∞

lim
n→∞

Xn,K ∈ convMs(D)

which completes the proof that X is indeed a member of [D].
To show minimality of [D] in the class of stable closed convex cones containing D, we note that if

D ⊂ D′ then [D] ⊂ [D′]. Taking D′ to be another stable closed convex cone containing D, we have
D′ = [D′] by Lemma 2.20, and so D′ contains [D]. To show the equivalence in statement (b), the forward
implication is due to the stability of [D], and the reverse is Lemma 2.20.

The proof of equivalence of statements (ii) and (iii) of Theorem 2.17 is underpinned by the following

Theorem 2.22. For any t ∈ {0, 1, . . . , T − 1},

Kt(A,V) = (Mt(A(V)∗))∗. (8)

We defer the proof until section 4.
Thus we have characterised each “summand” in the representation (cf. definition 2.9) as a dual set

of the predictable pre-image of the dual of the set of acceptable portfolios in V.

3 Examples

In this section we present a brief exposition of the versatility of the framework.

3.1 Modelling transaction costs

We now present an example motivated by buying and selling a stock in a market with transaction costs
across two time periods (T = 2). Let N1 and N2 be two independent and identically distributed standard
Gaussian random variables under objective measure P. Fix M > 0 and define the truncated random
variables Ñi := Ni ∧M , for i = 1, 2. Define the constant aM such that EP[exp(Ñi − aM )] = 1:

aM := logEP[exp(Ñ1)] = log
(
e

1
2 Φ(M − 1) + eM (1− Φ(M))

)
.

3Let Z ∈Ms(D). Then

∃αt ∈ L0
t,+, ∃Z′ ∈ D such that αtZ ∈ L1 and Z|t+1 = αtZ

′|t+1

=⇒ ∃αtg ∈ L0
t,+, ∃Z′ ∈ D such that αtgZ ∈ L1 and gZ|t+1 = αtgZ

′|t+1

and then take convex hulls.
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Define the filtration by F0 trivial, F1 = σ(Ñ1), and F2 = σ(Ñ1, Ñ2).
The market consists of a “cash account” v0 ≡ 1 and a “stock” with time-2 price

v1 = exp
(
Ñ1 + Ñ2 − 2aM

)
.

Set V = (v0, v1). At time 0, to buy 1 unit of v1 a purchaser must pay 1 +λ cash, and to sell 1 unit of

v1 a vendor receives 1− λ. At time 1, knowing the value of Ñ1, buying 1 unit of v1 costs (1 + λ)eÑ1−aM ,

and selling 1 unit of v1 makes (1 − λ)eÑ1−aM . Define the F1-cone of a set E by coneF1
E = {αw : α ∈

L∞+ (F1), w ∈ convE}. If we also allow wealth to be consumed, we arrive at the following set of claims
to which we may trade from zero initial wealth:

A = cone {(−(1 + λ), 1), (1− λ,−1)} ·V

⊕ coneF1

{
(−(1 + λ)eÑ1−aM , 1), ((1− λ)eÑ1−aM ,−1)

}
·V

⊕ (−L∞+ ).

In the sum, the first term describes those claims that can be realised at time 0, the second term describes
those claims that can be realised at time 1, and the last describes consumption of wealth at any time. It
is easy to show that the dual of A is

Q :=
{
Q� P : EQ[v1] ∈ [1− λ, 1 + λ] and EQ[exp(Ñ2 − aM )|F1] ∈ [1− λ, 1 + λ]

}
.

Note that Q is a convex set of probability measures that is not m-stable. Define a coherent risk measure
by ρt(X) = supQ∈Q EQ[X|Ft] for t = 0, 1. We have ρ0(v1) = 1 + λ, but

ρ1(v1) = eÑ1−aM sup
Q∈Q

EQ[eÑ2−aM |F1] = (1 + λ)eÑ1−aM ,

and so

ρ0(ρ1(v1)) = (1 + λ) sup
Q∈Q

EQ[eÑ1−aM ] =
(1 + λ)2

1− λ
> ρ0(v1).

The last line follows from the inequalities for any Q ∈ Q:

1 + λ ≥ EQ[v1] = EQ[eÑ1−aMEQ[eÑ2−aM |F1]] ≥ (1− λ)EQ[eÑ1−aM ].

Now, we may show that Q must be V-m-stable: we take two measures QΛ and QM with Radon-
Nikodym derivatives Λ and M , form the pasting at a stopping time τ ∈ {0, 1, 2}, and check that the

pasted measure Q̃, defined by

dQ̃
dP

=
M

E[M |Fτ ]
E[Λ|Fτ ]

is also in Q. Noting that 1{τ=2} = 1− 1{τ≤1} ∈ L∞1 , we calculate

EQ̃[exp(Ñ2 − aM )|F1] = E
[(

M

E[M |F1]
1{τ≤1} +

Λ

E[Λ|F1]
1{τ=2}

)
exp(Ñ2 − aM )

∣∣∣∣F1

]
= EQM [exp(Ñ2 − aM )|F1]1{τ≤1} + EQΛ [exp(Ñ2 − aM )|F1]1{τ=2},

so we see that the condition EQ̃[exp(Ñ2 − aM )|F1] ∈ [1− λ, 1 + λ] is satisfied. To satisfy the definition

of V-m-stability, we need only check that Q̃ ∈ Q for those QΛ and QM that satisfy

EQΛ [v1|Fτ ] = EQM [v1|Fτ ].

Hence, we now calculate

EQ̃[v1] = E
[
E[Λ|Fτ ]

E[M |Fτ ]
E[Mv1|Fτ ]

]
= E

[
E[Λ|Fτ ]EQM [v1|Fτ ]

]
= E

[
E[Λ|Fτ ]EQΛ [v1|Fτ ]

]
= EQΛ [v1].

Thus Q is V-m-stable.
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3.2 A Haezendonck–Goovaerts risk measure

The following is an example employing the so-called Haezendonck–Goovaerts risk measures; we refer the
reader to the work of Bellini and Rosazza Gianin [4]. Consider a two-period binary branching tree, with
P{ω} = 1

4 for all four elements ω ∈ Ω. We choose a (normalised) Young function Φ(x) = x2, and define
the Orlicz premium principle to be the unique solution Hα(X) of the equation

E
[
Φ

(
X

Hα(X)

)]
= 1− α for X 6= 0; Hα(0) := 0.

Fix α = 1
2 , and rearrange the above to see H 1

2
(X) =

√
2‖X‖2 =

√
2
(
E
[
X2
]) 1

2 . We now define the
Haezendonck measure to be

ρ0(X) = sup
Q∈Q

EQ[X] where Q := {Q� P : EQ[Y ] ≤ H 1
2
(Y ) ∀Y ∈ L∞+ }.

We write Q({i}) =: qi for a measure Q on (Ω,F), and X(i) = xi for a random variable X on (Ω,F ,P).
First, we characterise Q. Note that the constraint in the definition of Q implies

sup
06=Y ∈L∞+

E
[
dQ
dP

Y

‖Y ‖2

]
≤
√

2.

The supremum is attained upon choosing Y = dQ
dP , so the above inequality implies

∥∥dQ
dP
∥∥2

2
≤ 2, thus

Q =

{
Q = (q1, . . . , q4) : qi ≥ 0,

4∑
i=1

qi = 1,

4∑
i=1

q2
i ≤

1

2

}
.

Q is not m-stable Define measures QΛ and QM from Λ2 = 2×1{1,2} and M2 = 2×1{1,3} respectively.
We see that both are elements of Q, and their restrictions to (Ω,F1) are described by Λ1 = E[Λ2|F1] =
2× 1{1,2}, and M1 = E[M2|F1] = 1. We form the time-1 pasting of the measures QΛ and QM by setting

dQ̃
dP

=
Λ1

M1
M2 = 4× 1{1}.

Here,
∑4
i=1 q̃

2
i = 1 > 1

2 , so Q̃ 6∈ Q, and the set Q is not m-stable.
Now, set

V =
(

1,
√

21{1} + 1,
√

21{3} + 1
)
.

Q is V-m-stable We calculate EQ[V|F1] as in Example 2.8, to see that, for Q,Q′ ∈ Q, our additional
condition is

q1

q2
1{q1+q2>0} =

q′1
q′2
1{q′1+q′2>0} and

q3

q4
1{q3+q4>0} =

q′3
q′4
1{q′3+q′4>0}.

Thus we see that any pasting Q⊕t=1Q′ that satisfies this condition is in fact equal to Q, which is trivially
in Q.

3.3 Reserving for cash flows

We describe a probabilistic approach to wealth processes using the notation of Acciaio, Föllmer, and
Penner [1]. As before, we fix a terminal time T < ∞, a discrete time set T := {0, 1, . . . , T}, and a
stochastic basis (Ω,F , (Ft)t∈T,P). On the product space Ω := Ω×T, define the optional σ-algebra up to
time t ∈ T as

F t := σ (As × {s}, At × Tt : s ≤ t, As ∈ Fs) , where Tt := {t, t+ 1, . . . , T},
F := FT .
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Define the reference probability measure P := P⊗ µ on (Ω,F) via the expectation

EP [X] = E

[
T∑
s=0

Xsµs

]

where E = EP and µ is an optional random probability measure on T, i.e., an Ft-adapted process such
that µt > 0 for all t ∈ T and

∑
t∈T µt = 1.

We use the underline to denote multiperiod variants of standard notation; for example L∞ :=
L∞(Ω,F , P ) is the space of all bounded random variables on the extended probability space (Ω,F , P ),
elements of which may alternatively be viewed as processes X = (Xt)t∈T. We write L1(Rd+1) :=
L1(Ω,F , P ;Rd+1) (respectively L∞(Rd+1)) for P -integrable (respectively bounded) random variables
X such that each Xt is Rd+1-valued, for t ∈ T. Non-negative elements of L∞ are denoted by L∞+ , and
F t-measurable elements of L∞ are denoted by L∞t .

For 0 ≤ t ≤ s ≤ T , define the projection πs,t : L∞ → L∞

πs,t(X)r = 1{s≤r}Xr∧t, for r ∈ T.

Define R∞ to be those adapted processes X ∈ L∞, and set R∞t,s = πs,t(R∞) and R∞t = πt,T (R∞). We
use the notation X|t for the conditional expectation EP [X|F t] ≡ E[X|F t], which may be viewed as a
process, constant after time t; we write Xt to denote the time-t realisation of the process X.

We remark that there is a one-to-one correspondence between pricing measures for processes ρt :
R∞t → L∞t and pricing measures ρ

t
: R∞ → L∞t for random variables on Ω equipped with the optional

σ-algebra, via

ρ
t
(X) =

t−1∑
s=0

Xs1{s} + ρt(πt,T (X))1Tt . (9)

4 Proof of main result

The proof is a little involved. We show that (i) ⇒ (ii) ⇔ (iii). Then noting that (see Remark 2.12)
(iii) implies the same result on the filtration (Ft, . . . ,FT ), we deduce a time-shifted version of (ii) which
implies (i).

We will use the following lemma:

Lemma 4.1. Suppose for each t ∈ T, Ct ⊂ E is a closed convex cone. Then

(∩tCt)∗ = conv {∪tC∗t } = ⊕tC∗t .

Proof. The first equality is well-known, the second is clear.

Proof of Theorem 2.17. (i)⇒ (ii)
We show first that

Claim 4.2.
εt(X) := ess inf{ρt(Y ·V) : Y ∈ L∞t+1(Rd+1) and X − Y ·V ∈ At+1}

is a conditional coherent risk measure and its acceptance set Bt is given by

Kt(V) ·V +At+1. (10)

Now (i) implies that Bt = At and so, from this result, the implication (i) ⇒ (ii) is an immediate
consequence by induction.

Note that, by a similar argument, it is easy to see that (i) is equivalent to the statement

For each t, At(V) = ⊕T−1
t Kt(A0,V). (11)

It is easy to show that εt is a conditional coherent risk measure. It remains to show (10). For the
inclusion Bt ⊆ Kt(V) ·V +At+1, let X ∈ Bt. We first prove that the set St(X) := {ρt(Y ·V) : Y ∈
L∞t+1(Rd+1) and X−Y ·V ∈ At+1} is directed downwards. To see this, take Y,Z ∈ L∞t+1(Rd+1) such that
X −Y ·V ∈ At+1 and X −Z ·V ∈ At+1. Let F = {ρt(Y ·V) ≤ ρt(Z ·V)} and define W = X1F +Y 1F c .
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Then W ∈ L∞t+1(Rd+1) and X − W · V ∈ At+1. Then ρt(W · V) = ρt(Y · V)1F + ρt(Z · V)1F c =
min(ρt(Y ·V), ρt(Z ·V)).

Thus there exists a sequence Yn ∈ St(X) such that an := ρt(Yn · V) ↓ εt(X). Setting Un := Yn +
(εt(X)−an)e0, where e0 := (1, 0, . . . , 0), it is clear that Un ∈ Kt(V)·V. DefiningXn := Un·V+(X−Yn·V)
we see that Xn ∈ Kt(V) ·V +At+1 and the sequence Xn = X + εt(X) − an is uniformly bounded and
converges a.s. to X. Therefore Xn converges weakly∗ to X and so X ∈ Kt(V) ·V +At+1.

To prove the inclusion Bt ⊇ Kt(V) +At+1, suppose that X ∈ At+1 and Y ∈ Kt(V).
Then clearly ρt(Y · V) ∈ St(Y · V) and so εt(Y · V) ≤ ρt(Y · V) ≤ 0, and for X ∈ At+1 we have

εt(X) ≤ ρt(0) = 0, so εt(X + Y · V) ≤ εt(X) + εt(Y · V) ≤ 0 so that X + Y · V ∈ Bt. Since Bt is
weak∗-closed, the result follows.

Equivalence of (ii) and (iii)
Assume now that B is a weak∗-closed convex cone in L∞(Rd+1) which is arbitrage-free, so that

B∗∗ = B. Define

Kt(B) := {X ∈ L∞(Ft+1,Rd+1) : αX ∈ B for any α ∈ L∞+ (Ft)}.

Recall that Bt = {X ∈ L∞(FT ,Rd+1) : αX ∈ B for any α ∈ L∞+ (Ft)} and B is predictably representable
if

B = ⊕T−1
t=0 Ks(B).

We rephrase (ii) and (iii) as follows

(ii’) B is predictably representable; and

(iii’) B∗ is predictably stable.

This is sufficent, since we apply it to the case where B = A0(V).
(ii’) ⇒ (iii’): Assuming B is predictably representable, it follows from Theorem 2.22 that

B = ⊕T−1
t=0 Ks(B)

w∗

= ⊕T−1
t=0 Ms(B∗)∗

w∗

.

Taking the dual, we find that

B∗ = ∩T−1
s=tMs(B∗)∗∗ = ∩T−1

t=0 convMs(B∗)

where the last equality follows from the Bipolar Theorem for a locally convex topological vector space (see
the Fenchel-Moreau duality Theorem in [14]). Hence, B∗ = [B∗], and by Lemma 2.21, B∗ is predictably
stable.

(iii’) ⇒ (ii’): Assuming B is a weak∗-closed convex cone, note that B∗ is a convex cone closed in
(L1, σ(L1,L∞)). Assuming further that B∗ is stable,

B∗ = ∩tMt(B∗) by Lemma 2.20

= ∩tKt(B)∗ by eq. (8).

Now we may apply Lemma 4.1 to deduce

B ≡ B∗∗ = ⊕T−1
t=0 Ks(B)

w∗

and B is predictably representable, as required.
Now we show that (iii) implies the uniform, time-shifted, version of (ii)’:

At(V) = ⊕T−1
s=t Ks(A0,V),

which is sufficient for (i) to hold. But this follows immediately from the observation that (iii)’ implies
the same condition holds for the filtration (Ft, . . . ,FT ).
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All that remains is to give the

Proof of Theorem 2.22. We set B = A0(V), as above.
First we prove thatMt(B∗) ⊂ Kt(B)∗. For arbitrary Z ∈Mt(B∗), there exist Z ′ ∈ B∗ and α ∈ L0

+(Ft)
with αZ ′ ∈ L1 and Z|t+1 = αZ ′|t+1.

Note that, for any X ∈ Kt(B),

E[Z ·X] = E[Z|t+1 ·X] = E[αZ ′|t+1 ·X] = lim
n→∞

E[(α1{α≤n}X) · Z ′|t+1] ≤ 0,

since α1{α≤n}X ∈ B and Z ′ ∈ B∗. Hence Z ∈ Kt(B), and since Z is arbitrary, we have shown that
Mt(B∗) ⊂ Kt(B)∗.

For the reverse inclusion, Mt(B∗)∗ ⊂ Kt(B), note that B∗ ⊂Mt(B∗) implies Mt(B∗)∗ ⊂ B, and

L∞+ (Ft)Ms(D) =Ms(D) =⇒ for X ∈Mt(B∗)∗, g ∈ L∞+ (Ft), E[X · gZ] ≤ 0

=⇒ L∞+ (Ft)Mt(B∗)∗ =Mt(B∗)∗.

Define
Bt := {X ∈ L∞(FT ,Rd+1) : gX ∈ B for any g ∈ L∞+ (Ft)}.

Thus Mt(B∗)∗ ⊆ Bt. To finish the proof, we need only show that X ∈ Mt(B∗)∗ is Ft+1-measurable,
since Bt ∩ L∞(Ft+1,Rd+1) = Kt(B).

To this end, note that for any Z ∈ L1(Rd+1), it is true that Z − Z|t+1 ∈ Mt(B∗), whence E[(Z −
Z|t+1) ·X] ≤ 0. We deduce that

E[(Z − Z|t+1) ·X] = E[(X −X|t+1) · Z] ≤ 0 ∀Z ∈ L1(Rd+1),

and X = X|t+1 P-a.s..
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