SDEs driven by nonlinear Lévy
noise (based partially on 'The
Lévy-Khintchine type
operators with variable
Lipschitz continuous
coefficients generate linear or
nonlinear Markov processes
and semigroups’ submitted to
PTRF)

Vassili N. Kolokoltsov™

February 8, 2010



PLAN:

1) What is 'SDEs driven by nonlinear Lévy
noise' 7 How usual SDEs (with and without
jumps) fit to this general scheme?

2) Main motivation: 'The Lévy-Khintchine
type operators with variable Lipschitz contin-
uous coefficients generate linear or nonlinear
Markov processes and semigroups’: Recon-

ciling the theory of SDEs with the theory of
Markov semigroups.

3) Example of further applications: curvilin-
ear OU processes



SDEs DRIVEN BY NONLINEAR LEVY
NOISE

AX; = dYy(X;) < X; = = + /Ot dYs(Xs) ds.
(1)

or more generally

dX; = dYi( Xy, L(Xt))

t
— Xy =z + /O dYs(Xs, £(X5)) ds,

where L£(£) denotes the law of a r.v. £ and
where Y;(z,u) is a family of Lévy processes
specified by their generators

Lz, 1) f (1) = 5 (G2 )V, V) f (2)+ bz 1), Y (2))

+ [+ ) — @) = (V@) )v(z, i dy).



One can construct solutions from the Euler
type approximation scheme. For instance,
take equation (1). Let Y!(z) be a collection
(depending on I = 0,1,2,...) of independent
families of the Lévy processes Y (x) depend-
ing measurably on x. Define the approxima-
tions XH7 by:

XPT=XET YL (XED), L(X(0) = p,

for it <t < (l+ 1)7, where £(X) means the
probability law of X.



Stochastic equation of the standard form

t t
X, =z +/O o(X,_)dBs +/O b(X,_)ds

n /Ot [ F(Xom, )N (dsdy),

where F' is a measurable mapping R™ x RY —
R™ and o maps R" to n x d-matrices and
N(dsdz) is the corresponding compensated
Poisson measure of jumps of the Lévy pro-
cess Y with the generator

Lf@) =+ [ a4y~ (@)~ (y, V) @) (dy),

having [ |y|2v(dy) < oo.

It complies with the above general scheme for

t -
Yi(2) = 0(2) By + b(2)t + /O | Fz )N (dsdy).
(2)

Unlike the general case the processes Y; are
given as functionals of a single process.



MARKOV PROCESSES WITH A GIVEN
GENERATOR

It is well known (the Courrége theorem) that
the generator L of a conservative (i.e. pre-
serving constants) Feller semigroup in R? is
conditionally positive (f > 0, f(x) = 0 —
Lf(x) > 0) and if its domain contains the
space C2(R%), then it has the following Lévy-
Khintchine form with variable coefficients:

L@) = J(G@)V, D)) + (), V1))

+ [ (et = @)= (TF @), )15, (1)), dy),

(3)
where G(x) is a symmetric non-negative ma-
trix and v(z,.) a Borel measure on R% (called
Lévy measure) such that

[ min(L, lyP)v(e;dy) < oo, v({0}) =0.
(4)
The inverse question on whether a given op-
erator of this form (or better to say its clo-
sure) actually generates a Feller semigroup is
nontrivial and attracted lots of attention.



Theorem 1 Under the assumption

[tr(\/G(azl — \/G(azg))Ql i + |b(z1) — b(z2)]

+Wo(v(zy,.),v(z2,.)) < kollz1 —xz2f.  (5)

(i) for any p € P(RY) N Mo(R?) there exists a
limit process X|' for the approximations X}""
such that

2 T M
supsupW(X ,X)SCtT,
1 sel0,t] 2\ ls/mlme T ()7

and even stronger

Slljp W22,t,un (XHTe XY < c(t) Ty,

(ii) the distributions uy = L(X}") depend 1/2-
Holder continuous on t in the metric W and
Lipschitz continuously on the initial condi-
tion:

W (X}, X)) < «(T)W3 (1, 1);



(iii) the processes

M) = FOXE) — §() — [[(LF(XE) ds

are martingales for any f € C2(R%), where

L@) = J(G@)V, D)) + (), V1))

+ [+ — f@) = (0, V) @)]w(a, dy),

in other words, the process Xf solves the cor-
responding martingale problem;

(iv) the operators Tif(x) = Ef(X{) form a
conservative Feller semigroup preserving the
space of Lipschitz continuous functions and
with the domain of generator containing C2 (R%),
where it is given by (3).



CURVILINEAR OU PROCESSES

The analog of the free motion * = p,p =
0 on a Riemannian manifold (M, g) is called
the geodesic flow on M and is defined as the
Hamiltonian system on the cotangent bundle
T*M specified by the Hamiltonian

H(zp) = (G@pp), G@) =g 1),

describing the Kinetic energy in a curvilinear
space, the geodesic flow equations being

r = G(z)p

6
p= —%(g—ip,p) (6)



In physics, stochastics often appears as a model
of heat bath obtained by adding a homo-
geneous noise to the second equation of a
Hamiltonian system, i.e. by changing the
above to

(. oOH

€r — 8—p
X 9H (7)
\ 856

where Y; is a Lévy process. In the most stud-
ied models Y; stands for the BM with the vari-
ance proportional to the square root of the
temperature. To balance the energy pumped
into the system by the noise, one often adds
friction to the system, i.e. a non conservative
force proportional to the velocity. In case of
initial free motion this yields the system

rT=7p

B (8)
dp = —apdt + dY;

with a nonnegative matrix «, called the Ornstein-

Uhlenbeck (OU) system driven by the Lévy

noise Y;. Especially well studied are the cases
when Y; is BM or a stable process.



If a random force is not homogeneous, as
should be the case on a manifold or in a non-
homogeneous media, one is led to consider
Y; to be a family of processes depending on
the position x € M leading naturally to SDEs
studied above. In particular, the curvilinear
analog of the OU system is the process in
T*M specified by the equation

(. OH
YT o
| b (9)
OH
dp = —a—dt —a(x)pdt + dYi(x)
\ T

where H(z,p) = (G(x)p,p)/2. Assuming for
simplicity that all Y; are zero mean Lévy pro-
cesses with the Lévy measure being abso-
lutely continuous with respect to the invariant
Lebesgue measure on T;M and having finite
outer first moment (f\y\>1 ly|lv(dy) < o0), the
generator of Y; can be written in the form

VI() = (A@Y, ) ()

(det G(z))1/2dq
w(x,q)

+ [+ @) — F®) = Vi (p)d]



with a certain positive w(x,q). Hence the cor-
responding full generator of the process given
by (9) has the form

— 8—Hﬁ — 8_Hﬁ — (alzx g
LIp) = o " vy~ (0P,
1 8f(x, p)
+5tr (A(X) 8p2 )
0 1/2
+/[f(afap+q)—f(w,p)— f(x’p)q](detG(x)) P
Op w(z,p)

Of course in order to have a true system on
a manifold, this expression should be invari-
ant under the change of coordinate, which
requires certain transformation rules for the
coefficient o, A,w. This issue is settled in the
next statement.



Proposition 1 Operator L is invariant under
the change of coordinates

o= (5)
L +— x, P D= "N~ D,
o0x
if and only if w is a function on T*M, « is
(1,1)-tensor and A is a (0,2)-tensor, i.e.

~

w(z,p) = w(z(Z),p(Z,p)),

A7) = (%)TA(;E(,@))%.

o)
81

Of particular interest are processes depend-
ing only on the Riemannian structure. For
instance (9) defines the curvilinear OU pro-
cess of diffusion type if Yy has the generator

UI) = S(9(0)V. V) ()

and of the 3- stable type, 3 € (0,2), ifY; has

the generator

(det G(z))1/2dq
(g, G(z)q)P+1)/2

PI®) = [+ —f () -V ()l



An alternative way to extend OU processes
to manifolds is via embedding to Euclidean
spaces. Namely, observe that one can write
dY; = %det in R"* meaning that adding a
L évy noise force is equivalent to adding the
singular nonhomogeneous potential —zY; (po-
sition multiplied by the noise) to the Hamil-
tonian function. Assume now that a Rie-
mannian manifold (M, g) is embedded to the
Euclidean space R"™ via a smooth mapping
r . M — R"™ and that the random environ-
ment in R™ is modeled by the Lévy process
Y;. The position of a point x in R™ is now
r(x) so that the analog of xY; is the product
r(x)Y:, and the term Y; from (7) should have
as the curvilinear modification the term
or\< Y orJ id
(%> dY; = {jgl @dYt Yie=1

that yields the projection of the 'free noise’
Y; on the cotangent bundle to M at x.



In particular, the stochastic (or stochastically
perturbed) geodesic flow induced by the em-
bedding r can be defined by the stochastic
system

z = G(x)p

1 0G or\ T (11)
dp = ——(—— dt +— ) dY5
P 2(8azp’p) (890) t

which represents simultaneously the natural
stochastic perturbation of the geodesic flow
(6) and the curvilinear analog of the stochas-
tically perturbed free motion x = p,dp = dY;.



