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Abstract. Motivated in part by a problem in simulated tempering (a form of
Markov chain Monte Carlo) we seek to minimise, in a suitable sense, the time it takes
a (regular) diffusion with instantaneous reflection at 0 and 1 to travel from the origin
to 1 and then return (the so-called commute time from 0 to 1). We consider the
static and dynamic versions of this problem where the control mechanism is related
to the diffusion’s drift via the corresponding scale function. In the static version the
diffusion’s drift can be chosen at each point in [0,1], whereas in the dynamic version
we are only able to choose the drift at each point at the time of first visiting that
point. The dynamic version leads to a novel type of stochastic control problem.
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1. Introduction and problem motivation

1.1. Introduction. Suppose that Xµ is the diffusion on [0, 1] started at 0 and given
by

dXµ
t = σ(Xµ

t ) dBt + µ(Xµ
t ) dt on (0,1) (1.1)

with instantaneous reflection at 0 and 1 (see [14] or [10] for details). Where there is
no risk of confusion we omit the superscript µ.

Formally, we define Tx to be the first time that the diffusion reaches x, then we define
Γ = Γ(X), the commute time (between 0 and 1), by

Γ(X)
def
= inf {t > T1(X) : Xt = 0} .

The commute time is defined for random walks on graphs in [3]. The original commute
time identity (which we give later in (2.4)) was only discovered in 1989 and first
appeared in [5]

In this article, we consider the following problem (and several variants and generali-
sations):

Problem 1.1. Minimise the expected commute time E[ Γ ]; i.e. find

inf
µ
E[Γ(Xµ)],

where the infimum is taken over a suitably large class of drifts µ, to be specified in
more detail later.
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Given the symmetry of the problem it is tempting to hypothesise that the optimal
choice of µ is 0. We shall soon see that, in general, this is false, although it is true
when σ ≡ 1

We actually want to try and minimise Γ (and additive functionals of Xµ evaluated at
Γ) in as general a way as possible so we extend Problem 1.1 in the following ways:

Problem 1.2. Find

inf
µ
E
[∫ Γ

0

f(Xµ
t ) dt

]
,

for suitable positive functions f ;

and

Problem 1.3. Find

sup
µ

E
[
exp

(
−
∫ Γ

0

α(Xµ
t ) dt

)]
,

for suitable positive functions α.

Although we will prove more general versions it seems appropriate to give a prelimi-
nary statement of results in this context.

Theorem 1.4. Suppose that σ is a strictly positive function on [0, 1], that f is a
non-negative Borel-measurable function on [0, 1] and that, denoting Lebesgue measure
by λ , √

f

σ
∈ L1([0, 1], λ), (1.2)

then

inf
measurable µ

E
[∫ Γ

0

f(Xµ
t) dt

]
=

(∫ 1

0

√
2f(u)

σ2(u)
du

)2

.

If, in addition,
√

f
σ2 is continuously differentiable and strictly positive on (0,1), then

the optimal drift is µ̂ given by

µ̂ = −1

2

(
ln

√
f

σ2

)′
.

Theorem 1.5. Suppose that σ is a strictly positive function on [0, 1], that α is a
non-negative Borel-measurable function on [0, 1] and that

√
α

σ
∈ L1([0, 1], λ), (1.3)

then

sup
measurable µ

E
[
exp

(
−
∫ Γ

0

α(Xµ
t) dt

)]
= cosh

(∫ 1

0

√
2α(u)

σ2(u)
du

)−2

.

If, in addition,
√

α
σ2 is continuously differentiable and strictly positive on (0,1), then

the optimal drift is µ̂ given by

µ̂ = −1

2

(
ln

√
α

σ2

)′
.
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We will eventually solve the problems dynamically, i.e. we will solve the corresponding
stochastic control problems. However, we shall need to be careful about what these are
as the problem is essentially non-Markovian. Normally in stochastic control problems,
one can choose the drift of a controlled diffusion at each time point (see, e.g., [9]) but
this is not appropriate here. In this context, it is appropriate that the drift is ‘frozen’
once we have had to choose it for the first time. We shall formally model this in
section 4 .

1.2. Problem motivation. The problem gives a much simplified model for one aris-
ing in simulated tempering -a form of Markov Chain Monte Carlo (MCMC). Essen-
tially the level corresponds to the temperature in a “heat bath”. The idea is that when
simulating a draw from a highly multimodal distribution we use a reversible Markov
Process to move between low and high temperature states (and thus smear out the
modes temporarily) so that the Markov chain can then move around the statespace;
then at low temperature we sample from the true distribution (see [2]).

The rest of the paper is organised as follows. The next section introduces some
notation and preliminary results. Section 3 contains the static (generalised) versions
of Problem 1.2 and Problem 1.3. The dynamic versions are presented in Section 4.
Then, in Section 5, we solve the corresponding discrete statespace problems (in both
discrete and continuous time). Some examples are given in Section 6. We provide the
proofs of the main results in an appendix.

2. Notation and some general formulae

We need to define the set of admissible controls quite carefully and two approaches
suggest themselves: the first is to restrict controls to choosing the drift µ whilst
the second is to control the corresponding random scale function. In the interest of
generality, we adopt the second approach.

We assume the usual Markovian setup, so that each stochastic process lives on a
suitable filtered space (Ω,F , (Ft)t≥0), with the usual family of probability measures
(Px)x∈[0,1] corresponding to the possible initial values.

Let Xµ be the diffusion with instantaneous reflection as given in (1.1). Denote by sµ

the standardised scale function of Xµ and by mµ the corresponding speed measure.

Remark 2.1. Since Xµ is regular and reflection is instantaneous we have:

sµ(x) =

∫ x

0

exp

(
−2

∫ u

0

µ(t)

σ2(t)
dt

)
du,

mµ([0, x])
def
= mµ(x) = 2

∫ x

0

du

σ2(u)s′(u)
= 2

∫ x

0

exp
(

2
∫ u

0
µ(t)
σ2(t)

dt
)

σ2(u)
du,

(see [13]).

From now on, we shall consider the more general case where we only know that (drop-
ping the µ dependence) s and m are absolutely continuous with respect to Lebesgue
measure so that, denoting the respective Radon-Nikodym derivatives by s′ and m′ we
have

s′m′ =
2

σ2
λ-a.e.
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For such a pair we shall denote the corresponding diffusion by Xs. We underline that
we are only considering regular diffusions with “martingale part”

∫
σ dB or, more

precisely, diffusions X with scale functions s such that

ds(Xt) = s′(Xt)σ(Xt) dBt,

so that, for example, sticky points are excluded (see [7] for a description of driftless
sticky BM and its construction, see also [6] for other problems arising in solving
stochastic differential equations ).

Remark 2.2. Note that our assumptions do allow generalised drift: if s is the differ-
ence between two convex functions (which we will not necessarily assume) then

Xs
t = x+

∫ t

0

σ(Xs
u) dBu −

1

2

∫
R
Lat (X)

s′′(da)

s′−(a)
, (2.1)

where s′− denotes the left-hand derivative of s, s′′ denotes the signed measure induced
by s′− and Lat (X) denotes the local time at a developed by time t by X (see [13] Chapter
VI for details).

Definition 2.3. For each y ∈ [0, 1], we denote by φy the function

φy : x 7→ Ex
[∫ Ty

0

f(Xt) dt

]
,

where, as is usual, the subscript x denotes the initial value of X under the correspond-
ing law Px.

Theorem 2.4. For 0 ≤ x ≤ y, φy is given by

φy(x) =

∫ y

x

∫ v

u=0

f(u)m′(u)s′(v) du dv, (2.2)

while for 0 ≤ y ≤ x, φy is given by

φy(x) =

∫ x

y

∫ 1

u=v

f(u)m′(u)s′(v) du dv. (2.3)

In particular,

E0

[∫ Γ

0

f(Xs
t ) dt

]
=

∫ 1

0

∫ 1

0

f(u)m′(u)s′(v) du dv. (2.4)

Proof: This follows immediately from Proposition VII.3.10 of [13] on observing that,
with instantaneous reflection at the boundaries, the speed measure is continuous. �

We give similar formulae for the discounted problem:

Definition 2.5. We denote by ψy the function

ψy : x 7→ Ex
[
exp

(
−
∫ Ty

0

α(Xt) dt

)]
.

For each n, denote by In(x) the integral

In(x)
def
=

∫
0≤u1≤v1≤u2...≤vn≤x

α(u1) . . . α(un) dm(u1) . . . dm(un) ds(v1) . . . ds(vn),
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and by Ĩn(x) the integral

Ĩn(x)
def
=

∫
x≤v1≤u1≤v2...≤un≤1

α(u1) . . . α(un) dm(u1) . . . dm(un) ds(v1) . . . ds(vn),

with I0 = Ĩ0 ≡ 1. Define G and G̃ by

G(x)
def
=

∞∑
n=0

In(x) and G̃(x)
def
=

∞∑
n=0

Ĩn(x). (2.5)

Theorem 2.6. (i) Either ∫ 1

0

α(u) dm(u) <∞, (2.6)

or

E0

[
exp

(
−
∫ Γ

0

α(Xt) dt

)]
= 0,

in which case ∫ Γ

0

α(Xt) dt =∞ a.s.

(ii) Now suppose that (2.6) holds. Then, the sums in (2.5) are convergent and for
x ≤ y

ψy(x) =
G(x)

G(y)
,

while for x ≥ y

ψy(x) =
G̃(x)

G̃(y)
.

3. The static control problems

For now we will state and prove more general, but still non-dynamic versions of
Theorems 1.4 and 1.5.

We define our constrained control set as follows:

Definition 3.1. Given a fixed scale function s0 ∼ λ and C, a Borel subset of [0,1],
we define the constrained control set MC

s0
by

MC
s0

= { scale functions s : ds|C = ds0|C and s ∼ λ} . (3.1)

For each s ∈MC
s0

, the corresponding controlled diffusion Xs has scale function s and
speed measure m given by

m′ =
2

σ2s′
.

Theorem 3.2. For any scale function s ∼ λ, define the measure Is on ([0, 1],B([0, 1]))
by

Is(D)
def
=

∫
D

f(u)m(du) =

∫
D

2
f(u)

σ2(u)s′(u)
du

and the measure J by

J(D)
def
=

∫
D

√
2f(u)

σ2(u)
du,
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then, given a scale function s0,

inf
s∈MC

s0

E0

[∫ Γ

0

f(Xs
t ) dt

]
=

(√
s0(C)Is0(C) + J(Cc)

)2

.

The optimal choice of s is given by

s(dx) =

{
s0(dx) : on C√

s0(C)
Is0 (C)

√
2f(x)
σ2(x)

dx : on Cc

For the generalised version of the discounted case (Problem 1.3) we only deal with
constraints on s on [0, y].

Theorem 3.3. Assume that (2.6) holds and define

σ̃2(x)
def
=
σ2(x)

α(x)
.

(i) Let G be as in equation (A.8), so that (at least formally)

1

2
α

(
σ̃2s′

[
G′

s′

]′
− 2G

)
=

1

2
σ2G′′ + µG′ − αG = 0

and let G̃∗ satisfy the “adjoint equation”

1

2
α

([
σ̃2s′G̃∗′

]′
s′

− 2G̃∗

)
= 0,

with boundary conditions G̃∗(0) = 1 and G̃∗′(0) = 0, so that

G̃∗(x) = 1 +

∫ x

v=0

∫ v

u=0

2α(v)G̃∗(v)

σ2(v)s′(v)
s′(u) du dv (3.2)

= 1 +

∫ x

v=0

∫ v

u=0

α(v)G̃∗(v) dm(v) ds(u),

then G̃∗ is given by

G̃∗(x) =
∞∑
n=0

Ĩ∗n(x), (3.3)

where

Ĩ∗n(x)
def
=

∫
0≤u1≤v1≤...vn≤x

α(v1) . . . α(vn) ds(u1) . . . ds(un) dm(v1) . . . dm(vn). (3.4)

(ii) The optimal payoff for Problem 1.3 is given by

sup
s∈M[0,y]

s0

E0

[
exp

(
−
∫ Γ

0

α(Xs
t )dt

)]
= ψ̂(y),

where

ψ̂(y) =
(√

GG̃∗ coshF (y) +
√
σ̃2G′G̃∗′ sinhF (y)

)−2

,

with

F (y)
def
=

∫ 1

y

√
2 du

σ̃(u)
=

∫ 1

y

√
2α

σ2(u)
du.
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The payoff is attained by setting σ̃(x)s′(x) =
√

GG̃∗′

G′G̃∗
(y) for all x ≥ y > 0. If

y = 0, any constant value for σ̃(x)s′(x) will do.

Remark 3.4. We see that, in general, in both Theorems 3.2 and 3.3 the optimal
scale function has a discontinuous derivative. In the case where C = [0, y) there is
a discontinuity in s′ at y. This will correspond to partial reflection at y (as in skew
Brownian motion- see [13] or [10]) and will give rise to a singular drift – at least at
y.

Remark 3.5. We may easily extend Theorems 3.2 and 3.3 to the cases where f

or α vanishes on some of [0,1]. In the case where N
def
= {x : f(x) = 0} is non-

empty, observe first that the cost functional does not depend on the amount of time
the diffusion spends in N so that every value for ds|N which leaves the diffusion
recurrent will give the same expected cost. If λ(N) = 1 then the problem is trivial,
otherwise define the revised statespace E = [0, 1−λ(N)] and solve the problem on this

revised interval with the cost function f̃(x)
def
= f(g−1(x)) where

g : t 7→ λ([0, t] ∩N c)

and
g−1 : x 7→ inf{t : g(t) = x}.

This gives us a diffusion and scale function sE which minimises the cost functional on
E. Then we can extend this to a solution of the original problem by taking

ds = ds01N + ds̃1Nc ,

where ds0 is any finite measure equivalent to λ and ds̃ is the Lebesgue-Stiltjes measure
given by

s̃([0, t]) = sE([ 0, λ([0, t] ∩N c) ]) = sE(g(t)).

An exactly analogous method will work in the discounted problem.

4. The dynamic control problems

We now turn to the dynamic (generalised) versions of Problems 1.2 and 1.3.

A moment’s consideration shows that it is not appropriate to model the dynamic ver-
sion of the problem by allowing the drift to be chosen adaptively. If we were permitted
to do this then we could choose a very large positive drift until the diffusion reaches
1 and then a very large negative drift to force it back down to 0. The corresponding
optimal payoffs for Problems 1.2 and 1.3 would be 0 and 1 respectively. We choose,
instead, to consider the problem where the drift may be chosen dynamically at each
level, but only when the diffusion first reaches that level. Formally, reverting to the
finite drift setup, we are allowed to choose controls from the collectionM of adapted
processes µ with the constraint that

µt = µTXt , (4.1)

or continuing the generalised setup, to choose scale measures dynamically, in such a
way that s′(Xt) is adapted.

Although these are very non-standard control problems we are able to solve them –
mainly because we can exhibit an explicit solution– following the same control as in
the “static” case.
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Remark 4.1. Note that this last statement would not be true if our constraint was
not on the set [0, y]. To see this, consider the case where our constraint is on the set
[y, 1]. If the controlled diffusion starts at x > 0 then there is a positive probability that
it will not reach zero before hitting 1, in which case the drift will not have been chosen
at levels below IT1, the infimum on [0, T1]. Consequently, on the way down we can set
the drift to be very large and negative below IT1 Thus the optimal dynamic control will
achieve a strictly lower payoff than the optimal static one in this case. We do not
pursue this problem further here but intend to do so in a sequel.

As pointed out before, two approaches for the set of admissible controls are available:
the first is to restrict controls to choosing a drift with the property (4.1) whilst the
second is to allow suitable random scale functions.

Both approaches have their drawbacks: in the first case we know from Remark 3.4
that, in general, the optimal control will not be in this class, whilst, in the second,
it is not clear how large a class of random scale functions will be appropriate. In
the interests of ensuring that an optimal control exists, we again adopt the second
approach. From now on, we fix the Brownian Motion B on the filtered probability
space (Ω,F , (Ft)t≥0,P).

Definition 4.2. By an equivalent random scale function we mean a random measure
s belonging to the class M defined by

M def
=

{
random, finite Borel measure s on [0, 1] : s ∼ λ and (4.2)

there exists a martingale Y s with Y s
t =

∫ t

0

s′ ◦ s−1.σ ◦ s−1(Yu) dBu

}
.

For each s ∈M, we define the corresponding controlled process Xs by

Xs
t = s−1(Yt).

Remark 4.3. In general, the martingale constraint is both about existence of a solu-
tion to the corresponding stochastic differential equation and about imposing a suitable
progressive measurability condition on the random scale function.

We define our constrained control set as follows:

Definition 4.4. Given a fixed scale function s0 ∈ M and y > 0, we define the
constrained control set Ms0

y by

Ms0
y =

{
s ∈M : ds|[0,y) = ds0|[0,y)

}
. (4.3)

Remark 4.5. Note that M contains all deterministic equivalent scale functions. An
example of a random element of M when σ ≡ 1 is s, given by

ds|[0, 12) = dλ; ds(x)|[ 12 ,1] = 1 dλ 1(
T 1

2
(B)<1

) + exp

(
−2

(
x− 1

2

))
dλ 1(

T 1
2

(B)≥1

),
corresponding to Xs having drift 1 above level 1

2
if and only if it reaches that level

before time 1.

Theorem 4.6. For each s ∈M, let M s
t denote the running maximum of the controlled

process Xs. Then for each s0 ∈ M, the optimal payoff (or Bellman) process V s0
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defined by

V s0
t

def
= essinf

s∈Ms0

M
s0
t

E
[∫ Γ

0

f(Xs
t ) dt

∣∣∣Ft]
is given by

V s0
t = vt

def
=

{∫ t
0
f(Xs0

u ) du+ 2
(√

s0(M s0
t )Is0(M s0

t ) + J(M s0
t )
)2 − φXs0

t
(0) : for M s0

t < 1∫ t∧Γ

0
f(Xs0

u ) du+ φ0(Xs0
t∧Γ) : for M s0

t = 1,

(4.4)
(where φ is formally given by equations (2.2) and (2.3) with s = s0), and the optimal
control is to take

s′(x) =
s0(M s0

t )

Is0(M s0
t )

√
f(x)

σ(x)
for x ≥M s0

t . (4.5)

Theorem 4.7. The Bellman process for Problem 1.3 is given by

V s0
t

def
= esssup

s∈Ms0

M
s0
t

E
[
exp

(
−
∫ Γ

0

α(Xs0
t ) dt

) ∣∣∣Ft] = vt
def
= e−

∫ t
0 α(X

s0
u ) duψ(Xs0

t ,M
s0
t ),

where

ψ(x, y) =

{
G(x)ψ̂(y) if y < 1,

G̃(x) if y = 1;

and

ψ̂(y) =
(√

GG̃∗ coshF (y) +
√
σ̃2G′G̃∗′ sinhF (y)

)−2

,

(as in Theorem 3.3 (ii)) with

F (y)
def
=

∫ 1

y

du

σ̃(u)
.

The payoff is attained by setting

σ̃(x)s′(x) =

√
GG̃∗′

G′G̃∗
(M s0

t ) for all x ≥M s0
t . (4.6)

5. The discrete statespace case

5.1. Additive functional case. Suppose that X is a discrete-time birth and death
process on E = {0, . . . , N}, with transition matrix (P ) given by

Pn,n+1 = pn and 1− pn = qn = Pn,n−1 and pN = q0 = 0.

We define

wn
def
=

qn
pn

and

Wn =
n∏
k=1

wk,

with the usual convention that the empty product is 1. Note that s, given by

s(n)
def
=

n−1∑
k=0

Wk,



10 SAUL JACKA AND MA. ELENA HERNÁNDEZ-HERNÁNDEZ

is the discrete scale function in that s(0) = 0, s is strictly increasing on E and s(Xt)
is a martingale.

Remark 5.1. Note that when we choose pn or wn we are implicitly specifying s(n +
1) − s(n) so we shall denote this quantity by ∆s(n) and we shall denote by ds the

Lebesgue-Stiltjes measure on E def
= {0, 1, . . . , N − 1} given by

ds(x) = ∆s(x).

Let f be a positive function on E and define

f̃(n) =
1

2
(f(n) + f(n+ 1)) for 0 ≤ n ≤ N − 1.

Theorem 5.2. If we define

φy(x) = Ex

[
Ty−1∑
t=0

f(Xs0
t )

]
,

then for x ≤ y

φy(x) = f(x) + . . .+ f(y − 1) +

y−1∑
v=x

v−1∑
u=0

2f̃(u)Wv

Wu

, (5.1)

while for y ≤ x

φy(x) = f(y + 1) + . . .+ f(x) +
x−1∑
v=y

N−1∑
u=v+1

2f̃(u)Wv

Wu

. (5.2)

Proof: It is relatively easy to check that φ satisfies the linear recurrence

φ(x) = pxφ(x+ 1) + qxφ(x− 1) + f(x)

with the right boundary conditions. �

It follows from this that optimal payoffs are given by essentially the same formulae as
in the continuous case. Thus we now define the constrained control set MC

s0
by

MC
s0

= { scale functions s : ds|C = ds0|C }. (5.3)

Remark 5.3. By convention we shall always assume that 0 ∈ C since we cannot
control W0 and hence cannot control ∆s(0).

Theorem 5.4. For any scale function s, define the measure Is by

Is(D)
def
=
∑
k∈D

2f̃(k)

Wk

for D ⊆ E

and the measure J by

J(D)
def
=
∑
k∈D

√
2f̃(k) for D ⊆ E ,

then, given a scale function s0,

inf
s∈MC

s0

E0

[
Γ∑
0

f(Xs
t ) dt

]
=
(√

s0(C)Is0(C) + J(Cc)
)2

.
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The optimal choice of s is given by

∆s(x) = Wx =

W
0
x : on C,√
s0(C)
Is0 (C)

√
2f̃(x) : on Cc.

Remark 5.5. Note that all complements are taken with respect to E.

The dynamic problem translates in exactly the same way: we define the constrained
control set:

Ms0
y = {s : ds|{0,...,y−1} = ds0|{0,...,y−1}}, y ≥ 1,

then we have the following:

Theorem 5.6. For each s ∈M, let M s
t denote the running maximum of the controlled

process Xs. Then for each s0 ∈ M, the optimal payoff (or Bellman) process V s0,
defined by

V s0
t

def
= essinf

s∈Ms0

M
s0
t

E

[
Γ−1∑

0

f(Xs
t ) dt

∣∣∣Ft] ,
is given by

V s0
t = vt

def
=


t∑
0

f(Xs0
u ) + 2

(√
s0(M s0

t )Is0(M s0
t ) + J(M s0

t )
)2

− φXs0
t

(0) : for M s0
t < N

t∑
0

f(Xu)du+ φ0(Xs0
t ) : for M s0

t = N,

(5.4)
(where φ is formally given by equations (5.1) and (5.2) with s = s0), and the optimal
control is to take

W (x) =
s0(M s0

t )

Is0(M s0
t )

√
f̃(x) for x ≥M s0

t . (5.5)

5.2. The discounted problem. Suppose that for each x ∈ E , 0 ≤ rx ≤ 1, then
define

σ2
i

def
= (1− ri−1ri)

−1, with r−1 taken to be 1,

and σ(i1, i2, . . . , il)
def
=

l∏
m=1

σim . Now set

Ak(x) = {(u, v) : 0 ≤ u1 < v1 < . . . < vk < x},

Ãk(x) = {(u, v) : x ≤ v1 < u1 < . . . < uk < N}
and W σ

m = σmWm, where Wm is as before. Note that Ak and Ãk will be empty for
large values of k.

Theorem 5.7. For x ≤ y

Ex

[
Ty−1∏
t=0

rXs0
t

]
= rx . . . ry−1G(x)/G(y), (5.6)

where

G(x)
def
= 1 +

∞∑
k=1

∑
(u,v)∈Ak(x)

1

σ(u, v)

k∏
m=1

W σ
vm

W σ
um

,
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while for x ≥ y

Ex

[
Ty−1∏
t=0

rXs0
t

]
= ry+1 . . . rxG̃(x)/G̃(y), (5.7)

where

G̃(x)
def
= 1 +

∞∑
k=1

∑
(u,v)∈Ãk(x)

1

σ(u, v)

k∏
m=1

W σ
vm

W σ
um

.

Proof: Define dx = Ex
[
Tx+1−1∏
t=0

r(Xs0
t )

]
, then

dx = rx(px + qxdx−1dx).

Setting
rxtx/tx+1 = dx,

we see that
tx+1 = (1 + wx)tx − wxrxrx−1tx−1

or
tx+1 − tx − wx(tx − tx−1) = wx(1− rx−1rx)tx−1.

Substituting
tx = G(x)

it is easy to check that this is satisfied. Now boundary conditions give equation (5.6).
The proof of equation (5.7) is essentially the same. �

Now with this choice of σ we get same results as before:

Theorem 5.8. Suppose G and G̃ are as defined in Theorem 5.7: we set

G∗(x)
def
= 1 +

∞∑
k=1

∑
(u,v)∈A∗k(x)

1

σ(u, v)

k∏
m=1

W σ
vm

W σ
um

and

G̃∗(x)
def
= 1 +

∞∑
k=1

∑
(u,v)∈Ã∗k(x)

1

σ(u, v)

k∏
m=1

W σ
vm

W σ
um

,

where
A∗k(x) = {(u, v) : x ≤ u1 < v1 < . . . < vk < N}

and
Ã∗k(x) = {(u, v) : 0 ≤ v1 < u1 < . . . < uk < x}.

Then the optimal payoff to the discrete version of Problem 1.3 is given by

sup
s∈M{0,...y}

E0

[
S−1∏
t=0

rXs0
t

]
= ψ̂(y)

def
=

(√
G(y)G̃∗(y)

∑
n

F2n(y) +

√
∆G(y)(∆G̃∗)(y)

∑
n

F2n+1(y)

)2

,

where

Fk(y)
def
=

∑
y≤x1<...<xk<N

1

σ(x)
,

∆G(y)
def
=

∞∑
n=1

∑
0≤u1<v1<...<vn−1<un<y

1

σ(u, v)

W σ
v

W σ
u

,
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and

∆G̃∗(y)
def
=

∞∑
n=1

∑
0≤u1<v1<...<vn−1<un<y

1

σ(u, v)

W σ
u

W σ
v

.

Theorem 5.9. The Bellman process for the dynamic version of Problem 1.3 is given
by

V s
t =


( t−1∏
u=0

rXs
u

)
G(Xs

t )ψ̂(M s
t ) : if M s

t < N,( t−1∏
u=0

rXs
u

)
G̃(Xs

t ) : if M s
t = N.

5.3. Continuous-time and discrete-time with waiting. Now we consider the
cases where the birth and death process may wait in a state and where it forms a
continuous-time Markov chain.

By solving the problem in the generality of Theorems 5.4 to 5.9 we are are able to
deal with these two cases very easily. First, in the discrete-time case with waiting,
where

Pn,n−1 = qn; Pn,n = en; and Pn,n+1 = pn,

(we stress that we take the holding probabilities en to be fixed and not controllable)
we can condition on the first exit time from each state —so that we replace P by P ∗

given by

P ∗n,n−1 = q∗n
def
=

qn
1− en

; P ∗n,n = 0; and P ∗n,n+1 = p∗n
def
=

qn
1− en

.

Of course we must now modify the performance functional to allow for the time spent
waiting in a state. Thus for the additive case we must replace f by f ∗ given by

f ∗(n) =
f(n)

1− en
,

whilst in the multiplicative case we replace r by r∗ given by

r∗(n)
def
=

∞∑
t=0

etn(1− en)r(n)t+1 =
(1− en)r(n)

1− enr(n)
.

Then in the case of a continuous-time birth and death process with birth and death
rates of λn and µn, we obtain P as the transition matrix for the corresponding jump
chain — so Pn,n−1 = µn

λn+µn
and Pn,n+1 = λn

λn+µn
(see [8] or [14]). We allow for the

exponential holding times by setting

f ∗(n) =
f(n)

λn + µn
,

and

r∗(n) =
λn + µn

α(n) + λn + µn
.

Thus our results are still given by Theorems 5.4–5.9.
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6. Examples and some concluding remarks

We first consider the original time-minimisation problem with general σ.

Example 6.1. Suppose that f = 1 and we seek to solve Problem 1.2. Thus C = ∅
y = 0 and the optimal choice of s′ according to Theorem 3.2 is

s′ =

√
2

σ
.

Notice that it follows that (with this choice of scale function)

ds(Xs
t ) =

√
2 dBt,

and
E0[Γ] = s(1)2.

Example 6.2. If we extend the previous example by assuming that s is given on [0, y),
then we will still have s′ proportional to 1

σ
on [y, 1] and so on this interval s(Xs)will

behave like a multiple of Brownian Motion with partial reflection at y (at least if s′(y−)
exists).

Example 6.3. We now consider the additive functional case with general f . Then

from Theorem 3.2, the optimal choice of s′ is
√

2f
σ

. With this choice of s, we see that

〈 s(Xs) 〉t =

∫ t

0

f(Xs
u) du,

so that

E0

[∫ Γ

0

f(Xs
u)du

]
= E[ 〈 s(Xs) 〉Γ ].

Example 6.4. If we turn now to the discounted case and take α constant and σ = 1,
we see that the optimal choice of s′ is constant, corresponding to zero drift. Thus we
obtain the same optimal control for each α. This suggests that possibly, the optimum
is actually a stochastic minimum for the commute time. Whilst we cannot contradict
this for initial position 0, the corresponding statement for a general starting position
is false.

To see this let s0 correspond to drift 1 on [0, y]. Then a simple calculation shows that

the optimal choice of s′ on [y, 1] is
√

2α

√
cosh(

√
1+2αy)+ 1√

1+2α
sinh(

√
1+2αy)

cosh(
√

1+2αy)− 1√
1+2α

sinh(
√

1+2αy)
. It is clear

that this choice depends on α and hence there cannot be a stochastic minimum since,
were one to exist, it would achieve the minimum in each discounted problem.

Remark 6.5. For cases where a stochastic minimum is attained in a control problem
see, for example, [11] or [4].
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Appendix A. Proofs

We require the following auxiliary result.

Lemma A.1. Let

B(y)
def
=

∫ y

0

α(u) dm(u) and B̃(y)
def
=

∫ 1

y

α(u) dm(u),

then

In(x) ≤ (s(x)B(x))n

(n!)2
and Ĩn(x) ≤ (s̃(x)B̃(x))n

(n!)2
, (A.1)

where

s̃(x)
def
= s(1)− s(x).

Proof:

We establish the first inequality in (A.1) by induction. The initial inequality is trivially
satisfied. It is obvious from the definition that

In+1(x) =

∫ x

v=0

∫ v

u=0

α(u)In(u) dm(u) ds(v),
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and so, assuming that In(·) ≤ (s(·)B(·))n
(n!)2

:

In+1(x) ≤
x∫

v=0

v∫
u=0

α(u)
s(u)nB(u)n

(n!)2
dm(u) ds(v) (A.2)

≤
x∫

v=0

v∫
u=0

α(u)
B(u)n

(n!)2
dm(u)s(v)n ds(v) (since s is increasing)

=

x∫
v=0

B(v)n+1

n!(n+ 1)!
s(v)n ds(v)

≤ B(x)n+1

n!(n+ 1)!

x∫
v=0

s(v)n ds(v) (since B is increasing)

=
(s(x)B(x))n+1

((n+ 1)!)2
,

establishing the inductive step. A similar argument establishes the second inequality
in (A.1). �

Proof: (of Theorem 2.6)

(i) Note first that s(1) <∞ follows from regularity.
We consider the case where x ≤ y. Now suppose that α is bounded. It

follows that ψy > 0 for each y since
∫ Ty

0
α(Xu) du is a.s. finite for bounded α.

Now, setting Nt = exp
(
−
∫ t∧Ty

0
α(Xu) du

)
ψy(Xt∧Ty), it is clear that

Nt = E

[
exp

(
−
∫ t∧Ty

0

α(Xu) du

) ∣∣∣Ft∧Ty]
and is thus a continuous martingale. Then, writing

ψy(Xt∧Ty) = exp

(∫ t∧Ty

0

α(Xu) du

)
Nt,

it follows that

ψy(Xt∧Ty)−
∫ t∧Ty

0

αψ(Xu) du =

∫ t

0

exp

(∫ u∧Ty

0

α(Xr) dr

)
dNu,

and hence is a martingale. Thus we conclude that ψy is in the domain of Ay,
the extended or martingale generator for the stopped diffusion XTy , and

Ayψy = αψy.

Since the speed and scale measures for X and XTy coincide on [0, y] and using
the fact that ψ′y(0) = 0, we conclude from Theorem VII.3.12 of [13] that

ψy(x) = ψy(0) +

∫ x

v=0

∫ v

u=0

s′(v)α(u)ψy(u)m′(u) du dv for x < y. (A.3)

A similar argument establishes that

ψy(x) = ψy(1) +

∫ 1

v=x

∫ 1

u=v

s′(v)α(u)ψy(u)m′(u) du dv for x > y. (A.4)
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Now either

min(ψ1(0), ψ0(1)) = 0,

in which case

E0

[
exp

(
−
∫ Γ

0

α(Xt) dt

)]
= ψ1(0)ψ0(1) = 0,

or

min(ψ1(0), ψ0(1)) = c > 0. (A.5)

Suppose that (A.5) holds, then (since ψ1 is increasing) it follows from (A.3)
that

ψ1(1−) ≥ c+

∫ 1

v=0

∫ v

u=0

s′(v)cα(u)m′(u) du dv (A.6)

= c

(
1 +

∫ 1

u=0

∫ 1

v=u

s′(v)α(u)m′(u) du dv

)
≥ c

(
1 +

[
s(1)− s

(
1

2

)]∫ 1
2

0

α(u)m′(u) du

)
.

Similarly, we deduce that

ψ0(0+) ≥ c

(
1 + s

(
1

2

)∫ 1

1
2

α(u)m′(u) du

)
.

Thus, if (2.6) fails, (A.5) cannot hold (since if (2.6) fails then at least one

of
∫ 1

2

0
α(u)m′(u) du) and

∫ 1
1
2
α(u)m′(u) du) is infinite) and so we must have

ψ1(0)ψ0(1) = 0.
To deal with unbounded α, take a monotone, positive sequence αn increasing

to α and take limits.
(ii) Suppose now that (2.6) holds. Setting

G(x) =
ψ1(x)

ψ1(0)
,

we see that G satisfies equation (A.3) with G(0) = 1.
Convergence of the series

∑
In and

∑
Ĩn follows from the bounds on In and

Ĩn given in Lemma A.1
Now by iterating equation (A.3) we obtain

G(x) =
n−1∑
k=0

Ik(x)

+

∫
0≤u1≤v1≤u2...≤vn≤x

α(u1) . . . α(un)G(un) dm(u1) . . . dm(un) ds(v1) . . . ds(vn).

Since G is bounded by 1
ψ1(0)

we see that

0 ≤ G(x)−
n−1∑
k=0

Ik(x) ≤ 1

ψ1(0)
In(x).
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A similar argument establishes that

0 ≤ G̃(x)−
n−1∑
k=0

Ĩk(x) ≤ 1

ψ0(1)
Ĩn(x),

and so we obtain (2.5) by taking limits as n→∞. �

Proof: (of Theorem 3.2) Note first that, from Theorem 2.4,

E0

[∫ Γ

0

f(Xs
t ) dt

]
= φ1(0) + φ0(1) =

1∫
v=0

1∫
u=0

f(u)s(dv)m(du)

= s0(C)Is0(C) +

∫
Cc

[Is0(C)s(dv) + s(C)f(v)m(dv)]

+
1

2

∫
Cc

∫
Cc

[f(u)s(dv)m(du) + f(v)m(dv)s(du)], (A.7)

where the factor 1
2

in the last term in (A.7) arises from the fact that we have sym-
metrised the integrand. Now, for s ∈MC

s0
, we can rewrite (A.7) as

E0

[∫ Γ

0

f(Xt)dt

]
= s0(C)Is0(C) +

∫
Cc

[
Is0(C)s′(v) + s0(C) 2f(v)

σ2(v)s′(v)

]
dv

+ 1
2

∫
Cc

∫
Cc

[
2f(u)
σ2(u)

s′(v)
s′(u)

+ 2f(v)
σ2(v)

s′(u)
s′(v)

]
du dv. (A.8)

We now utilise the very elementary fact that for a, b ≥ 0,

inf
x>0

[
ax+

b

x

]
= 2ab and if a, b > 0 this is attained at x =

√
b

a
. (A.9)

Applying this to the third term on the right-hand-side of (A.8), we see from (A.9)

that it is bounded below by
∫
Cc

∫
Cc

√
4f(u)f(v)
σ2(u)σ2(v)

du dv =
(∫

Cc

√
2f(u)
σ2(u)

du
)2

= J2(Cc) and

this bound is attained when s′(x) is a constant multiple of
√

2f(x)
σ2(x)

a.e. on Cc.

Turning to the second term in (A.8) we see from (A.9) that it is bounded below

by
∫
Cc

2
√
s0(C)Is0(C)

√
2f(v)
σ2(v)

dv = 2
√
s0(C)Is0(C)J(Cc) and this is attained when

s′(x) =
√

2f(x)
σ2(x)

√
s0(C)
Is0 (C)

a.e. on Cc.

Thus, we see that the infimum of the RHS of (A.8) is attained by setting s′(x) equal

to
√

s0(C)
Is0 (C)

√
2f(x)
σ2(x)

on Cc and this gives the stated value for the infimum. �

Proof: (of Theorem 3.3)

(i) This is proved in the same way as equation (2.5) in Theorem 2.6.
(ii) First we define

I∗n(x)
def
=

∫
x≤u1≤v1≤...vn≤1

α(v1) . . . α(vn) ds(u1) . . . ds(un) dm(v1) . . . dm(vn); (A.10)
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and

G∗(x)
def
=

∞∑
n=0

I∗n(x). (A.11)

To prove (ii) we use the following representations (which the reader may easily
verify):

In(1) =
n∑

m=0

Im(y)I∗n−m(y)− σ̃2(y)
n∑

m=1

I ′m(y)(I∗n−m)′(y), (A.12)

and

Ĩn(0) =
n∑

m=0

Ĩm(y)Ĩ∗n−m(y)− σ̃2(y)
n∑

m=1

Ĩ ′m(y)(Ĩ∗n−m)′(y) (A.13)

It follows from these equations that

E0

[
exp

(
−
∫ Γ

0

α(Xt) dt

)]
(A.14)

=
[
G(y)G∗(y)− σ̃2(y)G′(y)(G∗)′(y)

][
G̃(y)G̃∗(y)− σ̃2(y)G̃′(y)(G̃∗)′(y)

]
.

Now essentially the same argument as in the proof of Theorem 3.2 will work
as follows. Multiplying out the expression on the RHS of (A.14) we obtain the
sum of the three terms:
(a) 1

2
G(y)G̃∗(y)

∑
m≥0,n≥0

[Ĩn(y)I∗m(y) + Ĩm(y)I∗n(y)]

(b) 1
2
G′(y)(̃G∗)′(y)

∑
m≥0,n≥0

[Ĩ ′n(y)(I∗m)′(y) + Ĩ ′m(y)(I∗n)′(y)] ; and

(c)
∑

m≥1,n≥0

[G(y)(G̃∗)′(y)I∗n(y)Ĩ ′m(y) +G′(y)G̃∗(y)(I∗m)′(y)Ĩn(y)],

where in the first two terms we have symmetrised the sums.
Using (2.5), the sum in (c) becomes∑

m≥1,n≥0

∫
Dm,n(y)

[
G(y)(G̃∗)′(y)

t′(v1) . . . t′(vn)t′(w1) . . . t′(wm)

t′(u1) . . . t′(un)t′(z1) . . . t′(zm−1)
(A.15)

+ G′(y)G̃∗(y)
t′(u1) . . . t′(un)t′(z1) . . . t′(zm−1)

t′(v1) . . . t′(vn)t′(w1) . . . t′(wm)

]
dλ̃(u, v, w, z),

where

Dm,n(x) = {(u, v, w, z) ∈ Rn × Rn × Rm × Rm−1 : x ≤ u1 ≤ v1 ≤ . . . vn ≤ 1;

and x ≤ w1 ≤ z1 ≤ . . . wm ≤ 1},

t is the measure with Radon-Nikodym derivative t′ = σ̃s′, and λ̃ denotes the
measure with Radon-Nikodym derivative 1

σ̃
. Clearly each term in the sum in

(A.15) is minimised by taking t′ constant and equal to
√

G(y)G̃∗′(y)

G′(y)G̃∗(y)
a.e. on

[y, 1].
The first two terms, (a) and (b), are each minimised by taking t′ constant

a.e. on [y, 1]. Substituting this value for t′ back in we obtain the result.

�
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Proof: (of Theorem 4.6) Consider the candidate Bellman process vt. Using the fact
that

Nt
def
=

∫ t∧T1

0

f(Xs0
u ) du− φXs0

t∧T1
(0) = E

[∫ T1

0

f(Xs0
u ) du|Ft∧T1

]
(A.16)

is a martingale,

N ′t
def
= φ0(Xs0

t ) +

∫ t

0

f(Xs0
u ) du (A.17)

is equal to E
[∫ Γ

0
f(Xs0

u ) du
∣∣Ft] on the stochastic interval [[T1,Γ]], and hence is a

martingale on that interval, M s0 is a continuous, increasing process, and φ1(0) +
φ0(1) = 2s0(1)Is0(1) (so that v is continuous at T1(Xs0)):

dvt = 4

(√
s0(M s0

t )Is0(M s0
t ) + J(M s0

t )

)
×
[

1

2
s′0(M s0

t )

√
Is0(M s0

t )

s0(M s0
t )

+
1

2
(Is0)′(M s0

t )

√
s0(M s0

t )

Is0(M s0
t )
−

√
2f(M s0

t )

σ2(M s0
t )

]
dM s0

t

+ dNt1(M
s0
t <1) + dN ′t1(M

s0
t =1)

= 4

(√
s0(M s0

t )Is0(M s0
t ) + J(M s0

t )

)
×

[
1

2

(
s′(M s0

t )

√
Is0(M s0

t )

s0(M s0
t )

+
1

s′(M s0
t )

2f(M s0
t )

σ2(M s0
t )

√
s0(M s0

t )

Is0(M s0
t )

)
−

√
2f(M s0

t )

σ2(M s0
t )

]
dM s0

t

+ dNt1(M
s0
t <1) + dN ′t1(M

s0
t =1).

Now, since s0, Is0 and J are non-negative it follows from (A.9) that

dvt ≥ dN̄t,

where

dN̄t = dNt1(M
s0
t <1) + dN ′t1(M

s0
t =1),

with equality if

s′(M s0
t ) =

√
2s0(M s0

t )f(M s0
t )

Is0(M s0
t )σ2(M s0

t )
. (A.18)

Then the usual submartingale argument (see, for example [12] Chapter 11), together
with the fact that v is bounded by assumption (1.2) gives us (4.4).

It is easy to check that s given by (A.18) is in Ms0
M
s0
t

. The fact that the optimal

choice of s satisfies (4.5) follows on substituting s′(x) =
√

s0(y)f(x)
Is0 (y)σ2(x)

in the formulae

for s and Is and observing that the ratio s0(x)
Is0 (x)

is then constant on [y, 1]. �

Proof: (of Theorem 4.7) The proof is very similar to that of Theorem 4.6. Note
that ψ is continuous at the point (1, 1).
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Thus, for a suitable bounded martingale n,

dvt = exp

(
−
∫ t

0

α(Xs0
u ) du

)
ψy(X

s0
t ,M

s0
t ) dM s0

t 1(M
s0
t <1) + dnt

= exp

(
−
∫ t

0

α(Xs0
u ) du

)
G(Xs0

t )ψ′(M s0
t )1(M

s0
t <1) + dnt

= −2 exp

(
−
∫ t

0

α(Xs0
u ) du

)
G(Xs0

t )
(√

GG̃∗ coshF (M s0
t ) +

√
σ̃2G′G̃∗′ sinhF (M s0

t )
)−3

×
[[(√

GG̃∗
)′
−
√
G′G̃∗′

]
coshF (M s0

t ) +
(√

σ̃2G′G̃∗′
)′
−
√
σ̃2GG̃∗ sinhF (M s0

t )

]
+ dnt.

Now (√
GG̃∗

)′
=

1

2
G̃∗′
√

G

G̃∗
+

1

2
G′

√
G̃∗

G
≥
√
G′G̃∗′ using (A.9),

with equality attained when √
G′G̃∗′ =

√
GG̃∗. (A.19)

Similarly, defining mα by setting dmα = dm
α

,

(√
σ̃2G′G̃∗′

)′
=

(√
(
G′

s′
)(σ̃2G̃∗′

)′
=

√dG

ds

dG̃∗

dmα

′

=
1

2
(mα)′

d2G

dmαds

√√√√ dG̃∗

dmα

dG
ds

+
1

2
s′

d2G̃∗

ds dmα

√√√√ dG
ds

dG̃∗

dmα

=
1

2

 1

σ̃2s′
d2G

dmα ds

√√√√ dG̃∗

dmα

dG
ds

+ s′
d2G̃∗

ds dmα

√√√√ dG
ds

dG̃∗

dmα


=

1

2

 1

σ̃2s′
G

√√√√ dG̃∗

dmα

dG
ds

+ s′G̃∗

√√√√ dG
ds

dG̃∗

dmα


≥

√
GG̃∗

σ̃2
,

with equality when

s′ =
1

σ̃

√√√√G dG̃∗

dmα

G̃∗ dG
ds

. (A.20)

Now we can easily see (by writing dG
ds

= 1
s′
G′ and dG̃∗

dmα
= σ̃2s′G̃∗′) that (A.20) implies

(A.19) so the standard supermartingale argument establishes that

Vt = vt.

That the optimal choice of s′ is as given in (4.6) follows on observing that, with this
choice of s′,

(σ̃(G′G̃∗ −GG̃∗′))′(x) = 0 for x ≥ y,
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and
G′(y)G̃∗(y)−G(y)G̃∗′(y) = 0.
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