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Abstract and Plan

Highlights: (i) Nonlinear Markov process: future depends on
the past not only via its present position, but also its present
distribution.
(ii) A nonlinear Markov semigroup can be considered as a
nonlinear deterministic dynamic system, though on a weird
state space of measures. However: probabilistic interpretation
makes the difference.
(iii) Including control, we extend the analysis to nonlinear
controlled Markov processes and games.
Plan:
(i) Nonlinear Markov process as LLN
(ii) Nonlinear Lévy processes.



First-order PDE link with deterministic Markov

processes

∂S

∂t
=

(
b(x),

∂S

∂x

)
=

d∑
j=1

bj(x)
∂S

∂xj
, x ∈ Rd , t ≥ 0. (1)

The solutions to the ODE ẋ = b(x) are called the
characteristics of the linear first-order PDE (1).
For S0 ∈ C 1Rd), S(t, x) = S0(X

x
t ) solves the equation (1).

Proposition
PDE and deterministic Markov processes. Let Ω be a
(closed) polyhedron in Rd and b(x) a vector-valued function
on Ω of the class C 1(Ω). Assume that for any x ∈ Ω there
exists a unique solution to the ODE Ẋ x

t = b(X x
t ) with the

initial condition x that stays in Ω for all times. Then the
operators Ttf (x) = f (X x

t ) form a Feller semigroup in C (Ω).



Interacting particles: state space
Suppose our initial state space is a finite collection {1, ..., d},
which can be interpreted as the types of a particle (say,
possible opinions of individuals on a certain subject). Let
Q(µ) = (Qij)(µ) be a family of Q-matrices depending on a
vector µ from the simplex

Σd = {µ = (µ1, ..., µd) ∈ Rd
+ :

d∑
j=1

= 1},

as on a parameter. Each such matrix specifies a Markov chain
on {1, ..., d} with the intensity of jumps

|Qii | = −Qii(µ) =
∑

j 6=i

Qij(µ).

Full state space S : sequences of d non-negative integers
N = (n1, ..., nd) (numbers of particles in each state).
|N | = n1 + ... + nd the total number of particles in state N .



Interacting particles: Markov chain

For i 6= j and a state N with ni > 0 denote by N ij the state
obtained from N by removing one particle of type i and adding
a particle of type j , that is ni and nj are changed to ni − 1 and
nj + 1 respectively.
Markov chain generator:

Lf (N) =
d∑

i=1

niQij(N/|N |)[f (N ij)− f (N)]. (2)

Probabilistic description via |Qii |(N/|N |)-exponential random
waiting times.
Such processes are usually called mean -field interacting
Markov chains (as their transitions depend on the empirical
measure N/|N | or the mean field).



Interacting particles: scaling
Denote h = 1/|N |. Scaling and normalizing:

Lhf (N/|N |) =
d∑

i=1

d∑
j=1

ni

|N | |N |Qij(N/|N |)[f (N ij/|N |)−f (N/|N |)],

(3)
or equivalently (ei basis in Rd)

Lhf (x) =
d∑

i=1

d∑
j=1

xiQij(x)
1

h
[f (x−hei+hej)−f (x)], x ∈ hZd

+.

(4)

lim
|N|→∞, N/|N|→x

Lhf (N/|N |) = Λf (x) =
∑

xiQij(x)[
∂f

∂xj
− ∂f

∂xi
](x)

=
∑

[xiQik(x)− xkQki(x)]
∂f

∂xk
(x).



Interacting particles: LLN limit

The limiting operator Λf is a first-order PDO with
characteristics equation

ẋk =
∑

i 6=k

[xiQik(x)− xkQki(x)] =
k∑

i=1

xiQik(x), k = 1, ..., d ,

(5)
called the kinetic equations for the process of interaction
described above. The characteristics specify the dynamics of
the deterministic Markov Feller process in Σd defined via the
generator Λ (and Proposition 1 above).

Proposition
Let Qij(µ) ∈ C 2(Σ). The processes hNt converge in
distribution to the deterministic process X x

t given by the
kinetic equation (characteristics) above.



Nonlinear Markov semigroups

A semigroup of measurable transformations of probability
measures is called a nonlinear Markov semigroup . One can
show that, under mild regularity assumption, each nonlinear
Markov semigroup on Σd (the set of probability laws on
{1, ..., d}) arises from equations of the form (5) (stochastic
representation for a nonlinear Markov chain).
We have shown that the solution to these equations describe
the dynamic law of large numbers(LLN) (as the limit
|N | → ∞) of the mean-field interacting Markov chains.
Applications in both direction: continuous – discrete –
continuous.



Interacting particles: fluctuations

Zt =
hNN

t − X x
t√

h
(6)

when hN → x and (hN − x)/
√

h tend to a finite limit, as
h = 1/|N | → 0.
Zt is a time non-homogeneous Markov with the propagator
generated by the family of operators

Atf = Otf + O(
√

h),

where

Otf (y) =
1

2

d∑
i ,j=1

Xt,iQij(Xt)

(
∂2f

∂y 2
j

− 2
∂2f

∂yj∂yi
+

∂2f

∂y 2
i

)

+
d∑

i ,j=1

[yiQij(Xt) + Xt,i(∇Qij(Xt), y)]

(
∂f

∂yj
− ∂f

∂yi

)
. (7)



Interacting particles: CLT
Operator Ot is a second-order PDO with a linear drift and
position-independent diffusion coefficients. Hence it generates
a Gaussian diffusion process (a kind of time non-homogeneous
OU process). By the same argument as in Proposition 2, we
arrive at the following.

Proposition
Dynamic CLT for simplest mean-field interactions. Let
all the elements Qij(µ) (of a given family of Q-matrices)
belong to C 2(Σ). Then the process of fluctuations (6)
converge (both in the sense of convergence of propagators and
the distributions on paths) to the Gaussian diffusion generated
by the second order PDO (7).

The examples of Markov chains of type (2) are numerous. For
instance, in modeling a pool of voters, the transition N → N ij

is interpreted as the change of opinion.



Interacting particles: binary and ternary

interactions
Similarly one can model binary, ternary or generally kth order
interaction.
Say, if any two particles i , j of different type (binary
interaction) can be transformed to a pair of type k , l (say, two
agents i , j communicated and i changed her opinion to j) with
rates Qkl

ij :

Lf (N) =
∑

i 6=j

d∑

k,l=1

ninjQ
kl
ij (N/|N |)[f (N ij ,kl)− f (N)],

where N ij ,kl is obtained from N by changing two particles of
type i , j to two particles of type k , l . Appropriate scaling leads
to

Λf =
∑

i 6=j

d∑

k,l=1

xixjQ
kl
ij

[
∂f

∂xk
+

∂f

∂xl
− ∂f

∂xj
− ∂f

∂xi

]
(x),

and the corresponding kinetic equations, with the r.h.s.
depending quadratically on the position.
More generally: dynamic LLN needs not be deterministic.



Nonlinear Markov semigroup: stochastic

representation

A nonlinear Markov semigroup with the finite state space
{1, ..., n} is a semigroup Φt , t ≥ 0, of continuous
transformations of Σn. As in the case of discrete time the
semigroup itself does not specify a process.
Stochastic representation for Φt :

Φt
j (µ) =

∑
i

µiPij(t, µ), t ≥ 0, µ ∈ Σn, (8)

where P(t, µ) = {Pij(t, µ)}n
i ,j=1 is a family of stochastic

matrices depending continuously on t ≥ 0 and µ ∈ Σn

(nonlinear transition probabilities).



Nonlinear Markov chain (continuous time)

Once a stochastic representation (8) for the semigroup Φt is
chosen one can define the corresponding stochastic process
started at µ ∈ Σn as a time nonhomogeneous Markov chain
with the transition probabilities from time s to time t being

pij(s, t, µ) = Pij(t − s, Φs(µ)).

Thus, to each trajectory of a nonlinear semigroup there
corresponds a tangent Markov process.
Stochastic representation for the semigroup depends on the
stochastic representation for the generator.



Example: replicator dynamics (RD)
The RD of the evolutionary game arising from the classical
paper-rock-scissors game has the form





dx

dt
= (y − z)x

dy

dt
= (z − x)y

dz

dt
= (x − y)z

(9)

Its generator has a clear stochastic representation with

Q(µ) =



− z 0 z

x − x 0

0 y − y


 (10)

where µ = (x , y , z).



Example: simplest epidemics (1)

Let X (t), L(t), Y (t) and Z (t) denote respectively the numbers
of susceptible, latent, infectious and removed individual at
time t and the positive coefficients λ, α, µ (which may actually
depend on X , L, Y , Z ) reflect the rates at which susceptible
individuals become infected, latent individuals become
infectious and infectious individuals become removed.
Basic model, written in terms of the proportions x = X/σ,
y = Y /σ, l = L/σ, z = Z/σ, where σ = X + L + Y + Z :





ẋ(t) = −σλx(t)y(t)

l̇(t) = σλx(t)y(t)− αl(t)

ẏ(t) = αl(t)− µy(t)

ż(t) = µy(t)

(11)

with x(t) + y(t) + l(t) + z(t) = 1.



Example: simplest epidemics (2)

Subject to the often made assumption that σλ, α and µ are
constants, the r.h.s. is an infinitesimal generator of a nonlinear
Markov chain in Σ4. This generator depends again
quadratically on its variable and has an obvious stochastic
representation with the infinitesimal stochastic matrix

Q(µ) =




− λy λy 0 0

0 − α α 0

0 0 − µ µ

0 0 0 0


 (12)

where µ = (x , l , y , z), yielding a natural probabilistic
interpretation to the dynamics (11).



Time nonhomogeneous Lévy processes: propagator

Ltf (x) =
1

2
(Gt∇,∇)f (x) + (bt ,∇f )(x)

+

∫
[f (x + y)− f (x)− (y ,∇f (x))1B1(y)]νt(dy). (13)

Proposition
For Lt with coefficients continuous in t, there exists a family
Φs,t of positive linear contractions in C∞(Rd) depending
strongly continuously on s ≤ t such that for any f ∈ C 2

∞(Rd)
the function fs = Φs,tf is the unique solution in C 2

∞(Rd) of
the Cauchy problem

ḟs = −Ls fs , s ≤ t, ft = f . (14)



Time nonhomogeneous Lévy processes: duality
Time nonhomogeneous Lévy processes (or additive process):
Markov process generated by the time-dependent family of the
operators Lt :

E(f (Xt)|Xs = x) = (Φs,tf )(x), f ∈ C (Rd).

Corollary
Dual operators on measures V t,s = (Φs,t)′ depend weakly
continuously on s, t and Lipschitz continuously in the norm
topology of the Banach dual (C 2

∞(Rd))′ to C 2
∞(Rd).

Moreover, for any µ ∈ P(Rd), V t,s(µ) yields the unique
solution of the weak Cauchy problem

d

dt
(f , µt) = (Ltf , µt), s ≤ t, µs = µ, (15)

which is meant to hold for any f ∈ C 2
∞(Rd).



Nonlinear Lévy processes: definition

Aµf (x) =
1

2
(G (µ)∇,∇)f (x) + (b(µ),∇f )(x)

+

∫
[f (x + y)− f (x)− (y ,∇f (x))1B1(y)]ν(µ, dy), (16)

depending on µ ∈ P(Rd).
Nonlinear Lévy semigroup generated by Aµ: semigroup V t of
weakly continuous transformations of P(Rd):
∀µ ∈ P(Rd), f ∈ C 2

∞(Rd), µt = V t(µ) solves the problem

d

dt
(f , µt) = (Aµt f , µt), t ≥ 0, µ0 = µ.

Nonlinear Lévy process with initial law µ: time
nonhomogeneous Lévy process generated by the family
AV tµf (x) and started with law µ at t = 0.



Nonlinear Lévy processes: basic well-posedness

Theorem
Suppose the coefficients of a family (16) depend on µ
Lipschitz continuously in the norm of the Banach space
(C 2

∞(Rd))′ dual to C 2
∞(Rd), i.e.

‖G (µ)−G (η)‖+‖b(µ)−b(η)‖+
∫

min(1, |y |2)|ν(µ, dy)−ν(η, dy)|

≤ κ‖µ− η‖(C2∞(Rd ))′ = κ sup
‖f ‖

C2∞(Rd )
≤1

|(f , µ− η)| (17)

with constant κ. Then there exists a unique nonlinear Lévy
semigroup generated by Aµ, and hence a unique nonlinear
Lévy process.

Condition (17) is not at all weird. It holds when the
coefficients G ,b, ν depend on µ via certain integrals (possibly
multiple) with smooth densities.



Further models and results

Models: Boltzmann, Smoluchovski, McKean-Vlasov,
Landau-Fokker-Planck evolutionary games, arbitrary
interacting (mean field or kth order interaction) Feller
processes, say interacting stable-like processes, including
manifolds, nonlinear quantum Markov proceses, control
nonlinear Markov processes and games
Results: Well-posedness, rate of convergence of LLN, and
CLT, long-time behavior. In particular: outstanding problem
on coagulation.
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Interacting Lévy Type Processes. Journ. Stat. Physics 126:3
(2007), 585-642.
[3] V.N. Kolokoltsov. The Lévy-Khintchine type operators
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