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2.0. Introduction

In this chapter we study endomorphisms, or linear operators, on semimodules
of functions that range in idempotent semirings. Here the specific nature of
idempotent analysis exhibits itself in the fact that each linear operator on
such a semimodule is an integral operator, that is, has the form

(Bh)(x) =
∫ ⊕

b(x, y)¯ h(y) dµ(y) = inf
y

(b(x, y)¯ h(y))

for some idempotent integral kernel b(x, y). In §2.1 we give necessary and suf-
ficient conditions for this function to specify a continuous operator. We give a
characterization of weak and strong convergence of operator families in terms
of kernels and then, in §2.2, we describe two important operator classes—
invertible and compact operators—in the same terms. Here another specific
feature of the semialgebra of idempotent linear operators is important—the
supply of invertible operators is very small; namely, the group of invertible
operators is generated by the diagonal operators and by the homomorphisms
of the base. Hence, this group consists of idempotent analogs of weighted
translation operators. It follows that all automorphisms of the operator semi-
algebra are inner automorphisms.

In §2.3 we investigate the eigenvector equation

Bh = λ¯ h = λ + h

for a compact linear operator B. Here one encounters another specific feature
of the idempotent situation: in contrast with the conventional linear the-
ory, the spectrum of a generic compact idempotent operator contains a single
eigenvalue. This makes it difficult to construct functional calculus of idempo-
tent operators. So far, we have no reasonable answers to the questions as to
when the root of an operator can be extracted or when an operator can be in-
cluded in a one-parameter semigroup. The latter question is rather important
in applied problems, since continuous operator semigroups can be studied by
the methods of theory of differential equations with the help of infinitesimal
generators, whereas the standard settings of optimization problems (say, in
mathematical economics) deal with separate operators rather than continuous
semigroups. Nevertheless, the unique eigenvalue of an idempotent operator
bears an important economical interpretation of the mean profit per step in
the multistep dynamic optimization problem specified by the corresponding
idempotent Bellman operator; the eigenvector defines stationary strategies
and, sometimes, turnpikes.

We give two proofs of the spectrum existence theorem and examine the
simplest situation in which one can prove that the eigenfunction is unique or
at least that the eigenspace is finite-dimensional. As a consequence, we obtain
asymptotic formulas describing the behavior of iterations of idempotent linear
operators and a criterion for convergence and finiteness of the Neumann series.
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In §2.4 we present the concept of infinite extremals recently proposed by
S. Yu. Yakovenko [?, ?] for deterministic control problems and based on the
spectral analysis of idempotent linear operators. In the end of §2.4, we discuss
the reduction of homogeneous models of economical dynamics (von Neumann–
Gale models) to the general dynamic optimization problem, thus defining
infinite extremals for these models. Then we discuss the projection turnpike
theory for these models. The iterates P k, k →∞, of usual matrices converge
to the projection on the eigenspace of P corresponding to the eigenvalue
highest in magnitude; quite similarly, in idempotent analysis the iterates Bkv,
k →∞, converge, under some nondegeneracy assumption, to the eigenvector h
of B (corresponding to the unique eigenvalue of B) and this fact is, in a sense,
equivalent to the turnpike theorem. This consideration reduces the turnpike
theory, well-known in mathematical economics, to a mere consequence of the
general results of idempotent analysis. To show how the method works, we
present a simple proof of the classical Radner turnpike theorem.

In the last section (§2.5) we start dealing with nonlinear idempotent anal-
ysis. Although the Bellman operator B that arises in the theory of controlled
Markov processes and stochastic games is apparently not linear in any semir-
ing with idempotent addition, it inherits the homogeneity with respect to the
generalized multiplication ¯ = + in the number semiring from the determin-
istic operator. Hence, the “eigenvector” equation Bh = λ¯ h = λ + h makes
sense in this case as well. Under quite general assumptions (the existence
of a class of related states), this equation is uniquely solvable, and the so-
lution determines stationary optimal strategies and turnpike control modes.
This provides a unified approach to the study of the properties of optimal
trajectories on an infinite time horizon for general controlled Markov jump
processes with discrete or continuous time, for stochastic multistep and dif-
ferential games, and for controlled quantum systems with observations. Just
as homogeneous models of economical dynamics can be reduced to the gen-
eral multistep optimization problem (§2.4), so stochastic homogeneous models
(stochastic Neumann–Gale models [?]) can be reduced to the general multi-
step stochastic optimization problem, which permits one to use the results of
§2.5 so as to prove turnpike theorems in these models. It also seems to be of
interest to apply this conception to the dynamic theory of market equilibrium,
for example, to multicurrency models such as those proposed in [?].

2.1. The General Form of Endomorphisms of the Space of Contin-
uous Functions Ranging in an Idempotent Semimodule. Weak and
Strong Convergence

In this section we study the general properties of A-linear continuous oper-
ators on (or homomorphisms of) semimodules C0(X), that is, of continuous
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mappings B:C0(Y ) → C0(X) such that

B(a¯ h⊕ c¯ g) = a¯B(h)⊕ c¯B(g)

for each a, c ∈ A and h, g ∈ C0(Y ).
Recall that A is the idempotent number semiring introduced in Exam-

ple I.1.1.
Throughout the section we assume that all topological spaces in question

are separable and locally compact. All notation to be used is introduced in
§1.4.

First, let us give a precise characterization of “integral kernels” of an op-
erator.

Theorem 2.1 Let B: C0(Y ) → C0(X) (respectively, B:C∞0 (Y ) → C∞0 (X))
be a continuous A-linear operator. Then

1. There exists a unique function b:X×Y → A lower semicontinuous with
respect to the second argument and such that

(Bh)(x) = inf
y

b(x, y)¯ h(y). (2.1)

2. The function b(x, y) is jointly lower semicontinuous in (x, y).
3. For any (x0, y0) ∈ X × Y and any ε > 0 there exist arbitrarily small

neighborhoods Ux0 ⊂ X of x0 and Uy0 ⊂ Y of y0 such that

sup
x∈Ux0

inf
y∈Uy0

b(x, y) < b(x0, y0) + ε.

4. For any compact set Ky ⊂ Y there exists a compact set Kx ⊂ X such
that b(x, y) = 0 (respectively, ρ(b(x, y), 0) < ε for any prescribed ε) whenever
x /∈ Kx and y ∈ Ky.

5. For the operator B:C∞0 (Y ) → C∞0 (X), the kernel b(x, y) is bounded on
X × Y (that is, b(x, y) ≥ M > −∞ everywhere).

Conversely, if b: X × Y → A possesses properties 1–5, then Eq. (2.1) spec-
ifies a continuous A-linear operator.

Proof. Necessity. Since for each fixed x the expression (Bh)(x) specifies a
continuous A-linear functional on C0(X) (respectively, on C∞0 (X)), it readily
follows from Theorem I.1.4 that B can be uniquely represented in the form
(2.1) with kernel b: X×Y → A lower semicontinuous in the second argument.
Moreover, b(x, y) = B(δy)(x) is the value of the continued operator B on the
δ-function

δy(z) =
{

1I for z = y,
0 for z 6= y.

Let us now prove assertions 2 and 3. To be definite, assume that b(x0, y0) 6= 0.
Since b(x, y) = B(δy)(x), it follows that for each ε > 0 there exist arbitrarily
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small neighborhoods Uy0 and Vy0 of the point y0 and a function h ∈ C0(Y )
such that y0 ∈ Vy0 ⊂ V y0 ⊂ U0, h ≡ 1I in V y0 , h ≥ 1I everywhere, supp0 h ⊂
Uy0 , and

b(x0, y0)− ε < Bh(x0) ≤ b(x0, y0). (2.2)

Then, obviously,

inf
y∈Uy0

b(x, y) ≤ inf
y∈Uy0

(b(x, y) + h(y)) = Bh(x) ≤ inf
y∈Vy0

b(x, y) (2.3)

for each x.
Furthermore, since the function Bh is continuous, it follows that there

exists an arbitrarily small neighborhood Ux0 ⊂ X of the point x0 such that
|Bh(x)−Bh(x0)| < ε for x ∈ Ux0 . Hence, inequalities (2.2) and (2.3) imply

inf
y∈Vy0

b(x, y) ≥ (Bh)(x) > (Bh)(x0)− ε > b(x0, y0)− 2ε,

inf
y∈Uy0

b(x, y) ≤ (Bh)(x) < (Bh)(x0) + ε ≤ b(x0, y0) + 2ε.

The last inequalities prove assertions 2 and 3.
Assertion 4 readily follows from the observation that the image of a function

h ∈ C0(Y ) identically equal to 1I on Ky is compactly supported (respectively,
tends to 0 at infinity).

The proof of assertion 5 for the operator B: C∞0 (Y ) → C∞0 (X) is by contra-
diction. Indeed, let the values b(xn, yn) converge to −∞ along some sequence
{(xn, yn)} ⊂ X × Y . Then there exists an increasing sequence an → +∞
such that bn(xn, yn) + an → −∞. Consider a function h ∈ C∞0 (Y ) such that
h(yn) = an for each n (to construct h, one must consider the closure of the se-
quence {yn} in the one-point compactification of Y and then apply Urysohn’s
continuation lemma). Then Bh /∈ C∞0 (X), which is a contradiction.

Sufficiency. Let us prove that if b is jointly lower semicontinuous, then the
operator B (2.1) takes lower semicontinuous functions with compact support
supp0 on Y to lower semicontinuous functions on X. The other assertions are
very easy to prove, and we omit them altogether.

Let supp0 h = K ⊂ Y , and let the functions b and h be lower semicontinu-
ous. Then

Bh(x0) = inf
y
{b(x0, y) + h(y)} = b(x0, y0) + h(y0)

for some y0. To be definite, assume that h(y0) 6= 0 and b(x0, y0) 6= 0. Since
K is compact, it follows that there exist finitely many points yj ∈ K, j =
0, . . . , m, neighborhoods Uj of yj such that

⋃
j Uj ⊃ K, and a neighborhood

V0 ⊂ X of x0 such that

b(x, y) + h(y) > b(x0, y0j) + h(y0j)− ε
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for any y ∈ Uj and any x ∈ V0. Then

Bh(x) = min
j

inf
y∈Uj

(b(x, y) + h(y)) > (Bh)(x0)− ε

for x ∈ V0. The theorem is proved.
The function b(x, y) in Eq. (2.1) specifying the operator B will naturally be

called the (idempotent) integral kernel of B, since Eq. (2.1) is an idempotent
analog of the standard integral representation

(Kh)(x) =
∫

k(x, y)h(y) dy

of usual linear operators in L2(X).
Let us derive a composition formula for integral kernels.
Let B: C0(Y ) → C0(Z) and D: C0(Z) → C0(X) be continuous A-linear

operators. Then the integral kernel d◦b of the product D◦B: C0(Y ) → C0(X)
can be expressed via the kernels d and b of D and B by the formula

d ◦ b(x, y) = inf
z

d(x, z)¯ b(z, y). (2.4)

Indeed,

D ◦B(h)(x) = inf
z

d(x, z)¯ (Bh)(z) = inf
z

d(x, z)¯ inf
y

(b(z, y)¯ h(y))

= inf
y

(
inf
z

d(x, z)¯ b(z, y)
)
¯ h(y),

and it remains to observe that the function (2.4) is lower semicontinuous in
the second argument.

Let us now present a criterion for strong convergence of an operator se-
quence.

Proposition 2.1 A sequence of A-linear continuous operators Bn:C0(Y ) →
C0(X) with integral kernels bn is strongly convergent to an operator B (that
is, limn→∞Bnh = Bh in the topology of C0(X) for each h ∈ C0(Y )) with
integral kernel b if and only if the following two conditions on the kernels are
satisfied.

(a) For any x0 ∈ X, y0 ∈ Y , and ε > 0, there exist arbitrarily small
neighborhoods U0 ⊂ X of x0 and V0 ⊂ Y of y0 and a number N such that
infy∈V0 bn(x, y) is ε-close to infy∈V0 b(x, y) in the metric ρ on A for any
x ∈ U0 and any n > N .

(b) For any compact set Ky ⊂ Y , there exists a compact set Kx ⊂ X such
that b and all bn are simultaneously equal to 0 for all x /∈ Kx and y ∈ Ky.

Proof. Necessity. Property (b) is quite obvious. Let us prove (a). We consider
only the case in which b(x0, y0) 6= 0. It follows from Theorem 2.1 that there
exist arbitrarily small neighborhoods U ⊂ X of x0 and V ⊂ Y of y0 such that

b(x0, y0)− ε < inf
y∈V

b(x, y) ≤ b(x0, y0) + ε (2.5)
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for any x ∈ U . Consequently, there exist embedded neighborhoods of y0 in Y ,

y0 ∈ V0 ⊂ V 0 ⊂ V1 ⊂ V 1 ⊂ V2,

and a neighborhood U0 of the point x0 ∈ X such that inequality (2.5) holds
for any x ∈ U0 and for each of the neighborhoods Vj , j = 0, 1, 2. Consider
a function h ∈ C0(Y ) such that supp0 h ⊂ V2, h ≡ 1I on V 1, and h ≥ 1I
everywhere. Then, starting from some number n, (Bnh)(x) differs from Bh(x)
at most by ε for all x ∈ U0. It follows that

inf
y∈V2

bn(x, y) ≤ (Bnh)(x) ≤ (Bh)(x) + ε

≤ inf
y∈V1

b(x, y) + ε ≤ b(x0, y0) + 2ε ≤ inf
y∈V2

b(x, y) + 3ε

and
inf

y∈V1
bn(x, y) ≥ (Bnh)(x) ≥ (Bh)(x)− ε

≥ inf b(x, y)− ε ≥ b(x0, y0)− 2ε ≥ inf
y∈V1

b(x, y)− 3ε.

Similarly, by considering the pair (V0, V1), we obtain the first of the preceding
inequalities for V1, and so for this neighborhood we have a two-sided inequal-
ity.

Sufficiency. Just as in the proof of sufficiency in Theorem I.4.3, in the
present case we find that for any h ∈ C0(Y ), x0 ∈ X, and ε > 0, there exists
a neighborhood U0 ⊂ X of x0 such that (Bnh)(x) is ε-close to (Bh)(x) in the
metric ρ on A for large n uniformly with respect to x ∈ U0. It remains to
use property (b), which says that

(⋃∞
n=1 supp0 Bnh

) ∪ supp0 Bh lies in some
compact subset of X. The theorem is proved.

Theorem I.4.4 readily implies a criterion for weak convergence of A-linear
operators. By analogy with the conventional functional analysis, we say that
a sequence Bn: C0(Y ) → C0(X) of A-linear operators is weakly convergent to
an operator B if for any h ∈ C0(Y ) and g ∈ C0(X) we have

lim
n→∞

〈Bnh, y〉A = 〈Bh, g〉A,

where the inner product 〈 , 〉A is defined in Eq. (I.4.4).

Proposition 2.2 A sequence of operators Bn with kernels bn is weakly con-
vergent to an operator B with kernel b if and only if the function sequence
bn: X×Y → A is weakly convergent to b:X×Y → A on the space C0(X×Y ).

Let us give two more propositions; we omit the elementary proofs.

Proposition 2.3 (a criterion for uniform convergence of an opera-
tor sequence Bn: C∞0 (Y ) → C∞0 (X), i.e., convergence in the metric of
the space of continuous mappings of metric spaces). The sequence Bn

is uniformly convergent to B if and only if the sequence of integral kernels
bn(x, y) is uniformly convergent to the integral kernel of B.
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Proposition 2.4 (idempotent analog of the Banach–Steinhaus the-
orem on uniform boundedness). Let {Bα : C∞0 (Y ) → C∞0 (X)} be an
operator family such that for each h ∈ C∞0 (Y ) the function family Bαh is
bounded, Bαh ≥ M > −∞ for all α. Then the family {bα} of their integral
kernels is also bounded, bα(x, y) ≥ M̃ > −∞ for all x, y, and α.

2.2. Invertible and Compact Operators

In this section we study two important classes of A-linear operators, namely,
invertible and compact operators.

Theorem 2.2 ([?, ?] (structure of invertible operators)) Let

B:C0(Y ) → C0(X) and D:C0(X) → C0(Y )

or
B:C∞0 (Y ) → C∞0 (X) and D:C∞0 (X) → C∞0 (Y )

be mutually inverse A-linear operators. Then there exists a homeomorphism
β:X → Y and continuous functions ϕ:X → A and ψ: Y → A nowhere as-
suming the value 0 such that ϕ(x)¯ ψ(β(x)) ≡ 1I and the operators B and D
are given by the formulas

(Bh)(x) = ϕ(x)¯ h(β(x)), (2.6)
(Dg)(y) = ψ(y)¯ g(β−1(y)). (2.7)

Proof. Theorem 2.1 and the composition law (2.4) permit us to write out the
condition that D and B are inverses of each other in the form of two equations
for the integral kernels b and d of B and D, respectively:

inf
y

b(x, y)¯ d(y, z) = b ◦ d(x, z) =
{

1I, x = z,
0, x 6= z,

inf
x

d(y, x)¯ b(x, t) = d ◦ b(y, t) =
{

1I, y = t,
0, y 6= t.

(2.8)

It readily follows that for each x ∈ X there exists a y(x) ∈ Y such that
b(x, y(x)) 6= 0 and d(y(x), x) 6= 0, and for each y ∈ Y there exists an x(y) ∈ X
such that d(y, x(y)) 6= 0 and b(x(y), y) 6= 0. Moreover, y(x) and x(y) are
uniquely determined, since the conditions y1 6= y2, d(yi, x) 6= 0 would imply
d ◦ b(yi, y(x)) 6= 0, i = 1, 2, which contradicts (2.8). Thus, there exists a
bijection β:X → Y such that b(x, y) 6= 0 ⇐⇒ d(y, x) 6= 0 ⇐⇒ y = β(x). It
is now obvious that, by virtue of Eq. (2.8), the functions ϕ(x) = b(x, β(x)) and
ψ(y) = d(y, β−1(y)) satisfy the identity ϕ(x)¯ψ(β(x)) ≡ 1I and Eqs. (2.6) and
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(2.7). The continuity of ϕ, ψ, and β can readily be proved by contradiction.
The theorem is proved.

Thus, each invertible operator is the composition of a diagonal operator
(i.e., multiplication by a function nowhere equal to 0) with a “change of vari-
ables.” Classical analogs of such operators are known as weighted translation
operators.

Corollary 2.1 If the topological semimodules C0(X) and C0(Y ) are homeo-
morphic, then so are the topological spaces X and Y (a similar fact is known
to be valid in conventional analysis).

Corollary 2.2 We say that an operator B: C0(X) → C0(X) is symmetric if
〈Bϕ, h〉A = 〈ϕ,Bh〉A for each ϕ, h ∈ C0(X). It is clear that B is symmetric
if and only if its integral kernel is symmetric. It follows from Theorem 2.2
that each invertible symmetric operator has the form

(Bh)(x) = ϕ(x)¯ h(β(x)),

where β = β−1:X → X is an involutive homeomorphism and ϕ(x) is a con-
tinuous function X → A such that ϕ(x) = ϕ(β(x)).

Corollary 2.3 We say that an invertible operator B is orthogonal if B−1 =
B′ is the adjoint of B with respect to the inner product on C0(X). Each
orthogonal operator on C0(X) is generated by a “change of variables” on X.

Corollary 2.4 If X is a finite set, X = {1, . . . , n}, then C(X,A) = An and
the operators An → An are represented by n×n matrices with entries in A. It
follows from Theorem 2.2 that there are “very few” invertible operators on An;
namely, these are the compositions of diagonal matrices with permutations of
the elements of the standard basis (see §1.1).

Remark 2.1 The study of the relationship between the properties of a topo-
logical space X and the properties of the linear space of continuous functions
on X is very important in general topology. The notion of linear equivalence
(l-equivalence) of topological spaces plays the central role in these studies.
Idempotent analysis gives rise to a natural analog of this notion. Let X be
a topological space, and let Cp(X,A) denote the semimodule of continuous
functions X → A equipped with the topology of pointwise convergence. We
say that X is linearly equivalent (l-equivalent) to a topological space Y in
the sense of the semiring A if the semimodules Cp(X, A) and Cp(Y, A) are
isomorphic (the semimodules Cp are introduced in the end of §1.3). In the
usual notion of l-equivalence, the semiring is the ring of real numbers. In that
case, the problem of finding general criteria for l-equivalence is rather deli-
cate. For example, it is worth noting that although any two compact sets with
isomorphic spaces of continuous functions are homeomorphic, l-equivalence of
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compact sets does not imply that they are homeomorphic (e.g., a closed in-
terval and a disjoint union of two closed intervals are equivalent). It turns out
that the situation is simpler if l-equivalence in the sense of a semiring with
idempotent addition is considered. Using Theorem I.3.6, we can generalize
Theorem 2.2 to the spaces Cp(X, A) so that if X and Y are completely regular
topological spaces, then they are l-equivalent in the sense of the semiring A
if and only if they are homeomorphic [?].

One more result following from Theorem 2.2 is that all automorphisms
of the operator semialgebra are inner automorphisms. More precisely, the
following theorem is valid.

Theorem 2.3 Any automorphism F (i.e., a homeomorphism preserving the
⊕-addition and the composition of operators) of the semialgebra of linear op-
erators on C0(X) takes an operator B with integral kernel b to the operator
F (B) with integral kernel Fb according to the formula

Fb(x, y) = ϕ(x)− ϕ(y) + b(β(x), β(y)), (2.9)

where β: X → X is a homeomorphism and ϕ: X → A \ {0} is a continuous
function. In other words,

FB = C ◦B ◦ C−1,

where C is an invertible operator, which is the composition of a diagonal
operator (the operator of ¯-multiplication by ϕ) with the operator induced by
a change of variables.

Proof. Since operators are in one-to-one correspondence with integral kernels,
that is, functions X×X → A, we can derive the general form of isomorphisms
of the semimodule of operators (neglecting the semialgebra structure deter-
mined by the composition of operators) from Theorem 2.2, which says that
such an isomorphism must have the form

b(x, y) → Fb(x, y) = ϕ̃(x, y)¯ b(β1(x, y), β2(x, y)), (2.10)

where β̃ = (β1, β2): X × X → X × X is a homeomorphism. (Rigorously
speaking, Theorem 2.2 does not apply directly to our case since the integral
kernels need not be continuous but are only lower semicontinuous. However,
by analyzing the proof of Theorem 2.2 and Theorem 2.1, one can observe
that the statement concerning the general form of invertible transformations
remains valid in this case.) Let hξ

n(x) be a δ-shaped sequence in C0(X), that
is, a sequence of continuous functions such that hξ

n(x) ≥ 1I for all x ∈ X,
hξ

n(ξ) = 1I, and supp0 hξ
n ⊂ Un(ξ), where {Un(ξ)} is a base of neighborhoods

of the point ξ (if X does not satisfy the first countability axiom, then such a
sequence may fail to exist, and we must take a net instead). Let ξ, η, and ζ
be arbitrary points in X. Consider the sequences

Bξ,η
n , Bη,ζ

n :C0(X) → C0(X)
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of idempotent operators with integral kernels

bξ,η
n (x, y) = hξ

n(x)¯ hη
n(y), bη,ζ

n (x, y) = hη
n(x)¯ hζ

n(y).

Then, by the composition formula, Bξ,η
n ◦ Bη,ζ

n = Bξ,ζ
n , that is, this operator

has the kernel

bξ,ζ
n (x, y) = hξ

n(x)¯ hζ
n(y).

Let us now apply Eq. (2.10) on both sides of the identity

FBξ,ζ
n = FBξ,η

n ◦ FBη,ζ
n

and pass to the limit as n →∞ pointwise. As a result, we obtain the identity

ϕ̃(x, y)¯ δξ
β1(x,y) ¯ δζ

β2(x,y) = inf
z

ϕ̃(x, z)¯ ϕ̃(z, y)¯ δξ
β1(x,z)

¯ δη
β2(x,z) ¯ δη

β1(z,y) ¯ δζ
β2(z,y),

(2.11)

where, as usual,

δx
y =

{
1I for x = y,
0 for x 6= y.

Set ξ = β1(x, y) and ζ = β2(x, y). Then the left-hand side in Eq. (2.11) is
ϕ̃(x, y) 6= 0. Thus, the right-hand side is also different from 0, and we find
that for each η there necessarily exists a z0 = z(x, y, η) such that

β1(x, z0) = β1(x, y) = ξ,

β2(z0, y) = β2(x, y) = ζ,

β1(z0, y) = β2(x, z0) = η.

(2.12)

Set η = ξ. Then the identities β1(z0, y) = ξ, β2(z0, y) = ζ and β1(x, y) = ξ,
β2(x, y) = ζ together with the fact that β̃ = (β1, β2) is a self-bijection of X×X
imply that z0 = z(x, y, ξ) = x. Using Eq. (2.12) in this case once more, we
find that β1(x, x) = β1(x, y), that is, β1(x, y) = β1(x) is independent of the
second argument. Similarly, by setting η = ζ in Eq. (2.11) we find that
β2(x, y) = β2(y) is independent of the first argument. Finally, it follows
from the last equation in (2.11) that β1(x) = β2(x) ∀x ∈ X. Thus, the
homeomorphism β̃ = (β1, β2) is the product of two identical homeomorphisms
of X, β̃(x, y) = (β(x), β(y)). Then it follows from Eq. (2.12) that

ϕ̃(x, y) = ϕ̃(x, z)¯ ϕ̃(z, y)

for z = β−1(η), that is, for an arbitrary z, since η is arbitrary. The last
functional equation implies that

ϕ̃(x, y) = ϕ(x)− ϕ(y)
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for some function ϕ: X → A \ {0}, and hence, Eq. (2.10) coincides with
Eq. (2.9), as desired. Theorem 2.3 is proved.

Invertible operators on C0(X) form a group. Operators B1 and B2 on
C0(X) are said to be conjugate if there exists an invertible A-linear operator
C such that B1 = C−1B2C. As is the case in conventional linear algebra,
by invariant properties or characteristics of an operator we mean properties
or characteristics that are the same for all conjugate operators. If invertible
operators are conceived of as “changes of variables” in C0(X), then conjugate
operators become just various “coordinate representations” of the same op-
erator. As in conventional analysis, the main invariant characteristic of an
operator is its spectrum, which is considered in the next section.

Another important class of operators is compact or completely continuous
operators.
Definition 2.1 A continuous A-linear operator B:C∞0 (Y ) → C∞0 (X) is said
to be compact, or completely continuous, if it carries each set bounded in the
metric to a precompact set.

For simplicity, in what follows we assume that X is a separable space, so
that its topology is determined by some metric d.

Theorem 2.4 ([?]) An operator B is compact if and only if its integral kernel
b(x, y) is equicontinuous in x with respect to y (that is, the condition

∀ ε > 0 ∃ δ > 0 : d(x1, x2) < δ =⇒ ∀ y ρ(b(x1, y), b(x2, y)) < ε

is satisfied) and tends to 0 at infinity uniformly with respect to y ∈ Y (that
is,

∀ ε > 0 ∃Kx ⊂ X : Kx is compact and ∀x /∈ Kx ∀ y ρ(b(x, y), 0) < ε).

The proof is based on the Arzela–Ascoli theorem, which can be stated as
follows for A-valued functions: a subset M ⊂ C∞0 (X) is precompact if and
only if it is uniformly bounded (ϕ(x) ≥ c > −∞ ∀ϕ ∈ M), equicontinuous,
and uniformly tends to 0 at infinity.

Here we only demonstrate the necessity of the first condition in Theorem
2.4; the remaining part of the proof is quite simple and we omit it altogether.
Suppose that this condition is violated. Then there exists an ε > 0, a sequence
δn → 0, and sequences {x1

n}, {x2
n} ⊂ X and {yn} ⊂ Y such that d(x1

n, x2
n) <

δn and

ρ(b(x1
n, yn), b(x2

n, yn)) > 2ε. (2.13)

It follows from the lower semicontinuity of b and y that there exists a
sequence of neighborhoods Un 3 yn in Y such that b(xi

n, y) > b(xi
n, yn) − εn

for y ∈ Un, i = 1, 2, where εn is an arbitrary positive sequence, εn → 0 (to
simplify the notation, we assume that the sequences b(xi

n, yn) are bounded
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away from zero). Furthermore, let us construct a sequence of continuous
functions hn ≥ 1, hn(yn) = 1I, with support supp0 hn ⊂ Un such that

b(xi
n, yn) ≥ (Bhn)(xi

n) ≥ b(xi
n, yn)− εn.

By choosing the sequence εn so that

ρ(b(xi
n, yn), b(xi

n, yn)− εn) < ε/2 for all n,

from the last estimate and from (2.13) we obtain

ρ((Bhn)(x1
n), (Bhn)(x2

n)) > ε. (2.14)

Since B is compact, it follows that there exists a subsequence {Bhnk
} con-

vergent to some v ∈ C∞0 (X); consequently, for large nk we have

ρ(Bhnk
(x1

nk
), Bhnk

(x2
nk

)) ≤ ρ(Bhnk
(x1

nk
), v(x1

nk
))

+ ρ(Bhnk
(x2

nk
), v(x2

nk
)) + ρ(v(x1

nk
), v(x2

nk
)) < ε,

which contradicts (2.14).

Corollary 2.5 Each compact operator B: C∞0 (Y ) → C∞0 (X) can be continued
to the space of all bounded A-valued functions on Y and takes this space to
C∞0 (X).

2.3. Spectra of Compact Operators and Dynamic Programming

The idea of using the spectral characteristics of A-linear operators for esti-
mating the behavior of their iterations, which arise in solving optimization
problems by Bellman’s dynamic programming and its various modifications,
goes back to V. I. Romanovskii [?, ?]. In [?, ?], methods of nonstandard anal-
ysis were used to obtain a spectrum existence theorem for integral operators
with continuous kernel nowhere equal to 0 acting on the space of continuous
functions from a compactum into an idempotent semiring with multiplication
¯ satisfying the cancellation law. Here we prove the spectrum existence theo-
rem for general compact A-linear operators on the spaces C∞0 (X) for the case
in which A is the number semiring.

We start from the classical Frobenius–Perron theorem in linear algebra,
since the proof of this theorem given below serves as a model for all other
proofs in this section.

Let Rn
+ be the nonnegative orthant in Rn, i.e., the set

Rn
+ = {v = (v1, . . . , vn) ∈ Rn : vj ≥ 0 ∀ j},

and let intRn
+ be the interior of Rn

+, i.e., the set of vectors all of whose
coordinates are positive.
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Theorem 2.5 (Frobenius–Perron) If M is a nondegenerate real n×n ma-
trix with nonnegative entries, then it has a positive eigenvalue λ with the corre-
sponding eigenvector v ∈ Rn

+. If all entries of M are positive, then v ∈ intRn
+

and the eigenvalue λ > 0 for which the corresponding eigenvector lies in intRn
+

is unique.

Proof. Let us consider the following equivalence relation on Rn
+: v ∼ w if and

only if v = λw for some λ > 0. Obviously, the quotient space K = [Rn
+\{0}]/∼

is homeomorphic to the standard simplex {v ∈ Rn
+ : v1 + · · ·+ vn = 1}. Since

M is nondegenerate and its entries are nonnegative, we have

M :Rn
+ \ {0} → Rn

+ \ {0},

and since M is linear, it follows that

M(λv) = λM(v) ∀ v ∈ Rn.

Thus, the quotient mapping M̃ : K → K is well defined and takes any ray
{λv, λ > 0} to the ray {λM(v), λ > 0}. By Brouwer’s theorem, M̃ has a
fixed point, which means that there exists a λ > 0 and a v ∈ Rn

+ \ {0} such
that Mv = λv. Now let all entries of M be positive. Then, obviously,

M :Rn
+ \ {0} → intRn

+,

whence it follows that v ∈ intRn
+. To prove the uniqueness, it is convenient to

consider the adjoint of M , which is specified by the transpose matrix M ′. Let
µ > 0 be a positive eigenvalue of M ′ with eigenvector y ∈ intRn

+. Obviously,
the inner product of any two vectors in intRn

+ is positive. Hence, the identities

λ(v, w) = (λv, w) = (Mv,w) = (v, M ′w) = (v, µw) = µ(v, w)

imply that λ = µ, whence the uniqueness follows.
Remark 2.2 Clearly, to prove that there exist λ > 0 and v ∈ Rn

+ \ {0} with
Mv = λv, it suffices to require M to be positively homogeneous in the cone
Rn

+, that is,

M(λv) = λM(v) ∀λ > 0, v ∈ Rn
+.

The additivity of M is nowhere used in the proof.
Let us return to idempotent analysis and begin with stating a theorem

on the spectra of A-linear operators on An; this theorem is actually a direct
corollary of the preceding assertion.

Theorem 2.6 Let B:An → An be a continuous A-linear mapping satisfying
the nondegeneracy condition B−1(0) = 0. (Here 0 ∈ An is the vector all of
whose coordinates are equal to 0. In the matrix form, this condition implies
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that each column of B contains at least one entry different from 0.) Then B
has an eigenvalue α ∈ A, α 6= 0, and an eigenvector v ∈ An \ {0} such that

B(v) = α¯ v = α + v.

If, moreover, B takes An \ {0} to (A \ {0})n, that is, all entries of B are
different from 0, then v ∈ (A \ {0})n and the eigenvalue α 6= 0 is unique.

Remark 2.3 If B is degenerate, then B obviously has an eigenvector with
eigenvalue 0.
Proof. The mapping

E: v = (v1, . . . , vn) 7→ Ev = (e−v1 , . . . , e−vn)

is an isometry of An onto Rn
+ (the norm on Rn

+ is assumed to be given by the
maximum of absolute values of the coordinates). This mapping transforms B
into the operator

M = E ◦B ◦ E−1:Rn
+ → Rn

+.

It is clear that the A-homogeneity condition for B,

B(λ¯ v) = λ¯B(v),

is equivalent to the usual positive homogeneity of M . Hence, the existence of
an eigenvalue of B follows from the Frobenius–Perron theorem (with regard to
Remark 2.2). The proof of uniqueness reproduces the corresponding argument
in the Frobenius–Perron theorem word for word; the only difference is that
instead of the usual Rn inner product, the A-bilinear product (I.1.4) is used
on An. The theorem is proved.

Let us now extend Theorem 2.6 to operators on general spaces C∞0 (X).
The proof scheme remains the same, but the choice of a representation for
the quotient space is somewhat more complicated and, instead of Brouwer’s
theorem, we use the more general Schauder theorem, or, more precisely, the
following obvious corollary of this theorem: if T is a continuous self-mapping
of a closed convex subset in a Banach space such that the image of T is
precompact, then T has a fixed point.

Let us recall (see §2.2) that an operator B: C∞0 → C∞0 (X) is compact if
its integral kernel b: X × X → A is lower semicontinuous, bounded below
(b(x, y) ≥ D > −∞), equicontinuous in x with respect to y, and tends to 0
uniformly with respect to y as x →∞. In addition, we shall assume that X is
a locally compact metric space, d is a metric on X, and µ is a (usual) regular
Borel measure on X such that µ(X) = 1 and the measure of each open subset
in X is positive (obviously, such a measure always exists). Set D = inf b(x, y).

We shall now impose some nondegeneracy conditions on B. These condi-
tions are slightly stronger that the property B−1(0) = 0 (here 0 is the function
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identically equal to 0 on X), which is equivalent to the requirement that the
interior of the set

{y ∈ X : b(x, y) = 0 for all x ∈ X}

is empty.
Condition (A) ∀ y ∃x: b(x, y) 6= 0.
Condition (B) ∃ c 6= 0: infx b(x, y) ≤ c ∀ y.
Condition (C) The image B(C∞0 (X) \ {0}) consists of functions nowhere

equal to 0 ⇐⇒ the interior of the set {y ∈ X | ∃x : b(x, y) = 0} is empty.
Condition (B) is the main condition in the proof of Theorem 2.7.
Note that if X is a compact set and the integral kernel b(x, y) is continuous,

then condition (B) directly follows from Condition (A).

Theorem 2.7 Let B be a compact A-linear operator on C∞0 (X) satisfying
condition (B). Then B has an eigenvalue α 6= 0 and an eigenfunction h ∈
C∞0 (X), h 6≡ 0, such that Bh = α ¯ h = α + h. If, moreover, B satisfies
condition (C), then the eigenvalue is unique and the eigenfunction is nowhere
equal to 0.

Remark 2.4 The eigenfunction need not be unique.

First proof. The refinement related to condition (C) is obvious, and unique-
ness can be proved just in the same way as in the Frobenius–Perron theorem
and Theorem 2.6. Thus, we only have to prove the existence of an eigenvalue
under condition (B).

The mapping

E: h(x) 7→ (Eh)(x) = exp(−h(x))

is an isometry of C∞0 (X) onto the cone C+(X) of nonnegative functions in
the Banach space C(X) of real continuous functions on X. It is easy to see
that the continuous mapping

M = E ◦B ◦ E−1:C+(X) → C+(X)

satisfies the following conditions:
(a) M is positive homogeneous, that is,

M(λg) = λM(g) ∀ g ∈ C+(X) ∀λ > 0;
(b) M satisfies the estimates

exp(−C)‖g‖ ≤ ‖Mg‖ ≤ exp(−D)‖g‖ ∀ g ∈ C+(X);
in particular, it follows that M−1(0) = 0;

(c) ∀ε > 0 ∃ δ > 0: d(x1, x2) < δ =⇒ |Mg(x1) − Mg(x2)| ≤ ε‖g‖ ∀ g ∈
C+(X).



Analysis of Operators on Idempotent Semimodules 61

Let us introduce the following equivalence relation on C+(X): v ∼ g if v = λg
for some λ > 0. By Φ we denote the quotient space

Φ = (C+(X) \ {0})/∼

and by M̃ the corresponding quotient mapping M̃ : Φ → Φ, which takes each
ray {λv, λ > 0} to the ray {λM(v), λ > 0}. It is clear that Φ can be identified
with the subset {v ∈ C+(X) : ‖v‖ = 1} of the unit sphere in C(X) and that
in this representation of Φ the operator M̃ is given by the formula

M̃ = pr ◦M : Φ → Φ,

where pr is the projection

pr:C+(X) \ {0} → Φ, pr(v) = v/‖v‖.

It readily follows from the two-sided estimates (b) and from property (c) that
the image M̃(Φ) ⊂ Φ is a precompact set, since it is bounded and equicontin-
uous.

The existence of an eigenvector and an eigenvalue of B is equivalent to the
existence of a fixed point of the mapping M̃ (cf. Theorem 2.6). However, Φ
is not convex, and Schauder’s theorem does not apply directly to this case.

To conclude that M̃ has a fixed point, it suffices to show that Φ is home-
omorphic to a bounded closed convex subset in C(X). To this end, we use
the above-defined measure µ on X. Let us define a mapping Π: Φ → L, where
L ⊂ C(X) is the hyperplane determined by the equation

∫
g(x) dµ(x) = 0, by

setting

Π(g) = g − λ(g),

where λ(g) is the (obviously unique) number such that g − λ(g) ∈ L. Since
the µ-measure of any open set in X is positive, it follows that λ(g) ∈ (0, 1)
for each g ∈ Φ and that the mapping Π is continuous and injective. It is easy
to see that

Π(Φ) = {g ∈ L : max g ≤ 1 + min g}.

Clearly, Π(Φ) is a closed subset of the unit ball in C(X). Let us prove that
Π(Φ) is convex. Let v, w ∈ Π(Φ); then

max v ≤ 1 + min v and max w ≤ 1 + min w.

Let us take the sum of these inequalities with some weights α, β ≥ 0, α+β = 1.
We obtain

α max v + β max w ≤ 1 + α min v + β min w.
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Since

max(αv + βw) ≤ α max v + β maxw

and

α min v + β min w ≤ min(αv + βw),

it follows that

max(αv + βw) ≤ 1 + min(αv + βw),

and consequently, αv + βw ∈ Π(Φ). Thus, Π(Φ) is convex. We now apply
Schauder’s theorem and conclude that the mapping

Π ◦ M̃ ◦Π−1: Π(Φ) → Π(Φ)

has a fixed point, and hence so does the mapping M̃ : Φ → Φ. It follows
that the operator B has an eigenvalue and an eigenvector, and the proof is
complete.

Second proof (this proof was communicated to the authors by M. Bronstein
and is in fact a generalization of the argument from [?]). Suppose momentarily
that X is compact. By virtue of the conditions imposed on the kernel b(x, y),
for each ε > 0 we can choose a finite ε-net J = {xi} ⊂ X so that

1) ∀x ∈ X ∃xj ∈ J : ρ(b(xj , y), b(x, y)) < ε, ∀ y ∈ X;

2) ρ
(

inf
yj∈J

b(x, yj), inf
y∈X

b(x, y)
)
≤ ε, ∀x ∈ X;

3) min
xi∈J

b(xi, y) < c + 1 ∀ y ∈ X.

Using Theorem 2.6, we can choose a function gJ(xi) (xi ∈ J) such that

inf
yj∈J

b(xi, yj) + gJ(yj) = αJ + g(xi)

for each xi. Without loss of generality it can be assumed that

gJ(x̂) = min
xj

gJ(xj) = 0.

Hence,

c + 1 ≥ min
xi∈J

b(xi, x̂) > min
xi,yj∈J

(b(xi, yj) + gJ(yj)) = min
xi∈J

(αJ + gJ(xi))

≥ αJ = inf
yj∈J

(b(x̂, yj) + gJ(yj)) ≥ inf
(x,y)∈X×X

b(x, y) ≥ d,

that is, αJ ∈ [d, c + 1].
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Let us introduce the function

hJ(x) = min
yj∈J

(b(x, yj) + gJ (yj)).

The function family hJ is equicontinuous, since

hJ(u)− hJ (v) ≤ max
y

(b(u, y)− b(v, y)),

and is bounded in A. Thus, the family (αJ , hJ ) has a limit point (α, h) ∈
[d, c + 1]× C(X,A). This limit point satisfies the equation

h(x) + α = min
y∈X

(b(x, y) + h(y)).

Indeed, it follows from properties 1) and 2) of the nets J that for each ε > 0
there exists a net J such that

ρ
(
h + α, min

y∈X
(b( · , y) + g(y)

)

≤ ε + sup
xj∈J

(
hJ(xj) + αj , min

y∈X
(b(xj , y) + h(y))

)

= ε + sup
xj∈J

(
min
yi∈J

b(xj , yi) + hJ (yi), min
y∈X

(b(x, y) + h(y))
)
≤ 2ε.

Now suppose that X is not compact, but X =
⋃

n∈NXn, where all Xn are
compact sets. Let us extend X to X̃ = X∪{c∞}, where the neighborhoods of
c∞ are the sets X̃ \Xn (Alexandroff’s compactification). We continue b(x, y)
from X ×X to X̃ × X̃ by setting

b̃(x, c∞) = sup
Xn

inf
y∈X\Xn

b(x, y),

b̃(c∞, y) = ∞ ∀ y ∈ X̃.

Then b̃ thus constructed satisfies all desired continuity assumptions, and we
can refer to the proof for the case of a compact base.

Corollary 2.6 Let an operator B satisfy conditions (B) and (C), so that
its eigenvalue α is unique and the eigenvector h is nowhere equal to 0. Let
f ≤ h + c with some constant c. Then

lim
m→∞

Bmf(x)
m

= α. (2.15)

Proof. Obviously,

inf
x

(f − h) ≤ Bf(x)−Bh(x) ≤ sup
x

(f − h)
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for all x. By induction, we obtain

inf
x

(f − h) ≤ Bmf(x)−Bmh(x) ≤ sup
x

(f − h), (2.16)

which implies (2.15) since Bm(h) = mα + h.
Another important corollary of Theorem 2.6 is a sufficient condition for the

Neumann series to be convergent and finite. This series specifies the Duhamel
solution (see §1.2) of the equation g = Bg ⊕ f for an unknown function g.

Corollary 2.7 Under the conditions of Corollary 2.6, if α > 0, then the
Neumann series

f ⊕B(f)⊕B2(f)⊕ · · · (2.17)

is finite, that is, is equal to the finite sum

B ⊕B(f)⊕ · · · ⊕Bk(f)

for some k.

Proof. It follows from Eq. (2.16) that

Bmf(x)− f(x) ≥ inf
x

(f − h) + h(x)− f(x) + mα,

whence

Bmf(x) ≥ f(x) + inf
x

(f − h) + mα− c.

Consequently, Bmf(x) > f(x) for all x provided that m is sufficiently large.
Hence, the series (2.17) is finite.

The calculations of the iterations Bm is needed in solving optimization
problems of the form

m−1∑

k=0

b(xk, xk+1) + g(xm) → min, x0 is fixed,

by the dynamic programming technique.
Namely, the desired minimum is (Bmg)(x0). Thus, Corollary 2.6 describes

the asymptotic behavior of solutions of this problem for large m.
Let us now present a result concerning the uniqueness of the eigenfunctions.

This is a generalization of a theorem in [?], which pertains to the case of a
convex function b(x, y).

Theorem 2.8 Let X be a compact set, and let the integral kernel b(x, y) of
an operator B be a continuous function on X×X such that b(x, y) is nowhere
equal to 0 = +∞ and attains its minimum at a unique point (w, w), which
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lies on the diagonal in X × X. Let b(w, w) = 0 (this assumption does not
result in any loss in generality, since it can always be ensured by a shift by an
appropriate constant). Then the eigenvalue of B is equal to 1I = 0, and the
iterations Bn with integral kernels bn(x, y) converge as n →∞ to the operator
B with separated kernel

b(x, y) = ϕ(x) + ψ(y),

where ϕ(x) = limn→∞ bn(x,w) is the unique eigenfunction of B and ψ(x) =
limn→∞ bn(w, x) is the unique eigenfunction of the adjoint operator.

Proof. Let y1, . . . , yn−1 be the points at which the minimum is attained in
the expression

bn(x, z) = min
y1,...,yn−1

(b(x, y1) + b(y1, y2) + · · ·+ b(yn−1, z))

for the kernel of Bn.
Since 0 ≤ bn(x, z) < b(x,w) + b(w, z), it follows that bn(x, z) is uniformly

bounded with respect to x, z, and n and moreover, for any ε > 0 and any
sufficiently large n, all but finitely many yj lie in the ε-neighborhood Uε of w.
Since b(x, y) is continuous, we see that

∀ δ > 0 ∃ ε > 0 : b(t, z) < δ for t, z ∈ Uε.

Let yj ∈ Uε. Then for m ≥ 1 we have

bn+m(x, z) ≤ b(x, y1) + · · ·+ b(yj−1, yj)

+ b(yj , w) + b(w, yj+1) + · · ·+ b(yn−1, z)

≤ bn(x, z) + 2δ.

Consequently, the sequence bn(x, z) is “almost decreasing,” that is,

∀ δ > 0 ∃N ∀n > N : bn(x, z) ≤ bN (x, z) + δ.

In conjunction with boundedness, this property implies that the limit

lim
n→∞

bn(x, z) = β(x, z)

exists. Since, obviously,

b2n(x, z) = bn(x, t(n)) + bn(t(n), z)

for some t(n) → w as n →∞, we obtain, by passing to the limit,

β(x, z) = β(x, w) + β(w, z).



66 Chapter 2

Thus, the kernel of the limit operator is separated, which, in particular, implies
that the eigenfunction is unique. Let us prove that β(x,w) is an eigenfunction
of B with eigenvalue 1I = 0. Indeed,

B(β(x,w)) = inf
y

(
b(x, y) + lim

n→∞
bn(y, w)

)

= lim
n→∞

inf
y

(b(x, y) + bn(y, w)) = lim
n→∞

bn+1(x,w) = β(x,w).

Let us also point out that the uniform continuity of b(x, y) implies the conti-
nuity of β(x, z) and that the convergence bn(x, z) → β(x, z) is uniform with
respect to (x, z).

Theorem 2.8 can readily be generalized to the case in which the performance
function b(x, y) has several points of minimum. It is only essential that these
points lie on the diagonal in X×X. In particular, the following result is valid.

Theorem 2.9 Let X be a compact set, and let the integral kernel b(x, y) of
an operator B be a continuous function on X × X that is nowhere equal to
0 = +∞ and that attains its minimum λ at some points (wj , wj), j = 1, . . . , k,
on the diagonal in X×X. Then the eigenvalue of B is equal to λ, the functions
ϕj = limn→∞ bn(x,wj) (respectively, ψj = limn→∞ bn(wj , x)), j = 1, . . . , k,
form a basis of the eigenspace of B (respectively, of the adjoint B′), and the
iterations (B − λ)n converge to a finite-dimensional operator with separated
kernel

b(x, y) =
n⊕

j=1

ϕj(x)¯ ψj(y) = min
j

(ϕj(x) + ψj(y)).

It is also easy to state a more general result, in which X is locally compact
and b(x, y) attains its minimum on the diagonal. In the general case, the
connected components of the set of minima of b(x, y) are used instead of the
points (wj , wj). Possible generalizations to problems with continuous time
are given in §3.2.

2.4. Infinite Extremals and Turnpikes in Deterministic Dynamic
Optimization Problems

In this section, we first discuss a construction of infinite extremals in deter-
ministic dynamic optimization problems with infinite planning horizon. This
construction is based on spectral analysis of idempotent operators and was
proposed by S. Yu. Yakovenko [?] (see [?] for details). Then we discuss
turnpike theory and, in particular, present a simple proof of the well-known
turnpike theorem for the classical von Neumann–Gale model in mathematical
economics.
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Numerous attempts has been made in optimal control theory and math-
ematical economics to define infinite extremals in the formal optimization
problem

∞∑

k=0

b(xk, xk+1) → min,

where b:X × X → A is a continuous function, X is a metric compactum,
x0 = a is fixed, and xk ∈ X, k = 0, 1, . . ..

The traditional approach is to define an infinite extremal as a maximal
element with respect to some partial order on the set of trajectories, the
partial order being produced by comparing the sums corresponding to various
initial segments of the trajectories. Consider the following definition.
Definition 2.2 A trajectory κ′ = {x′k}∞k=0 overtakes (respectively, super-
takes) a trajectory κ = {xk}∞k=0 if x0 = x′0 and

δ(κ′, κ) = lim
n→∞

n−1∑

k=0

(b(x′k, x′k+1)− b(xk, xk+1)) ≤ 0

(respectively, δ(κ′, κ) < 0). A trajectory is said to be weakly optimal if it is
not supertaken by any other trajectory. A trajectory is said to be overtaking
if it overtakes any other trajectory with the same starting point.

Although these notions are frequently used (e.g., see [?], where a variety
of other possible definitions of the same type are discussed), the set of, say,
weakly optimal trajectories is empty in quite a few reasonable optimization
problems. However, if such trajectories do exist, they are infinite extremals
in the sense of the definition given below.

Let extrn(b, f) be the set of solutions (extremals) to the finite-horizon op-
timization problem

n−1∑

k=0

b(xk, xk+1) + f(xn) → min . (2.18)

Then it follows from Bellman’s optimality principle that

xk+1 ∈ arg min
y∈X

(b(xk, y) + (Bn−k)f(y))

for each {xk} ∈ extrn(b, f), where B is the Bellman operator with kernel
b(x, y), i.e.,

(Bf)(x) = min
y

(b(x, y) + f(y))

for any continuous real function f .
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Definition 2.3 ([?]) Let h be an eigenfunction of the operator B, that
is, a solution of the equation Bh = λ ¯ h = λ + h. An infinite trajectory
κ = {xk}∞k=0 is called an infinite extremal (or an h-extremal) if

xk+1 ∈ arg min
y∈X

(b(xk, y) + h(y))

for each k = 0, 1, . . ..
Let extr∞(B, h) denote the set of all (infinite) h-extremals, and let λ =

Spec(B). It is easy to see that

extr∞(B, λ¯ h) = extr∞(B, h).

The following result, which shows that the notion introduced is meaningful,
is a direct consequence of the definition, Bellman’s optimality principle, and
the spectral theorem in §2.3.

Theorem 2.10 ([?]) Let B be a Bellman operator with continuous real ker-
nel, and let a ∈ X be an arbitrary initial state. Then the following assertions
hold.

(a) There exists an infinite extremal κ = {xk}∞k=0 issuing from a.
(b) The relationship between B and the set of its extremals is conjugation-
invariant : if B = C−1 ◦ B′ ◦ C, where an invertible operator C is the
composition of a diagonal operator with a “change of variables” f(x) 7→
f(β−1(x)) for some homomorphism β (see §2.2), then

κ ∈ extr(B, h) ⇐⇒ β(κ) ∈ extr∞(B′, Ch),
where

β(κ) = {β(xk)}∞k=0.
(c) If κ ∈ extr∞(B, h), then each segment {xk}k=k′′

k=k′ is a finite extremal
of the n-step optimization problem (2.18) with fixed initial point and with
terminant f(xn) = h(xn) (n = k′′ − k′). In particular, this segment is a
solution of the optimization problem

k′′−1∑

k=k′
b(xk, xk+1) → min

with fixed endpoints.

One can introduce a weaker notion of an extremal, which is also invariantly
related to B.
Definition 2.4 Let λ = Spec(B). Then κ = {xk}∞k=0 is a λ-trajectory if

n−1∑

k=0

b(xk, xk+1) = nλ + O(1) as n →∞.

It is easy to see that each infinite extremal is a λ-trajectory. However, unlike
in the case of extremals, a trajectory differing from a λ-trajectory by a finite
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number of states is itself a λ-trajectory. Thus, the notion of λ-trajectories
reflects limit properties of infinite extremals. In what follows we assume that
Spec(B) = 0. This can always be achieved by adding an appropriate constant.

Generally speaking, the eigenfunction of an operator is not unique, so there
exist several various types of infinite extremals issuing from a given point.
However, one can always single out an infinite extremal that is (in a sense)
the limit as n →∞ of finite extremals of problem (2.18) with fixed terminant.
More precisely, the following theorem is valid.

Theorem 2.11 ([?]) Let B be a Bellman operator with continuous kernel
and with Spec(B) = 0. Then there exists a unique “projection” operator Ω in
C(X) such that

(a) Ω is a linear operator in the semimodule C(X,A) (here A = R∪{+∞},
⊕ = min, and ¯ = +);

(b) the relation between Ω and B is conjugation-invariant, that is, if B =
C−1 ◦ B′ ◦ C for some invertible operator C and Ω′ is the projection
operator corresponding to B′, then Ω′ = C−1 ◦ Ω ◦ C;

(c) Ωf = f ⇐⇒ f is an eigenfunction of B;
(d) Ωf is an eigenfunction of B for any f ;
(e) ΩB = Ω.

Note that properties (c) and (d) are equivalent to the operator identities
BΩ = Ω and Ω2 = Ω.
Proof. The existence and the properties of Ω readily follow from the explicit
formula

Ωf = lim
n→∞

∞⊕

n=N

Bnf = lim
n→∞

inf
n≥N

Bnf.

Since Spec(B) = 0, it follows that all Bnf are bounded and the infimum exists.
Let us prove the uniqueness. Suppose that Ω̃ satisfies the same conditions.
Then

Ωf = Ω̃Ωf = Ω̃
(

lim
N→∞

∞⊕

n=N

Bnf

)

= lim
N→∞

∞⊕

n=N

Ω̃Bnf = lim
N→∞

Ω̃f = Ω̃f.

Let us now discuss the case, most important in mathematical economics and
best studied, in which the kernel is convex. More precisely, suppose that
X ⊂ Rn is a convex compact set and b: X ×X → R is a continuous strictly
convex function whose restriction b(x, x) to the diagonal attains its minimum
at some interior point w ∈ intX. Then there exists a p ∈ Rn such that

b(x, y) ≥ b(w, w) + 〈p, y − x〉 (2.19)
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for any x, y ∈ X. Indeed, to find p, it suffices to extend the support plane
{x = z, y = z, b = b(w, w)} of the epigraph of the restriction of b to the
diagonal to a support hyperplane of the epigraph of b(x, y) through the point
x = y = w (the epigraph of a function g(x) is the set of pairs (a, x) such that
a ≥ g(x)). It follows that by a conjugation followed by a translation, B can
be reduced to an operator B′ with strictly convex kernel b′(x, y) such that

(b′(x, y) = 0 ⇐⇒ x = y = w) and b′(x, y) ≥ 0. (2.20)

Indeed, B′ = C−1 ◦ B ◦ C − b(w,w), where C is the invertible operator with
kernel 〈p, y〉+ δ(x− y).

Thus, the above-considered case of a convex utility function is a special
case of the situation considered in Theorem 2.8. The λ-trajectories for such
operators B possess the turnpike property, which generalizes a related result
in [?] pertaining to a convex translation function.

Theorem 2.12 Let the assumptions of Theorem 2.8 be satisfied. Then
(a) If κ = {xk}∞k=0 is a λ-trajectory for B, then

limxk = w. (2.21)
(b) Each infinite extremal is a weakly optimal trajectory.

Proof. (a) Note that

∀ ε > 0 ∃ δ > 0 : ρ(x,w) ≥ δ =⇒ ∀ y b(x,w) > ε, (2.22)

where ρ is the distance function on X. If Eq. (2.21) is violated, then, accord-
ing to Eq. (2.22), the sum

∑
b(xk, xk+1) along κ tends to +∞ = 0, which

contradicts the fact that Spec(B) = 0 = 1I and Eq. (2.15).
(b) Obviously, a λ-trajectory can only be overtaken by another λ-trajectory.

Now assume that some λ-trajectory κ′ = {xk}∞k=0 supertakes an infinite ex-
tremal κ = {xk}∞k=0, x′0 = x0 = a. Then, by definition, there exists a sequence
Nj such that

Nj∑

k=0

(b(x′k, x′k+1)− b(xk, xk+1)) ≤ −ε < 0. (2.23)

But according to Theorem 2.10,
∑N−1

k=0 b(xk, xk+1) is the minimum in the
N -step optimization problem with fixed endpoints x0 = a and xN . Since
xN → w, it follows that we can choose a neighborhood U of the point w so
that the minima in the N -step problems with fixed endpoints x0 = a and
x ∈ U are uniformly close to one another for all x ∈ U and N ≥ N0. This
contradicts Eq. (2.23), and so the proof is complete.

Needless to say, the point w is a turnpike in problems with fixed (but large)
planning horizon. Let us state the related result in a more general form.
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Theorem 2.13 Let X be a locally compact metric space with metric ρ, and
let continuous functions

f :X → R ∪ {+∞}, b:X ×X → R ∪ {+∞}

bounded below be given (thus, f and b are continuous bounded A-valued func-
tions, where A is the standard idempotent semiring). Let F and λ be the
greatest lower bounds of f(x) and b(x, y), respectively. Suppose that the set

W = {w ∈ X : b(w, w) = λ}

is not empty. Let κ = {xk}n
k=0 be an optimal trajectory for problem (2.18)

with fixed starting point x0 = a ∈ X, and suppose that there exists a w ∈ W
such that b(a,w) + f(w) 6= +∞. Then for any ε > 0 there exists a positive
integer K such that for all positive integers n, however large, the inequality
ρ(xk,W ) < ε is violated at most at K points of the trajectory κ.

Proof. Without loss of generality we can assume that λ = 0. Let w ∈ W be
an arbitrary point. Then the functional

n−1∑

k=0

b(xk, xk+1) + f(xn) (2.24)

to be minimized attains the value b(a,w) + f(w) def= C, independent of n,
on the trajectory κw = {xk}n

k=0, where x0 = a and xj = w, j = 1, . . . , n.
Consequently, the value of problem (2.18) does not exceed c for all n. Fur-
thermore, it follows from the continuity of b(x, y) that for each δ > 0 there
exists an ε > 0 such that b(x, y) ≥ δ > 0 = b(w, w) whenever ρ(x,W ) > ε
or ρ(y, w) > ε. It follows that if the inequality ρ(xk, w) < ε is violated more
than K times on some trajectory, then the value of the functional (2.24) on
that trajectory exceeds Kδ + F , which is greater than C for K > (C − F )/δ.
Consequently, for these K the trajectory cannot be optimal.

For the sake of completeness, let us show how the well-known turnpike
theorem for the classical von Neumann–Gale (NG) model can be derived from
this theorem. Let us recall the definitions. An NG model is specified by a
closed convex cone Z ⊂ Rn

+ × Rn
+ such that (0, y) /∈ Z for any y 6= 0 and

the projection of Z on the second factor has a nonempty intersection with
the interior of Rn

+. The cone Z uniquely determines a set-valued mapping
a:Rn

+ → 2R
n
+ by the rule

y ∈ a(x) ⇐⇒ (x, y) ∈ Z.

In the economical interpretation, the mapping a describes possible transitions
from one set of goods to another in one step of the production process under
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a prescribed technology. A triple (α, y, p), where α > 0, z = (y, αy) ∈ Z, and
p ∈ Rn

+ \ {0} is called an equilibrium state of the NG model if

α(p, x) ≥ (p, v) ∀ (x, v) ∈ Z.

If, moreover, (p, y) > 0, then the equilibrium is said to be nondegenerate,
the coefficient α > 0 is referred to as the growth rate, and p is known as
the vector of equilibrium prices. A trajectory in the NG model is a sequence
{xk}T

k=1, T ∈ N, such that (xk, xk+1) ∈ Z for all k. For a given utility
function u:Rn

+ → R, the planning problem on a time horizon [0, T ] is to find
a trajectory {xk}T

k=1 on which the terminal performance functional u(xT )
attains its maximal value. Such a trajectory is said to be optimal.

It will be convenient to use the angular metric ρ(x, y) = |x/‖x‖ − y/‖y‖|
on the set of rays in Rn

+.
A ray {αy : α ∈ R+}, y ∈ Rn

+, is called a strong (respectively, weak)
turnpike if for each ε > 0 there exists a positive integer K = K(ε) such that
for each optimal trajectory {xk}T

k=1, regardless of the planning horizon T ∈ N
and of the utility function from a given class U , the inequality ρ(xk, y) < ε
can be violated only for the first K and the last K indices k (respectively, for
at most K indices k). The optimization problem for the NG model is known
[?, ?] to be reducible to a multistep optimization problem on a compactum.
Let us show how the well-known Radner turnpike theorem for the NG model
can be derived from Theorem 2.13.

Radner’s theorem about weak turnpikes is as follows.

Theorem 2.14 Suppose that
1) An NG model is given, determined by a cone Z such that
R1) there exists an α > 0 and a y ∈ Rn

+ \ {0} with z = (y, αy) ∈ Z;
R2) there exists a p ∈ Rn (a price vector) such that α(p, x) > (p, v) for
any vector (x, v) ∈ Z that is not a multiple of (y, αy) (actually, this
condition means that the cone Z is strictly convex in the vicinity of the
point (y, αy));

R3) for each x ∈ Rn
+ there exists an L > 0 such that (x, Ly) ∈ Z (this is

a purely technical condition, which can be ensured by an arbitrarily small
perturbation of the model and which means that the turnpike proportions
can be achieved from an arbitrary initial state).

2) A class U = {u : Rn
+ → R} of utility functions is given such that each

u ∈ U satisfies the following conditions:
R4) u(x) is continuous and nonnegative;
R5) u(λx) = λu(x) ∀x ∈ Rn

+ ∀λ > 0;
R6) u(y) > 0 (the consistency condition);
R7) there exists a k > 0 such that u(y) ≤ k(p, y).

Then the ray {αy : α > 0} is a weak turnpike.

To derive this theorem from Theorem 2.13 (more precisely, from its analog
in which min is replaced by max), note that any optimal trajectory {xk}T

k=0
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in an NG model satisfies the following maximal expansion condition at each
step:

max{µ : (xk−1, µxk) ∈ Z} = 1, k = 1, . . . , T.

Thus, in seeking optimal trajectories, only trajectories satisfying this con-
dition will be considered feasible.

Let us now consider a multistep optimization problem on the set

Π = {x ∈ Rn
+ : (p, x) = 1}

equipped with the metric induced by the angular metric on the set of rays.
We introduce the transition function

b(x, v) = ln max{λ > 0 : (x, λv) ∈ Z},

where b = −∞ is assumed if the set in the braces is empty. It follows from
conditions R1)–R2) that

α = b(y, y) = max{b(x, v) : x, v ∈ Π}.

To each trajectory {xk}T
k=0 of the NG model there corresponds a unique

sequence {vk}T
k=0 of the points in Π such that vk and xk lie on the same ray,

k = 0, . . . , T . Moreover, by condition R5) we have

ln u(xT ) =
T−1∑

k=0

b(vk, vk+1) + lnu(vT ) (2.25)

on the trajectories satisfying the maximal expansion condition, and so the
problem of constructing optimal trajectory in the NG model is equivalent to
the multistep optimization problem with the performance functional (2.25).
Properties R1)–R7) of the model and of the utility function ensure the validity
of all assumptions in Theorem 2.13. In particular, the set W is a singleton
(its unique element lies on the turnpike ray {αy : α > 0}).

In the example of the proof of the weak turnpike theorem, we have shown
how optimization problems arising in one of the most popular models in math-
ematical economics can be reduced to a general multistep optimization prob-
lem. This section was chiefly devoted to infinite extremals. On the basis of
the described reduction, we obtain a natural definition of infinite extremals
in the NG model, which coincides with the classical definition based on the
Pareto order in Rn

+ [?]. In closing, let us point out that various approaches
to the construction of infinite extremals and discussion pertaining to specific
situations can be found, e.g., in [?, ?, ?, ?, ?, ?, ?, ?, ?, ?].

In the next section we deal with stochastic multistep optimization models
and with the related theory of homogeneous operators.
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2.5. Homogeneous Operators in Idempotent Analysis and Turnpike
Theorems for Stochastic Games and Controlled Markov Processes

Additive and homogeneous operators are important generalizations of linear
operators. This section deals with operators homogeneous in the sense of the
semiring A = R ∪ {+∞}, i.e., operators B on function spaces such that

B(λ + h) = λ + B(h)

for any number λ and any function h. We shall show that the theory of
such operators is closely related to game theory and obtain an analog of the
eigenvalue theorem for such operators. We apply this analog to construct
turnpikes in stochastic games. For simplicity, we only consider the case of a
finite state space X = {1, . . . , n} in detail.

First, let us show whence homogeneous operators appear. Let us define
an antagonistic game on X. Let pij(α, β) denote the probability of transition
from state i to state j if the two players choose strategies α and β, respectively
(α and β belong to some fixed metric spaces with a metric ρ), and let bij(α, β)
denote the income of the first player from this transition. The game is called
a game with value if

min
α

max
β

n∑

j=1

pij(α, β)(hj + bij(α, β))

= max
β

min
β

n∑

j=1

pij(α, β)(hj + bij(α, β))

(2.26)

for all y ∈ Rn. In that case, the operator B:Rn → Rn such that Bi(y) is
equal to (2.26) is called the Bellman operator of the game. By the dynamic
programming method [?], we can show that the value of the k-step game
defined by the initial position i and the terminal income h ∈ Rn of the first
player exists and is equal to Bk

i (h).
It is clear that the operator B has the following two properties:

B(ae + h) = ae + B(h) ∀a ∈ R, h ∈ Rn, e = (1, . . . , 1) ∈ Rn, (2.27)
‖B(h)−B(g)‖ ≤ ‖h− g‖ ∀h, g ∈ Rn, (2.28)

where ‖h‖ = max |hi|.
Interestingly, these two properties are characteristic of the game Bellman

operator [?]:

Theorem 2.15 For each map B:Rn → Rn satisfying (2.27) and (2.28), there
exist functions pij(α, β) and bij(α, β) (where α and β belong to some metric
spaces) such that

pij(α, β) ≥ 0,

n∑

j=1

pij(α, β) = 1,
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(2.26) holds, and the value of (2.26) is equal to Bi(h).

Proof. It follows from (2.28) that Bi almost everywhere has partial deriva-
tives such that

∑n
j=1 |∂Bi/∂hj | ≤ 1. Then property (2.27) implies that∑n

j=1(∂Bi/∂hj) = 1. Hence, the gradients of Bi belong to the unit simplex

Π =
{

h = (h1, . . . , hn) ∈ Rn : hi ≥ 0,

n∑

j=1

hj = 1
}

.

Now let us represent the function Bi in the standard game form [?]

Bi(h) = min
α∈Rn

max
β∈Rn

(Bi(α) + (Fi(α, β), h− α))

= max
β∈Rn

min
α∈Rn

(Bi(α) + (Fi(α, β), h− α)),

where

Fi(α, β) =
∫ 1

0

gradBi(α + t(β − α)) dt.

By virtue of the cited properties of the gradient of B, the vector Fi(α, β)
belongs to Π.

Now let us point out that the most important examples of games with value
represent games with finitely many (pure) strategies α, β, when the value is
attained at so-called mixed strategies. The sets of mixed strategies in that
case coincide with some unit simplices in Rn. It is clear that the set of the
corresponding Bellman operators is a dense subset in the set of all operators
with properties (2.27) and (2.28).

Now we define the quotient space Φ of the space Rn by the one-dimensional
subspace generated by the vector e = (1, . . . , 1). Let Π:Rn 7→ Φ be the natural
projection. The quotient norm on Φ is obviously defined by the formula

‖Π(h)‖ = inf
a∈R

‖h + ae‖ =
1
2

(
max

j
hj −min

j
hj

)
.

It is clear that Π has a unique isometric (but not linear) section S: Φ 7→
Rn. The image S(Φ) consists of all h ∈ Rn such that maxj hj = −minj hj .
By virtue of properties (2.27) and (2.28) of B, the continuous quotient map
B̃: Φ 7→ Φ is well defined.

To state the main result of this section, we need some additional properties
of the transition probabilities:

∃δ > 0 : ∀i, j, α ∃β : pij(α, β) ≥ δ, (2.29)
∃δ > 0 : ∀i, j ∃m : ∀α, β : pim(α, β) > δ, pjm(α, β) > δ. (2.30)

Let all |bij(α, β)| be bounded by some constant C.
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Lemma 2.1 A) If (2.29) holds and δ < 1/n, then B̃ maps each ball of radius
R ≥ Cδ−1 centered at the origin into itself.

B) If (2.30) holds, then

‖B̃(H)− B̃(G)‖ ≤ (1− δ)‖H −G‖, ∀H, G ∈ Φ.

Proof. We shall prove only A); the proof of B) is similar. It follows from the
definition that

Bi(h)−Bm(h) ≤
n∑

j=1

pij(α1, β1)(bij(α1, β1) + hj)

−
n∑

j=1

pmj(α0, β)(bij(α0, β) + hj),

where α1, β1, and α0 depend on i, whereas h and β are arbitrary. Hence,

Bi(h)−Bm(h) ≤ 2C + ‖h‖
n∑

j=1

|pij(α1, β1)− pmj(α0, β)|.

Let us choose j0 so that pij0(α1, β1) > δ. Using condition A), we can take β
so that pij(α0, β) > δ. Then

n∑

j=1

|pij(α1, β1)− pmj(α0, β)| ≤ |pij0 − pmj0 |+ (1− pij0) + (1− pmj0)

≤ 2(1− δ).

Consequently,

Bi(h)−Bm(h) ≤ 2C + 2(1− δ).

Using the definition of the norm in Φ, we have

‖Π(B(h))‖ ≤ C + ‖h‖(1− δ).

Thus, for h = S(H) we obtain

‖B̃(H)‖ ≤ C + ‖H‖(1− δ).

It follows that the map B̃ takes the ball of radius R into itself provided that
C + R(1− δ) ≤ R, i.e., R ≥ Cδ−1.

Theorem 2.16 A) If (2.29) holds, then there exists a unique λ ∈ R and a
vector h ∈ Rn such that

B(h) = λ + h (2.31)
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and for all g ∈ Rn we have

‖Bmg −mλ‖ ≤ ‖h‖+ ‖h− g‖, (2.32)

lim
m→∞

Bmg

m
= λ. (2.33)

B) If (2.30) holds, then h is unique (up to equivalence), and

lim
m→∞

S ◦Π(Bm(g)) = S ◦Π(h) ∀g ∈ Rn. (2.34)

Proof. This follows readily from the lemma and from the fixed point theorems.
As a consequence, we find that the equilibria α̃i and β̃i in (2.26), where h

is a solution of (2.31), define stationary strategies in the infinite-time game.
Theorem 2.16 also implies turnpike theorems for the game in question.

Theorem 2.17 Let (2.30) hold. Then for all ε > 0 and Ω > 0 there exists
an M ∈ N such that if {α(i, t)} and {β(i, t)} are equilibrium strategies in the
T -step game, T > M , with terminal income of the first player defined by a
vector g with ‖Π(g)‖ ≤ Ω, then

ρ(α(t, i), α̃i) < ε, ρ(β(t, i), β̃i) < ε

for all t < T −M .

Proof. This readily follows from (2.34).
Let α̃i and β̃1 be defined uniquely. Let Q∗ = (q∗1 , . . . , q∗n) denote the sta-

tionary distribution for the stationary Markov chain defined on the state space
X by these strategies. Just as for the case of the Markov decision process [?],
we obtain the following turnpike theorem on the state space.

Theorem 2.18 For all α > 0 and Ω > 0 there exists an M ∈ N such that for
each T -step game, T > 2M , with terminal income g ∈ Rn, ‖Π(g)‖ < Ω, of
the first player we have

‖Q(t)−Q∗‖ < ε,

where Q(t) = (q1(t), . . . , qn(t)) and qi(t) is the probability that the process is
in a state i ∈ X at time t if the game is carried out with the equilibrium
strategies.

In other words, q∗j is the mean amount of time that each sufficiently long
game with equilibrium strategies spends in position j.
Proof. It follows from Theorem 2.17 that for each ε1 > 0 there exists an M1 ∈
N such that for any t-step equilibrium game, t > M1, with the first player’s
terminal income g, ‖Π(g)‖ ≤ Ω, the transition probabilities at the first t−M1

steps are ε1-close to the transition probabilities pij(α̃i, β̃j). Consequently,

Q(t) = Q0(P + δ1) · · · (P + δt) = Q0(P t + ∆(t)),
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where the matrices δk (and, hence, ∆(t)) are ε1-close to zero. By a theorem on
the convergence of probability distributions in homogeneous Markov chains
to a stationary distribution, we have

‖Q0P t −Q∗‖ ≤ (1− δ)t−1.

Thus, we can successively choose M2 and ε1 so that

‖Q(M2)−Q∗‖ < ε for all Q0.

Then

‖Q(t)−Q∗‖ < ε for all t ∈ [M2, T −M1].

There is a natural generalization of conditions (2.29) and (2.30) under which
the cited results can still be proved. Namely, we require these conditions to
be valid for some iteration of the operator B. This is the case of cyclic games
[?]. Some generalizations to n-person games were obtained in [?].

If, in addition to the assumptions of Theorem 2.15, we require each coor-
dinate of the operator B to be convex, then B is the Bellman operator of
some controlled Markov process. Thus, Theorems 2.16 and 2.17, in particu-
lar, contain the turnpike theorems for Markov processes [?, ?]. An analog of
Theorem 2.16 for connected Markov processes (cyclic one-person games) was
originally proved in [?], and the turnpike theorem (Theorem 2.17) for Markov
processes with discounting was obtained in [?].

We now give a natural generalization of the obtained results to the case
of continuous time. For simplicity, we consider only Markov processes (one-
person games). We first carry out the argument for a finite state space and
then proceed to an arbitrary measurable space.

Let X = {1, . . . , n} be a finite state space. We define a controlled Markov
process with continuous time by specifying a continuous mapping Λ:u 7→
Λ(u) = {Λij(u)} of a compact set of controls into the set of differential-
stochastic matrices (that is, matrices with zero sum of entries in each row,
nonnegative off-diagonal entries, and nonpositive diagonal entries). A strategy
is a collection of continuous mappings fi(t):R+ → U , i ∈ X. Once a strat-
egy {fi(t)} = F is chosen, the probability distribution Q(t) of the process in
question at time t is determined as the solution of the nonautonomous sys-
tem of ordinary differential equations (with Carathéodory-type discontinuous
right-hand side)

Q̇(t) = ΛF (t)Q(t), Q(0) = Q0,

with matrix ΛF (t) = {λij(fj(t))} and with some initial distribution Q0. Thus,
the choice of a strategy specifies a nonhomogeneous Markov process on X.

To define a controlled process with income, let us specify continuous func-
tions ci(u) and bij(u), i 6= j, on U , with the intended meaning of the income
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per unit time when staying in a state i and the income gained by the transition
from a state i to a state j, respectively, under a control u ∈ U . Let gi(t) be
the maximum income (more precisely, the mathematical expectation of max-
imum income) available in time t if the process starts from a state i and the
terminal income at time t is given by a prescribed vector g(0). The optimality
principle implies the following Bellman differential equation for g(t):

ġi(t) = max
u

{
ci(u) +

∑

j 6=i

λij(u)(bij(u) + gj(t)− gi(t))
}

. (2.35)

If all λi = −λii are strictly positive, then, by introducing the functions

bii(u) = − ci(u)
λi(u)

= −ci(u)
( ∑

j 6=i

λij(u)
)−1

,

we can rewrite Eq. (2.35) in the form

ġi(t) = max
u

n∑

j=1

λij(u)(bij(u) + gj(t)). (2.36)

The resolving operator Bt of the Cauchy problem for Eq. (2.35) is a continu-
ous-time analog of the Bellman operator B for discrete-time processes. It
turns out that the properties of these operators are quite similar. First, it is
obvious that

Bt(λ + g) = λ + Btg for all λ ∈ R and g ∈ Rn,

since for each solution g(t) of Eq. (2.35) the function λ+g(t) is also a solution
for any λ. Thus, on analogy with the discrete case, we can define the quotient
operator B̃t: Φ → Φ on the quotient space of Rn by the subspace of constants.
The following assertion is valid.

Lemma 2.2 Suppose that the functions λi(u) = −λii(u) are bounded away
from zero and that there exists a j0 such that λij0(u) ≥ δ for all i 6= j0 and
u ∈ U and for some fixed δ > 0. Then the B̃t are contraction operators; more
precisely,

‖B̃tG− B̃tH‖ ≤ e−tδ‖G−H‖ (2.37)

for any G, H ∈ Φ.

Proof. By using the Euler approximations, we obtain

Bt = lim
n→∞

(Bt/n)n, (2.38)
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where the linear operator Bτ is given by the formula

(Bτg)i = gi + max
u

τ

n∑

j=1

λij(u)(bij(u) + gj)

= max
u

{
(1− τλi)

(
ci(u)

1− τλi(u)
+ gi

)
+

∑

j 6=i

τλij(bij(u) + gj)
}

.

For small τ (such that 1− τλi(u) ≥ δτ for all u), the quotient operator B̃τ is
a contraction operator by Lemma 2.1,

‖B̃τG− B̃τH‖ ≤ (1− δτ)‖G−H‖, (2.39)

whence Eq. (2.37) follows in view of (2.38).
Just as in the case of discrete time, Lemma 2.2 implies the following theo-

rem.

Theorem 2.19 Under the assumptions of Lemma 2.2, there exists a unique
λ ∈ R and a unique (modulo constants) vector h ∈ Rn such that

Bth = tλ + h

for all t ≥ 0. Moreover, the following limit relations are valid for any g ∈ Rn:

lim
t→∞

1
t

Btg = λ, lim
t→∞

S ◦Π(Btg) = S ◦Π(h). (2.40)

Once these relations are proved, the turnpike theorems 2.17 and 2.18 au-
tomatically extend to the case in question, and we do not discuss the subject
any more.

Let us now show how to extend these results to general controlled jump
processes. First, let us recall some definitions (e.g., see [?]).

Let (X,σ) be a measurable space with σ-algebra σ of subsets. A function
P : X × σ → R+ is called a stochastic kernel if P ( · ,Ω) is measurable on X
for each Ω ∈ σ and if P (x, · ) is a probability measure on X for each x ∈ X.
A family

Pst(x, Ω) = P (s, x, t, Ω), s ≤ t, s, t ∈ R+

of stochastic kernels is called a Markov family if it satisfies the Kolmogorov–
Chapman equation

P (s, x, t, Ω) =
∫

P (τ, y, t, Ω)P (s, x, τ, dy)

for any τ ∈ [s, t] and the boundary conditions

Ptt(x, Ω) = χ(x, Ω) =
{

1, x ∈ Ω,
0, x /∈ Ω,
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for each t ∈ R+. Any Markov family defines a wide-sense Markov process, that
is, a family {ξ(t)} of random variables with values in X such that P (s, x, t, Ω)
is the probability of the event ξ(t) ∈ Ω under the condition ξ(s) = x.

The notion of a jump process is a model of the following type of system
behavior. The system spends random positive time in some state, then instan-
taneously (by jump) passes into another state (also random), spends random
time in that state, etc. The Markov process determined by a Markov family
Pst(x, Ω) of stochastic kernels on (X,σ) is called a regular jump process if
the σ-algebra σ on X contains the singletons, if for any s ∈ R+, x ∈ X, and
Ω ∈ σ the limit

µs(x, Ω) = lim
t→s+

P (s, x, t, Ω)− χ(x, Ω)
t− s

exists and is finite, and if, moreover, the convergence is uniform with respect
to x, Ω, and s ∈ [0, t] for any t and the limit µ is continuous in s ∈ [0, t]
uniformly with respect to x and Ω. In other words, the family P (s, x, t, Ω) is
continuously right differentiable with respect to t at t = s.

Let us introduce the functions

µs(x, Ω) = µs(x,Ω \ {x}), µs(x) = µs(x,X).

It readily follows from the definition of µ and µ that
(C1) µs(x, Ω) is a finite charge and µs(x, Ω) is a measure (i.e., a positive

charge) on (X, σ) for any s and x, and moreover, µs(x, Ω) ≤ K(t) for all s ≤ t,
x, and Ω and for some function K(t);

(C2) µs(x, X) = 0 for all s and x; µs(x, Ω) ≥ 0 if x /∈ Ω, and, moreover,

µs(x, {x}) = −µs(x,X \ {x}) ≤ 0;

(C3) µs(x, Ω) = −µs(x)χ(x, Ω) + µs(x, Ω).
Kolmogorov’s theorem says that
1. For a regular jump process, the function P (s, x, t, Ω) is differentiable

with respect to t for t > s, satisfies the backward Kolmogorov equation

∂P (s, x, t, Ω)
∂t

= −
∫

Ω

µt(y)P (s, x, t, dy) +
∫

X

µt(y, Ω)P (s, x, t, dy), (2.41)

and is right continuous at t = s:

χ(x, Ω) = Pss(x, Ω) = lim
t→s+

P (s, x, t, Ω).

2. For a regular jump process, the function P (s, x, t, Ω) is differentiable
with respect to s for s < t, satisfies the forward Kolmogorov equation

∂P

∂s
(s, x, t, Ω) = µs(x)P (s, x, t, Ω)−

∫

X

P (s, x, t, Ω)µt(x, dy),
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and is left continuous at s = t:

χ(x, Ω) = lim
s→t−

P (s, x, t, Ω).

3. Conversely, if some functions µ and µ satisfying conditions (C1)–(C3)
are given, then the backward Kolmogorov equation is uniquely solvable and
the solution P (s, x, t, Ω) specifies a regular Markov jump process.

Furthermore, a Markov process is said to be homogeneous if the stochastic
kernel P (s, x, t, Ω) depends only on the difference t− s. For a jump process,
this implies that the charge µt(x, Ω) is independent of t, µt(x, Ω) = µ(x, Ω).

We define a controlled process by specifying a compact control set U , func-
tions c(u, x) and b(u, x, y) (the income per unit time and the income gained by
the transition from x to y 6= x under a control u ∈ U), and bounded functions
µ(u, x, Ω) and µ(u, x) = µ(u, x, Ω\{x}) that satisfy (C1)–(C3) for each u ∈ U
and hence determine a homogeneous jump process by Kolmogorov’s theorem.

Let g(t, x) be the maximum income (more precisely, mathematical expec-
tation of income) available in time t if the process begins in a state x and the
terminal income is given by a prescribed function g0(x).

Let L∞ = L∞(X) denote the Banach space of bounded measurable real
functions on (X,σ) with the norm ‖g‖ = supx |g(x)|.

Suppose that g(x, t), as well as the derivative ġ(t, x) = ∂g
∂t (t, x), lies in L∞.

Then

g(t, x) = sup
u

{
τc(u, x) + g(t− τ, x)(1− τµ(u, x))

+
∫

(b(u, x, y) + g(t− τ, y))τµ(u, x, dy)
}

modulo higher-order infinitesimals.
We substitute

g(t− τ, x) = g(t, x)− τ ġ(t, x) + o(τ)

into the last equation, cancel out the factors g(t, x) and τ , and let τ → 0, thus
obtaining

ġ(t, x) = sup
u

{
c(u, x) +

∫
b(u, x, y)µ(u, x, dy)

+
∫

(g(t, y)− g(t, x))µ(u, x, dy)
}

. (2.42)

We have given the standard heuristic derivation of the Bellman equation
(2.42). To justify this equation rigorously, one should use the existence and
uniqueness theorem given in the following. It is obvious that Eq. (2.42) is an
analog of Eq. (2.35) for an arbitrary infinite space X.
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Equation (2.42) can be rewritten in the shorter form ġ = A(g), where
A:L∞ → L∞ is the nonlinear mapping given by the formula

(Ah)(x) = sup
u

{
c(u, x) +

∫
(b(u, x, y) + h(t, y)− h(t, x))µ(u, x, dy)

}
.

It is clear that A is Lipschitz continuous,

‖A(h)−A(g)‖ ≤ L‖h− g‖ (2.43)

for some constant L, and that

A(λ + h) = A(h) (2.44)

for all λ ∈ R and h ∈ L∞. For example, inequality (2.43) follows from the
estimates

(A(h)−A(g))(x) ≤ sup
u

∫
(|h(t, y)− g(t, y)|+ |h(t, x)− g(t, x)|)µ(u, x, dy)

and from the boundedness of µ(u, x, dy).
It follows from Eq. (2.43) that the Bellman equation ġ = Ag has a unique

solution in L∞ on any time interval and for any initial function g0 ∈ L∞; this
solution is the limit of Euler’s approximations,

Bt = lim
n→∞

(Bτ )n, τ =
t

n
, (2.45)

where Bt is the resolving operator of the Cauchy problem for the equation
ġ = Ag and Bτ : L∞ → L∞ is the finite-difference approximation determined
by the formula Bτg = g+τA(g). The proof is word for word the same as that
of the corresponding theorem for ordinary differential equations on a line.

It follows from (2.44) that the mappings Bt and Bτ are homogeneous, that
is,

Bt(λ + g) = λ + Btg, Bτ (λ + g) = λ + Bτg ∀λ ∈ R, g ∈ L∞.

We proceed just as in the case of finite X and define the quotient space LΦ∞
of L∞ by the subspace of constant functions. Then the operators Bt and Bτ

factor through the natural projection L∞ → LΦ∞, and thus the continuous
quotient mappings B̃t, B̃τ :LΦ∞ → LΦ∞ are well-defined.

To each sufficiently small τ there corresponds a family µτ (u, x, Ω) of prob-
ability measures on X. It is given by the formula

µτ (u, x, Ω) = τµ(u, x, Ω) + (1− τµ(u, x))χ(x, Ω).

To each pair of controls (u1, u2) and each pair of points x1, x2 ∈ X we assign
a charge (signed measure) ντ

1,2 = ντ (u1, x1, u2, x2) by the formula

ντ
1,2(Ω) = µτ (u1, x1, Ω)− µτ (u2, x2, Ω).



84 Chapter 2

The total variation of this charge satisfies Var |ντ
1,2| ≤ 2, since µτ are proba-

bility measures, and ντ
1,2 = 0 at τ = 0.

As is the case with discrete-time systems, for the existence of turnpike
control regimes in this controlled jump process it is necessary that some con-
nectedness conditions for the state space be satisfied. The following analog
of Eq. (2.30) is a quite general condition of this sort to be imposed on the
transition probabilities.

(P) For any u1, u2 ∈ U and (x1, x2) ∈ X, the total variation of the charge
ντ
1,2 does not exceed 2(1− δτ) for some fixed δ > 0, or, equivalently,

µτ (u1, x1,Ω−) + µτ (u2, x2, Ω+) ≥ δ,

where Ω± are the positive and the negative sets in the Hahn decomposition
of ντ

1,2.
Remark 2.5 Various conditions sufficient for (P ) to be satisfied can be
written out in terms of the original measure µ. These conditions are especially
descriptive if X is a compact set and µ(u, x, Ω) are continuous functions.

If (P ) is satisfied, then B̃τ and B̃t are contraction operators and satisfy
the estimates (2.37) and (2.39) for G,H ∈ LΦ∞. The estimate (2.39) follows
from the inequality

(Bτg −Bτh)(x1)− (Bτg −Bτh)(x2)

≤ ‖g − h‖ sup
u1,u2

∫
|µτ (u1, x1, dy)− µτ (u2, x2, dy)|

≤ ‖g − h‖(1− δτ),

and the estimate (2.37) follows from Eqs. (2.39) and (2.45).
As is the case with finite X, it follows that there exists a unique λ ∈ R and

a unique (modulo an additive constant) h ∈ L∞ such that

Bth = λt + h, (2.46)

and the limit equations (2.40) are satisfied, where S and Π are defined by
complete analogy with the case of finite X.

If we now assume that the functions b(u, x, y), c(u, x), and µ(u, x, dy) are
continuous in u ∈ U , then sup can be replaced by max in Eq. (2.42) and
other formulas. In particular, there is a set of optimal stationary strategies
associated with the solution of Eq. (2.35). Theorem 2.17 about turnpikes
on the set of strategies can now be transferred directly to the situation in
question; the only difference is that optimal strategies (which need not exist
for nonstationary processes with continuous time) should be replaced by ε-
optimal strategies (i.e., strategies in which the mathematical expectation of
income differs from the optimal value at most by ε).


