Exact Approximation and Particle Filters

Adam M. Johansen et al.

Collaborators Include:

Arnaud Doucet, Axel Finke, Anthony Lee, Nick Whiteley

ERCIM 8th December 2014

Exact Approximation and Particle Filters Adam M. Johansen

Context & Outline

Filtering in State-Space Models:

- SIR Particle Filters [GSS93]
- Rao-Blackwellized Particle Filters [AD02, CL00]
- Block-Sampling Particle Filters [DBS06]

Exact Approximation of Monte Carlo Algorithms:

Particle MCMC [ADH10] and SMC² [CJP13]

Exact Approximation and Particle Filters:

- Approximated RBPFs [CSOL11] Exactly [JWD12]
- Hierarchical SMC [JD]
- Pseudomarginal State Augmentation: More of the SAME?

Particle MCMC

- MCMC algorithms which employ SMC proposals [ADH10]
- SMC algorithm as a collection of RVs
 - Values
 - Weights
 - Ancestral Lines
- Construct MCMC algorithms:
 - With many auxiliary variables
 - Exactly invariant for distribution on extended space
 - Standard MCMC arguments justify strategy
 - ▶ SMC² employs the same approach within an SMC setting.
- What else does this allow us to do with SMC?

Exact Approximation and Particle Filters Adam M. Johansen

THE UNIVERSITY OF

SMC Distributions

Formally gives rise to the SMC Distribution:

$$\psi_{n,L}^{M}\left(\overline{\mathbf{a}}_{n-L+2:n}, \overline{\mathbf{x}}_{n-L+1:n}, \overline{k}; x_{n-L}\right) = \left[\prod_{i=1}^{M} q\left(\overline{x}_{n-L+1}^{i} \middle| \overline{x}_{n-L}\right)\right] \prod_{p=n-L+2}^{n} \left[r(\overline{\mathbf{a}}_{p} \middle| \overline{\mathbf{w}}_{p-1}) \prod_{i=1}^{M} q\left(\overline{x}_{p}^{i} \middle| \overline{x}_{p-1}^{\overline{a}_{p}^{i}}\right)\right] r(\overline{k} \middle| \overline{\mathbf{w}}_{\mathbf{n}})$$

and the conditional SMC Distribution:

$$\begin{split} & \widetilde{\psi}_{n,L}^{M} \left(\widetilde{\mathbf{a}}_{n-L+2:n}^{\ominus k}, \widetilde{\mathbf{x}}_{n-L+1:n}^{\ominus k}; x_{n-L} \left| \left| \widetilde{b}_{n-L+1:n-1}^{k}, k, \widetilde{x}_{n-L+1:n}^{k} \right. \right) \right. \\ &= \frac{\psi_{n,L}^{M} (\widetilde{\mathbf{a}}_{n-L+2:n}, \widetilde{\mathbf{x}}_{n-L+1:n}, k; x_{n-L})}{q \left(\widetilde{x}_{n-L+1}^{\widetilde{b}_{n,n-L+1}^{k}} | x_{n-L} \right) \left[\prod_{p=n-L+2}^{n} r \left(\widetilde{b}_{n,p}^{k} | \widetilde{\mathbf{w}}_{\mathbf{p}-1} \right) q \left(\widetilde{x}_{p-1}^{\widetilde{b}_{n,p}^{k}} | \widetilde{x}_{p-1}^{\widetilde{b}_{n,p-1}^{n}} \right) \right] r(k | \widetilde{\mathbf{w}}_{n})} \end{split}$$

Exact Approximation and Particle Filters Adam M. Johansen

THE UNIVERSITY OF

A (Rather Broad) Class of Hidden Markov Models

- Unobserved Markov chain $\{(X_n, Z_n)\}$ transition f.
- Observed process $\{Y_n\}$ conditional density g.
- Density:

$$p(x_{1:n}, z_{1:n}, y_{1:n}) = f_1(x_1, z_1)g(y_1|x_1, z_1)\prod_{i=2}^n f(x_i, z_i|x_{i-1}, z_{i-1})g(y_i|x_i, z_i).$$

Exact Approximation and Particle Filters Adam M. Johansen

THE UNIVERSITY OF

Formal Solutions

Filtering and Prediction Recursions:

$$p(x_n, z_n | y_{1:n}) = \frac{p(x_n, z_n | y_{1:n-1})g(y_n | x_n, z_n)}{\int p(x'_n, z'_n | y_{1:n-1})g(y_n | x'_n, z'_n)d(x'_n, z'_n)}$$
$$p(x_{n+1}, z_{n+1} | y_{1:n}) = \int p(x_n, z_n | y_{1:n})f(x_{n+1}, z_{n+1} | x_n, z_n)d(x_n, z_n)$$

Smoothing:

 $p((x,z)_{1:n}|y_{1:n}) \propto p((x,z)_{1:n-1}|y_{1:n-1})f((x,z)_n|(x,z)_{n-1})g(y_n|(x,z)_n)$

A Simple SIR Filter

Algorithmically, at iteration n:

- \blacktriangleright Given $\{W_{n-1}^i, (X,Z)_{1:n-1}^i\}$ for $i=1,\ldots,N:$
- **Resample**, obtaining $\{\frac{1}{N}, (\widetilde{X}, \widetilde{Z})_{1:n-1}^i\}$.

$$\begin{array}{l} \bullet \quad \text{Sample } (X,Z)_n^i \sim q_n(\cdot | (\widetilde{X},\widetilde{Z})_{n-1}^i) \\ \bullet \quad \text{Weight } W_n^i \propto \frac{f((X,Z)_n^i | (\widetilde{X},\widetilde{Z})_{n-1}^i)g(y_n | (X,Z)_n^i)}{q_n((X,Z)_n^i | (\widetilde{X},\widetilde{Z})_{n-1}^i)} \\ \end{array}$$

Actually:

- Resample efficiently.
- Only resample when necessary.

▶ ...

A Rao-Blackwellized SIR Filter

Algorithmically, at iteration n:

- Given $\{W_{n-1}^{X,i}, (X_{1:n-1}^i, p(z_{1:n-1}|X_{1:n-1}^i, y_{1:n-1})\}$
- **Resample**, obtaining $\{\frac{1}{N}, (\widetilde{X}_{1:n-1}^{i}, p(z_{1:n-1} | \widetilde{X}_{1:n-1}^{i}, y_{1:n-1}))\}.$
- For $i = 1, \ldots, N$:
 - Sample $X_n^i \sim q_n(\cdot | \widetilde{X}_{n-1}^i)$
 - Set $X_{1:n}^i \leftarrow (X_{1:n-1}^i, X_n^i)$.
 - Weight $W_n^{X,i} \propto \frac{p(X_n^i, y_n | \tilde{X}_{n-1}^i)}{q_n(X_n^i | \tilde{X}_{n-1}^i)}$
 - Compute $p(z_{1:n}|y_{1:n}, X_{1:n}^i)$.

Requires analytically tractable substructure.

Exact Approximation and Particle Filters Adam M. Johansen

An Approximate Rao-Blackwellized SIR Filter

Algorithmically, at iteration n:

- Given $\{W_{n-1}^{X,i}, (X_{1:n-1}^i, \widehat{p}(z_{1:n-1}|X_{1:n-1}^i, y_{1:n-1})\}$
- **Resample**, obtaining $\{\frac{1}{N}, (\widetilde{X}_{1:n-1}^i, \widehat{p}(z_{1:n-1}|\widetilde{X}_{1:n-1}^i, y_{1:n-1}))\}.$
- For $i = 1, \ldots, N$:
 - Sample $X_n^i \sim q_n(\cdot | \widetilde{X}_{n-1}^i)$
 - Set $X_{1:n}^i \leftarrow (X_{1:n-1}^i, X_n^i)$.
 - Weight $W_n^{X,i} \propto \frac{\widehat{p}(X_n^i, y_n | \tilde{X}_{n-1}^i)}{q_n(X_n^i | \tilde{X}_{n-1}^i)}$
 - Compute $\widehat{p}(z_{1:n}|y_{1:n}, X_{1:n}^i)$.

Is approximate; how does error accumulate?

Exactly Approximated Rao-Blackwellized SIR Filter At time n = 1

- Sample, $X_1^i \sim q^x (\cdot | y_1)$.
- Sample, $Z_1^{i,j} \sim q^z \left(\cdot | X_1^i, y_1 \right)$.
- Compute and normalise the local weights

$$w_1^z \left(X_1^i, Z_1^{i,j} \right) := \frac{p(X_1^i, y_1, Z_1^{i,j})}{q^z \left(Z_1^{i,j} \middle| X_1^i, y_1 \right)}, W_1^{z,i,j} := \frac{w_1^z \left(X_1^i, Z_1^{i,j} \right)}{\sum_{k=1}^M w_1^z \left(X_1^i, Z_1^{i,k} \right)}$$

define
$$\widehat{p}(X_1^i, y_1) := \frac{1}{M} \sum_{j=1}^M w_1^z \left(X_1^i, Z_1^{i,j} \right)$$

Compute and normalise the top-level weights

$$w_1^x\left(X_1^i\right) := \frac{\widehat{p}(X_1^i, y_1)}{q^x\left(X_1^i | y_1\right)}, \ W_1^{x,i} := \frac{w_1^x\left(X_1^i\right)}{\sum_{k=1}^N w_1^x\left(X_1^k\right)}.$$

At times $n \ge 2$, resample and do essentially the same again.

Exact Approximation and Particle Filters Adam M. Johansen

THE UNIVERSITY OF

Introduction Approximating the RBPF Block Sampling Particle Filters References

1

. . \

Toy Example: Model

We use a simulated sequence of $100\ {\rm observations}$ from the model defined by the densities:

$$\mu(x_1, z_1) = \mathcal{N}\left(\begin{pmatrix} x_1 \\ z_1 \end{pmatrix}; \begin{pmatrix} 0 \\ 0 \end{pmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \right)$$
$$f(x_n, z_n | x_{n-1}, z_{n-1}) = \mathcal{N}\left(\begin{pmatrix} x_n \\ z_n \end{pmatrix}; \begin{pmatrix} x_{n-1} \\ z_{n-1} \end{pmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \right)$$
$$g(y_n | x_n, z_n) = \mathcal{N}\left(y_n; \begin{pmatrix} x_n \\ z_n \end{pmatrix}, \begin{bmatrix} \sigma_x^2 & 0 \\ 0 & \sigma_z^2 \end{bmatrix} \right)$$

Consider IMSE (relative to optimal filter) of filtering estimate of first coordinate marginals.

Exact Approximation and Particle Filters Adam M. Johansen

Approximation of the RBPF

Exact Approximation and Particle Filters Adam M. Johansen

THE UNIVERSITY OF

Computational Performance

Exact Approximation and Particle Filters Adam M. Johansen

THE UNIVERSITY OF

Computational Performance

Exact Approximation and Particle Filters Adam M. Johansen

What About Other HMMs / Algorithms?

Returning to:

- Unobserved Markov chain $\{X_n\}$ transition f.
- Observed process $\{Y_n\}$ conditional density g.

Density:

$$p(x_{1:n}, y_{1:n}) = f_1(x_1)g(y_1|x_1)\prod_{i=2}^n f(x_i|x_{i-1})g(y_i|x_i).$$

Exact Approximation and Particle Filters Adam M. Johansen

THE UNIVERSITY OF

Block Sampling: An Idealised Approach

At time n, given $x_{1:n-1}$; discard $x_{n-L+1:n-1}$:

- Sample from $q(x_{n-L+1:n}|x_{n-L}, y_{n-L+1:n})$.
- Weight with

$$W(x_{1:n}) = \frac{p(x_{1:n}|y_{1:n})}{p(x_{1:n-L}|y_{1:n-1})q(x_{n-L+1:n}|x_{n-L},y_{1:n-L+1:n})}$$

Optimally,

$$q(x_{n-L+1:n}|x_{n-L}, y_{n-L+1:n}) = p(x_{n-L+1:n}|x_{n-L}, y_{n-L+1:n})$$
$$W(x_{1:n}) \propto \frac{p(x_{1:n-L}|y_{1:n})}{p(x_{1:n-L}|y_{1:n-1})} = p(y_n|x_{1:n-L}, y_{n-L+1:n-1})$$

Typically intractable; auxiliary variable approach in [DBS06].

Exact Approximation and Particle Filters Adam M. Johansen

Local Particle Filtering: Current Trajectories

Exact Approximation and Particle Filters Adam M. Johansen

THE UNIVERSITY OF

Local Particle Filtering: PF Proposal

PF Step

Exact Approximation and Particle Filters Adam M. Johansen

THE UNIVERSITY OF

Local Particle Filtering: CPF Auxiliary Proposal

CPF Step

Exact Approximation and Particle Filters Adam M. Johansen

THE UNIVERSITY OF

Local SMC

- Not just a Random Weight Particle Filter.
- Propose from:

$$\mathcal{U}_{1:M}^{\otimes n-1}(b_{1:n-2},k)p(x_{1:n-1}|y_{1:n-1})\psi_{n,L}^{M}(\overline{\mathbf{a}}_{n-L+2:n},\overline{\mathbf{x}}_{n-L+1:n},\overline{k};x_{n-L}) \\ \widetilde{\psi}_{n-1,L-1}^{M}\left(\widetilde{\mathbf{a}}_{n-L+2:n-1}^{\ominus k},\widetilde{\mathbf{x}}_{n-L+1:n-1}^{\ominus k};x_{n-L}||b_{n-L+2:n-1},x_{n-L+1:n-1}|\right)$$

► Target:

$$\mathcal{U}_{1:M}^{\otimes n}(b_{1:n-L}, \bar{b}_{n,n-L+1:n-1}^{\bar{k}}, \bar{k})p(x_{1:n-L}, \bar{x}_{n-L+1:n}^{\bar{b}_{n,n-L+1:n}^{\bar{k}}}|y_{1:n})$$

$$\tilde{\psi}_{n,L}^{M}\left(\overline{\mathbf{a}}_{n-L+2:n}^{\ominus \bar{k}}, \overline{\mathbf{x}}_{n-L+1:n}^{\ominus \bar{k}}; x_{n-L} \middle| \left| \bar{b}_{n,n-L+1:n}^{\bar{k}}, \overline{x}_{n-L+1:n}^{\overline{b}_{n,n-L+1:n}^{\bar{k}}} \right. \right)$$

$$\psi_{n-1,L-1}^{M}\left(\widetilde{\mathbf{a}}_{n-L+2:n-1}, \widetilde{\mathbf{x}}_{n-L+1:n-1}, k; x_{n-L}\right).$$

• Weight:
$$\overline{Z}_{n-L+1:n}/\widetilde{Z}_{n-L+1:n-1}$$
.

Exact Approximation and Particle Filters Adam M. Johansen

Stochastic Volatility Bootstrap Local SMC

Model:

$$f(x_i|x_{i-1}) = \mathcal{N} \left(\phi x_{i-1}, \sigma^2 \right)$$
$$g(y_i|x_i) = \mathcal{N} \left(0, \beta^2 \exp(x_i) \right)$$

- Top Level:
 - Local SMC proposal.
 - Stratified resampling when ESS < N/2.
- Local SMC Proposal:
 - Proposal:

$$q(x_t|x_{t-1}, y_t) = f(x_t|x_{t-1})$$

Weighting:

$$W(x_{t-1}, x_t) \propto \frac{f(x_t | x_{t-1})g(y_t | x_t)}{f(x_t | x_{t-1})} = g(y_t | x_t)$$

Resample residually every iteration.

Exact Approximation and Particle Filters Adam M. Johansen

THE UNIVERSITY OF

SV Exchange Rata Data

Exact Approximation and Particle Filters Adam M. Johansen

THE UNIVERSITY OF

SV Bootstrap Local SMC: M=100

Exact Approximation and Particle Filters Adam M. Johansen

THE UNIVERSITY OF

SV Bootstrap Local SMC: M=1000

N = 100, M = 1000

Exact Approximation and Particle Filters Adam M. Johansen

THE UNIVERSITY OF

SV Bootstrap Local SMC: M=10000

Exact Approximation and Particle Filters Adam M. Johansen

THE UNIVERSITY OF

Some Heuristics

Recent calculations suggest that, under appropriate assumptions, at fixed cost $(2L-1) \cdot M \cdot N$:

- Optimal *L* is determined solely by the mixing of the HMM.
- Optimal M is a linear function of L.
- \blacktriangleright N can then be obtained from M, L and available budget.

In practice:

- L can be chosen using pilot runs,
- and M fine-tuned once L is chosen.

In Conclusion

- SMC can be used hierarchically.
- Software implementation is not difficult [Joh09, Zho13].
- The Rao-Blackwellized particle filter can be approximated exactly
- The optimal block-sampling particle filter can be approximated *exactly*
- Many other things are possible...

going beyond unbiased random weighting.

References I

- [AD02] C. Andrieu and A. Doucet. Particle filtering for partially observed Gaussian state space models. Journal of the Royal Statistical Society B, 64(4):827–836, 2002.
- [ADH10] C. Andrieu, A. Doucet, and R. Holenstein. Particle Markov chain Monte Carlo. Journal of the Royal Statistical Society B, 72(3):269–342, 2010.
- [CJP13] N. Chopin, P. Jacob, and O. Papaspiliopoulos. SMC²: an efficient algorithm for sequential analysis of state space models. *Journal of the Royal Statistical Society B*, 75(3):397–426, 2013.
- [CL00] R. Chen and J. S. Liu. Mixture Kalman filters. Journal of the Royal Statistical Society B, 62(3):493–508, 2000.
- [CSOL11] T. Chen, T. Schön, H. Ohlsson, and L. Ljung. Decentralized particle filter with arbitrary state decomposition. *IEEE Transactions on Signal Processing*, 59(2):465–478, February 2011.
 - [DBS06] A. Doucet, M. Briers, and S. Sénécal. Efficient block sampling strategies for sequential Monte Carlo methods. Journal of Computational and Graphical Statistics, 15(3):693–711, 2006.
 - [GSS93] N. J. Gordon, S. J. Salmond, and A. F. M. Smith. Novel approach to nonlinear/non-Gaussian Bayesian state estimation. *IEE Proceedings-F*, 140(2):107–113, April 1993.
 - [JD] A. M. Johansen and A. Doucet. The hierarchical particle filter. Unpublished Manuscript.
 - [Joh09] A. M. Johansen. SMCTC: Sequential Monte Carlo in C++. Journal of Statistical Software, 30(6):1–41, April 2009.
- [JWD12] A. M. Johansen, N. Whiteley, and A. Doucet. Exact approximation of Rao-Blackwellised particle filters. In Proceedings of 16th IFAC Symposium on Systems Identification, Brussels, Belgium, July 2012. IFAC, IFAC.
 - [Zho13] Y. Zhou. vSMC: Parallel sequential Monte Carlo in C++. Mathematics e-print 1306.5583, ArXiv, 2013.

Key Identity

$$=\frac{\psi_{n,L}^{M}(\mathbf{a}_{n-L+2:n},\mathbf{x}_{n-L+1:n},k;x_{n-L})}{p(x_{n-L+1:n}|x_{n-L},y_{n-L+1:n})\widetilde{\psi}_{n,L}^{M}(\mathbf{a}_{n-L+2:n}^{\ominus k},\mathbf{x}_{n-L+1:n}^{\ominus k},k;x_{n-L}||\dots)}$$

$$=\frac{q\left(x_{n-L+1}^{b_{n,n-L+1}^{k}}|x_{n-L}\right)\left[\prod_{p=n-L+2}^{n}r\left(b_{n,p}^{k}|\mathbf{w_{p-1}}\right)q\left(x_{p}^{b_{n,p}^{k}}|x_{p-1}^{b_{n,p-1}^{n}}\right)\right]r(k|\mathbf{w}_{n})}{p(x_{n-L+1:n}|x_{n-L},y_{n-L+1:n})}$$

$$=\widehat{Z}_{n-L+1:n}/p(y_{n-L+1:n}|x_{n-L})$$

Exact Approximation and Particle Filters Adam M. Johansen

