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Control and optimal (co-adapted) coupling are intimately
connected. In the talk I'll give 3 examples (if time permits).

Three problems

I Coupling regime switching di�usions

I Optimal coupling for the random walk on the hypercube

I Strong Feller property for (controlled) jump di�usions

Saul Jacka (and others), University of Warwick Coupling and Control
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Coupling regime switching di�usions

Given two regime-switching martingale dynamics:

dXt = σ1(Zt)dBt and dYt(V ) = σ2(Zt)dVt .

Here: Z and B are Ft-adapted; Z is an Ft-Markov process and B
is an Ft-Brownian motion. Seek to couple Y , by choosing a
suitable Ft-BM, V .

Conjecture: minimal coupling time attained by mirror-coupling:
i.e. take dVt = −sgn(σ1(Zt))sgn(σ2(Zt))dBt .

�Proof�: need only consider V of form

V c
t = V0 +

∫ t

0

ctdBt +

∫ t

0

√
1− c2t dWt

where W is BM indept of B and c is Ft-adapted process in [−1, 1].

Saul Jacka (and others), University of Warwick Coupling and Control
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Look at the distance process, Rc
t

def
= Xt − Y V c

t :

Rc
t = r +

∫ t

0

(σ1(Zt)− ctσ2(Zt))dBt −
∫ t

0

√
1− c2t σ2(Zt)dWt .

Look at R 's quadratic variation

Ac
t =

∫ t

0

((σ1(Zt)
2 − 2ctσ1(Zt)σ2(Zt) + σ22(Zt))dt

�Clearly�, the bigger the quadratic variation the faster R will hit 0
and the processes will couple. Largest qvn is attained by choice of c
above.

Conjecture is, in general, false even if we assume that Z and B are
independent!

Saul Jacka (and others), University of Warwick Coupling and Control
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However,

Theorem(a non-coupling result) if Z is an Ft-Markov chain then
Z is independent of any Ft-BM (and the conjecture is true since
the �proof� then works via stoch. control argument).

Proof Suppose that Z is an Ft Markov chain and W is an Ft-BM
with transition semigroup PW . If we can show that

E[f (ZT )g(WT )] = E[f (ZT )]E[g(WT )], (2)

for arbitrary bounded measurable, real-valued functions f and g ,
then ZT and WT are independent. Then extend argument to get
independence of �nite dimensional distributions.

To prove (2), de�ne

Mt = E[f (ZT )|Ft ] and Nt = E[g(WT )|Ft ].

Saul Jacka (and others), University of Warwick Coupling and Control
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If Z has transition semigroup PZ and Q−matrix Q and W has the
Brownian transition semigroup PW then Mt = PZ

T−t f (Zt) and

Nt = PW
T−tg(Wt) so that

dMt = ∆PZ
T−·f (Z·)t − QPZ

T−t f (Zt)dt and dNt = stdWt .

So M is a purely discontinuous martingale and N is a continuous
martingale so their co-variation [M,N] is identically zero.
Stochastic calculus now tells us that MN is a martingale. Hence

E[f (ZT )g(WT )] = E[MTNT ] = M0N0 = E[f (ZT )]E[g(WT )]

as required �

Saul Jacka (and others), University of Warwick Coupling and Control



Introduction
Coupling regime switching di�usions

Random walk on the hypercube
Strong Feller property

If Z has transition semigroup PZ and Q−matrix Q and W has the
Brownian transition semigroup PW then Mt = PZ

T−t f (Zt) and

Nt = PW
T−tg(Wt) so that

dMt = ∆PZ
T−·f (Z·)t − QPZ

T−t f (Zt)dt and dNt = stdWt .

So M is a purely discontinuous martingale and N is a continuous
martingale so their co-variation [M,N] is identically zero.
Stochastic calculus now tells us that MN is a martingale. Hence

E[f (ZT )g(WT )] = E[MTNT ] = M0N0 = E[f (ZT )]E[g(WT )]

as required �

Saul Jacka (and others), University of Warwick Coupling and Control



Introduction
Coupling regime switching di�usions

Random walk on the hypercube
Strong Feller property

Random walk on the hypercube

Label vertices of an n-dimensional hypercube by {0, 1}n.

A continuous-time random walk X on {0, 1}n may be de�ned using
a Poisson process Λ of rate n, at jumps of Λ choose uniformly a
coordinate i to change.

We want to couple two such random walks, X and Y , starting from
di�erent states. Denote matched coordinates by Mt and
unmatched coordinates by Ut .

Saul Jacka (and others), University of Warwick Coupling and Control
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A simple coupling technique given by Aldous:

I if X (i) �ips at time t, with i ∈ Mt , then also �ip coordinate
Y (i) at time t (matched coordinates move synchronously);

I if |Ut | > 1 and X (i) �ips at time t, with i ∈ Ut , also �ip
coordinate Y (j) at time t, where j is chosen uniformly from
Ut\ {i}�this reduces |Ut | by 2 ;

I else, if Ut = {i} contains only one element, allow coordinates
X (i) and Y (i) to evolve independently until �nal match is
made.

Saul Jacka (and others), University of Warwick Coupling and Control
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We search for best possible co-adapted coupling of X and Y .

Note that any co-adapted coupling (X c ,Y c) must satisfy following
three constraints:

I At any instant the number of jumps by the co-ordinates
process (X c ,Y c) cannot exceed two (one coordinate of X c

and one of Y c);

I All single and double jumps must have rates bounded above by
one;

I For all i = 1, . . . , n, the total rate at which X c(i) jumps must
equal one.

So, a general co-adapted coupling for X and Y can be de�ned by
(adapted, random) rates of coordinate pairs (i , j) �ipping, with
index 0 corresponding to no jump for relevant process, and sum of
rates being 1 for each co-ordinate.

Saul Jacka (and others), University of Warwick Coupling and Control
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Proposed optimal coupling strategy, ĉ , is as follows:

I Use Aldous coupling if Nt , the size of Ut , has an even number
of elements

I if Nt is odd, all unmatched coordinates of X and Y are made
to evolve independently until N becomes even.

The only di�erence from Aldous's coupling is ĉ seeks to restore
parity of N at the beginning.

It follows that τ ĉ , the coupling time
under ĉ , is the sum of independent exponential r.v.s:

τ ĉ = E2m + E2(m−1) + . . .+ E2 if N0 = 2m

and

τ ĉ = E2(2m+1) + E2m + E2(m−1) + . . .+ E2 if N0 = 2m + 1,

where Ek has rate k .

Saul Jacka (and others), University of Warwick Coupling and Control
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Now de�ne

v̂(x , y , t) = P [τ̂ > t |X0 = x , Y0 = y ] (1)

to be the tail of the coupling time distribution under ĉ .

Theorem

For any states x , y ∈ {0, 1}n and time t ≥ 0,

v̂(x , y , t) = inf
c∈C

P [τ c > t |X0 = x ,Y0 = y ] . (2)

In other words, τ̂ is the stochastic minimum of all co-adapted

coupling times for the pair (X ,Y ).

Saul Jacka (and others), University of Warwick Coupling and Control
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How do we prove this? For any coupling/control c , we construct
the Bellman process Sc

t = v̂(Xt ,Y
c
t ,T − t) and show that Sc is a

(bounded) submartingale. It follows that

P(τ ĉ > T ) = v̂(x , y ,T ) ≤ Sc
0 ≤ E[Sc

τ c∧T ] = P(τ c > T ).

How? We consider the dynamics of Sc :

dSc
t = dZ c

t +

(
Qct v̂ − ∂v̂

∂t

)
dt ,

where Z c is a martingale and Qc is the Q-matrix corresponding to
the switching rates.

So to show the result, since we know that S ĉ is a martingale we

need only show that d(c , ĉ, t)
def
= Qc v̂ − Q ĉ v̂ ≥ 0 for any c . Do

this by showing that Laplace transform of d is totally monotone.

Saul Jacka (and others), University of Warwick Coupling and Control
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need only show that d(c , ĉ, t)
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Strong Feller property

The problem is to construct a Markov process X with the following
attributes and then establish the strong Feller property:

I In between jumps, X should behave like the Ito di�usion Y ,
which satis�es

dYt = σ(Yt)dBt + µ(Yt)dt. (1)

I When at the point x ∈ Rd , X should have a jump intensity
measure ν(x , ·) so that, conditional on being at x , X has
jumps distributed as a compound Poisson process.

Saul Jacka (and others), University of Warwick Coupling and Control
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Assume that

I σ and µ are such that there is a unique (possibly explosive)
weak solution (i.e. in law) to (1).

I σ is locally uniformly elliptic and µ is locally bounded.

I ν is, locally, a �nite kernel i.e for each Borel A ⊂ Rd , ν(·,A) is
measurable and there is a sequence of compact Kn ↑ Rd such
that supx∈Kn

ν(x ,Rd) = rn <∞.

Saul Jacka (and others), University of Warwick Coupling and Control
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The construction is then fairly standard (although I've never seen
it) using Poisson thinning. Since we just kill the process on
explosion, we only need to construct up to the �rst exit from Kn for
any n, so wlog ν is bounded in total mass which is then 1 wlog.

Construct a unit rate PP, N.

I Construct Y solving (1), starting at X x
0

= x

I Then set X = Y prior to the �rst jump time J1 of N

I Generate a jump proposal, Z , with conditional distribution
ν(YJ1

,·)
ν(YJ1

,Rd )
.

I Accept the jump with probability ν(YJ1 ,Rd), setting
XJ1 = XJ1− + Z , and with probability 1− ν(YJ1 ,Rd) reject
the jump and leave X where it was.

I Now repeat starting at XJ1 , . . ..

Saul Jacka (and others), University of Warwick Coupling and Control
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Now we want to show that the semigroup for X , (Pt)t≥0 has the
property that Pt maps bounded, measurable functions to
continuous ones (for t > 0).

Coupling really helps here: if we can show that there is a coupling
of X x and X x ′ with coupling time τ and P(τ > t)→ 0 as x ′ → x
then, if |f | ≤ b,

|Pt f (x)−Pt f (x ′)| ≤ E[|f (X x
t −f (X x ′

t )|] ≤ 2bP(τ > t)→ 0 as x ′ → x .

Saul Jacka (and others), University of Warwick Coupling and Control
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Trick is to observe that jumps make no big di�erence to argument:
given t, δ > 0 take E s.t. E < t and P(J1 < E ≤ δ/2) then

P(τ(x , x ′) > t) ≤ P(τ(x , x ′) > E ) ≤ δ

2
+ P(τ̃(x , x ′) > E ),

where τ̃ is the coupling time for di�usions Y x and Y x ′ .

To couple these we need a further assumption: that σ and µ are
locally Lipschitz

I We can use re�ection coupling to do the job- so Y driven by
�B orthogonal to line joining Y x and Y x ′ and −B on line
joining Y x and Y x ′�.

I End up (after time-change) comparing distance between Y x

and Y x ′ to a Bessel process of dimension 1 + ε. Since this hits
zero, processes couple with high prob. (in small time) if start
close enough together and do so before exiting a ball (so local
assumption doesn't matter).

Saul Jacka (and others), University of Warwick Coupling and Control
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