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PLAN:

1) What is ’SDEs driven by nonlinear Lévy

noise’? How usual SDEs (with and without

jumps) fit to this general scheme?

2) Main motivation: ’The Lévy-Khintchine

type operators with variable Lipschitz contin-

uous coefficients generate linear or nonlinear

Markov processes and semigroups’: Recon-

ciling the theory of SDEs with the theory of

Markov semigroups.

3) Example of further applications: curvilin-

ear OU processes



SDEs DRIVEN BY NONLINEAR LÉVY

NOISE

dXt = dYt(Xt) ⇐⇒ Xt = x +
∫ t

0
dYs(Xs) ds.

(1)

or more generally

dXt = dYt(Xt,L(Xt))

⇐⇒ Xt = x +
∫ t

0
dYs(Xs,L(Xs)) ds,

where L(ξ) denotes the law of a r.v. ξ and

where Yt(z, µ) is a family of Lévy processes

specified by their generators

L[z, µ]f(x) =
1

2
(G(z, µ)∇,∇)f(x)+(b(z, µ),∇f(x))

+
∫

(f(x + y)− f(x)− (∇f(x), y))ν(z, µ; dy).



One can construct solutions from the Euler

type approximation scheme. For instance,

take equation (1). Let Y l
τ(x) be a collection

(depending on l = 0,1,2, ...) of independent

families of the Lévy processes Yτ(x) depend-

ing measurably on x. Define the approxima-

tions Xµ,τ by:

X
µ,τ
t = X

µ,τ
lτ + Y l

t−lτ(X
µ,τ
lτ ), L(Xτ

µ(0)) = µ,

for lτ < t ≤ (l + 1)τ , where L(X) means the

probability law of X.



Stochastic equation of the standard form

Xt = x +
∫ t

0
σ(Xs−)dBs +

∫ t

0
b(Xs−)ds

+
∫ t

0

∫
F (Xs−, y)Ñ(dsdy),

where F is a measurable mapping Rn×Rd 7→
Rn and σ maps Rn to n × d-matrices and

Ñ(dsdx) is the corresponding compensated

Poisson measure of jumps of the Lévy pro-

cess Y with the generator

Lf(x) = +
∫

[f(x+y)−f(x)−(y,∇)f(x)]ν(dy),

having
∫ |y|2ν(dy) < ∞.

It complies with the above general scheme for

Yt(z) = σ(z)Bt + b(z)t +
∫ t

0

∫
F (z, y)Ñ(dsdy).

(2)

Unlike the general case the processes Yt are

given as functionals of a single process.



MARKOV PROCESSES WITH A GIVEN

GENERATOR

It is well known (the Courrège theorem) that

the generator L of a conservative (i.e. pre-

serving constants) Feller semigroup in Rd is

conditionally positive (f ≥ 0, f(x) = 0 =⇒
Lf(x) ≥ 0) and if its domain contains the

space C2
c (Rd), then it has the following Lévy-

Khintchine form with variable coefficients:

Lf(x) =
1

2
(G(x)∇,∇)f(x) + (b(x),∇f(x))

+
∫

(f(x+y)−f(x)−(∇f(x), y)1B1
(y))ν(x, dy),

(3)

where G(x) is a symmetric non-negative ma-

trix and ν(x, .) a Borel measure on Rd (called

Lévy measure) such that
∫

Rn
min(1, |y|2)ν(x; dy) < ∞, ν({0}) = 0.

(4)

The inverse question on whether a given op-

erator of this form (or better to say its clo-

sure) actually generates a Feller semigroup is

nontrivial and attracted lots of attention.



Theorem 1 Under the assumption

[
tr(

√
G(x1)−

√
G(x2))

2
]1/2

+ |b(x1)− b(x2)|

+W2(ν(x1, .), ν(x2, .)) ≤ κ2‖x1 − x2‖. (5)

(i) for any µ ∈ P(Rd)∩M2(R
d) there exists a

limit process X
µ
t for the approximations X

µ,τ
t

such that

sup
µ

sup
s∈[0,t]

W2
2

(
X

µ,τk
[s/τk]τk

, X
µ
t

)
≤ c(t)τk,

and even stronger

sup
µ

W2
2,t,un (Xµ,τk, Xµ) ≤ c(t)τk,

(ii) the distributions µt = L(Xµ
t ) depend 1/2-

Hölder continuous on t in the metric W2 and

Lipschitz continuously on the initial condi-

tion:

W2
2 (Xµ

t , X
η
t ) ≤ c(T )W2

2 (µ, η);



(iii) the processes

M(t) = f(Xµ
t )− f(x)−

∫ t

0
(Lf(Xµ

s ) ds

are martingales for any f ∈ C2(Rd), where

Lf(x) =
1

2
(G(x)∇,∇)f(x) + (b(x),∇f(x))

+
∫

[f(x + y)− f(x)− (y,∇)f(x)]ν(x, dy),

in other words, the process X
µ
t solves the cor-

responding martingale problem;

(iv) the operators Ttf(x) = Ef(Xx
t ) form a

conservative Feller semigroup preserving the

space of Lipschitz continuous functions and

with the domain of generator containing C2∞(Rd),

where it is given by (3).



CURVILINEAR OU PROCESSES

The analog of the free motion ẋ = p, ṗ =

0 on a Riemannian manifold (M, g) is called

the geodesic flow on M and is defined as the

Hamiltonian system on the cotangent bundle

T ?M specified by the Hamiltonian

H(x, p) =
1

2
(G(x)p, p), G(x) = g−1(x),

describing the kinetic energy in a curvilinear

space, the geodesic flow equations being




ẋ = G(x)p

ṗ = −1

2
(
∂G

∂x
p, p)

(6)



In physics, stochastics often appears as a model

of heat bath obtained by adding a homo-

geneous noise to the second equation of a

Hamiltonian system, i.e. by changing the

above to




ẋ =
∂H

∂p

dp = −∂H

∂x
dt + dYt,

(7)

where Yt is a Lévy process. In the most stud-

ied models Yt stands for the BM with the vari-

ance proportional to the square root of the

temperature. To balance the energy pumped

into the system by the noise, one often adds

friction to the system, i.e. a non conservative

force proportional to the velocity. In case of

initial free motion this yields the system
{

ẋ = p

dp = −αp dt + dYt
(8)

with a nonnegative matrix α, called the Ornstein-

Uhlenbeck (OU) system driven by the Lévy

noise Yt. Especially well studied are the cases

when Yt is BM or a stable process.



If a random force is not homogeneous, as

should be the case on a manifold or in a non-

homogeneous media, one is led to consider

Yt to be a family of processes depending on

the position x ∈ M leading naturally to SDEs

studied above. In particular, the curvilinear

analog of the OU system is the process in

T ?M specified by the equation




ẋ =
∂H

∂p

dp = −∂H

∂x
dt− α(x)p dt + dYt(x)

(9)

where H(x, p) = (G(x)p, p)/2. Assuming for

simplicity that all Yt are zero mean Lévy pro-

cesses with the Lévy measure being abso-

lutely continuous with respect to the invariant

Lebesgue measure on T ?
xM and having finite

outer first moment (
∫
|y|>1 |y|ν(dy) < ∞), the

generator of Yt can be written in the form

Lx
Y f(p) =

1

2
(A(x)∇,∇)f(p)

+
∫

[f(p + q)− f(p)−∇f(p)q]
(detG(x))1/2dq

ω(x, q)



with a certain positive ω(x, q). Hence the cor-

responding full generator of the process given

by (9) has the form

Lf(x, p) =
∂H

∂p

∂f

∂x
− ∂H

∂x

∂f

∂p
− (α(x)p,

∂f

∂p
)

+
1

2
tr

(
A(x)

∂2f(x,p)

∂p2

)

+
∫

[f(x, p+q)−f(x, p)−∂f(x, p)

∂p
q]

(detG(x))1/2dp

ω(x, p)
.

Of course in order to have a true system on

a manifold, this expression should be invari-

ant under the change of coordinate, which

requires certain transformation rules for the

coefficient α, A, ω. This issue is settled in the

next statement.



Proposition 1 Operator L is invariant under

the change of coordinates

x 7→ x̃, p 7→ p̃ =
(

∂x

∂x̃

)T

p,

if and only if ω is a function on T ?M , α is

(1,1)-tensor and A is a (0,2)-tensor, i.e.

ω̃(x̃, p̃) = ω(x(x̃), p(x̃, p̃)),

α̃(x̃) =
(

∂x

∂x̃

)T

α(x(x̃))
(

∂x̃

∂x

)T

,

Ã(x̃) =
(

∂x

∂x̃

)T

A(x(x̃))
∂x

∂x̃
.

(10)

Of particular interest are processes depend-

ing only on the Riemannian structure. For

instance (9) defines the curvilinear OU pro-

cess of diffusion type if Yt has the generator

Lx
Y f(p) =

1

2
(g(x)∇,∇)f(p)

and of the β- stable type, β ∈ (0,2), if Yt has

the generator

Lx
Y f(p) =

∫
[f(p+q)−f(p)−∇f(p)q]

(detG(x))1/2dq

(q, G(x)q)(β+1)/2
.



An alternative way to extend OU processes

to manifolds is via embedding to Euclidean

spaces. Namely, observe that one can write

dYt = ∂
∂xxdYt in Rn meaning that adding a

Lévy noise force is equivalent to adding the

singular nonhomogeneous potential −xẎt (po-

sition multiplied by the noise) to the Hamil-

tonian function. Assume now that a Rie-

mannian manifold (M, g) is embedded to the

Euclidean space Rn via a smooth mapping

r : M 7→ Rn and that the random environ-

ment in Rn is modeled by the Lévy process

Yt. The position of a point x in Rn is now

r(x) so that the analog of xYt is the product

r(x)Yt, and the term Yt from (7) should have

as the curvilinear modification the term
(

∂r

∂x

)T

dYt = {
n∑

j=1

∂rj

∂xi
dY

j
t }di=1,

that yields the projection of the ’free noise’

Yt on the cotangent bundle to M at x.



In particular, the stochastic (or stochastically

perturbed) geodesic flow induced by the em-

bedding r can be defined by the stochastic

system




ẋ = G(x)p

dp = −1

2
(
∂G

∂x
p, p)dt +

(
∂r

∂x

)T

dYt

(11)

which represents simultaneously the natural

stochastic perturbation of the geodesic flow

(6) and the curvilinear analog of the stochas-

tically perturbed free motion ẋ = p, dp = dYt.


