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Highlights

Game theoretic approach to option pricing (interval model):
Different kind of generalizations of classical BS and CRR
formulae with more rough assumptions on the underlying
assets evolution.
A mysterious class of discrete-time dynamic games where the
calculation of the competitive Belmann operator of a
complicated form can be done explicitly on the final payoffs
given by sub-modular functions (which includes the multiple
strike rainbow options).
A natural unique selection among multiple risk neutral
measures arising in incomplete markets for options specified by
sub-modular functions.
Explicit formulae and new numeric schemes are developed.



Interval model for a market

Market with several securities in discrete time k = 1, 2, ...:
The risk-free bonds (bank account), priced Bk ,
and J common stocks, J = 1, 2..., priced S i

k , i ∈ {1, 2, ..., J}.
Bk+1 = ρBk , ρ ≥ 1 is a constant interest rate,
S i

k+1 = ξi
k+1S

i
k , where ξi

k , i ∈ {1, 2, ..., J}, are unknown
sequences taking values in some fixed intervals
Mi = [di , ui ] ⊂ R (interval model).
This model generalizes the colored version of the classical CRR
model in a natural way.
In the latter a sequence ξi

k is confined to take values only
among two boundary points di , ui , and it is supposed to be
random with some given distribution.



Rainbow (or colored) European Call Options
A premium function f of J variables specifies the type of an
option.
Standard examples (S1, S2, ..., SJ represent the expiration
values of the underlying assets, and K , K1, ..., KJ represent the
strike prices):
Option delivering the best of J risky assets and cash

f (S1, S2, ..., SJ) = max(S1, S2, ..., SJ , K ), (1)

Calls on the maximum of J risky assets

f (S1, S2, ..., SJ) = max(0, max(S1, S2, ..., SJ)− K ), (2)

Multiple-strike options

f (S1, S2, ..., SJ) = max(0, S1−K1, S
2−K2, ...., S

J−KJ), (3)

Portfolio options

f (S1, S2, ..., SJ) = max(0, n1S
1 + n2S

2 + ... + nJS
J −K ), (4)

Spread options: f (S1, S2) = max(0, (S2 − S1)− K ).



Investor’s (buyer of an option) control: one step
Xk the capital of the investor at the time k = 1, 2, .... At each
time k − 1 the investor determines his portfolio by choosing
the numbers γ i

k of common stocks of each kind to be held so
that the structure of the capital is represented by the formula

Xk−1 =
J∑

i=1

γ i
kS

i
k−1 + (Xk−1 −

J∑
i=1

γ i
kS

i
k−1),

where the expression in bracket corresponds to the part of his
capital laid on the bank account. The control parameters γ i

k

can take all real values, i.e. short selling and borrowing are
allowed. The value ξk becomes known in the moment k and
thus the capital at the moment k becomes

Xk =
J∑

i=1

γ i
kξ

i
kS

i
k−1 + ρ(Xk−1 −

J∑
i=1

γ i
kS

i
k−1).



Investor’s control: n step game
If n is the maturity date, this procedures repeats n times
starting from some initial capital X = X0 (selling price of an
option) and at the end the investor is obliged to pay the
premium f to the buyer.
Thus the (final) income of the investor equals

G (Xn, S
1
n , S2

n , ..., SJ
n ) = Xn − f (S1

n , S2
n , ..., SJ

n ). (5)

The evolution of the capital can thus be described by the
dynamic n-step game of the investor (strategies are sequences
of real vectors (γ1, ..., γn) (with γj = (γ1

j , ..., γ
J
j ))) with the

Nature (characterized by unknown parameters ξi
k).

A position of the game at any time k is characterized by J + 1
non-negative numbers Xk , S

1
k , ..., SJ

k with the final income
specified by the function

G (X , S1, ..., SJ) = X − f (S1, ..., SJ) (6)



Robust control (guaranteed payoffs, worst case

scenario)

Minmax payoff (guaranteed income) with the final income G
in a one step game with the initial conditions X , S1, ..., SJ is
given by the Bellman operator

BG (X , S1, ..., SJ)

= max
γ

min
ξ

G (ρX +
J∑

i=1

γ iξiS i − ρ

J∑
i=1

γ iS i , ξ1S1, ..., ξJSJ),

and the guaranteed income in the n step game with the initial
conditions X0, S

1
0 , ..., SJ

0 is

BnG (X0, S
1
0 , ..., SJ

0 ).



Reduced Bellman operator

In our model G is given by (6).
As the class of function G of the form

ρkX − g(S1, ..., SJ)

is clearly invariant under the action of B, it follows that in our
model the guaranteed income in the n step game equals

ρnX0 − (Bnf )(S1
0 , ..., SJ

0 ), (7)

where the reduced Bellman operator is defined as:

(Bf )(z1, ..., zJ) = min
γ

max
ξ

[f (ξ1z1, ξ2z2, ..., ξJzJ)−
J∑

i=1

γ iz i(ξi−ρ)].

(8)



Hedging

Main definition. A strategy γ i
1, ..., γ

i
n, i = 1, ..., J , of the

investor is called a hedge, if for any sequence (ξ1, ..., ξn) (with
ξj = (ξ1

j , ..., ξ
J
j )) the investor is able to meet his obligations,

i.e.
G (Xn, S

1
n , ..., SJ

n ) ≥ 0.

The minimal value of the capital X0 for which the hedge exists
is called the hedging price H of an option.

Theorem (Game theory for option pricing.)
The minimal value of X0 for which the income of the investor
is not negative (and which by definition is the hedge price H)
is given by

Hn =
1

ρn
(Bnf )(S1

0 , ..., SJ
0 ). (9)



Example. Standard CRR: J=1
J = 1 and f is convex non-decreasing (as for the standard
European call with f (S) = max(S − K , 0)).
Recall however that our assumptions are more general, we are
working with the interval model.

(Bf )(z) = min
γ

max
ξ∈M

[f (ξz)− γz(ξi − ρ)],

where M = [d , u] ⊂ R. By convexity,

(Bf )(z) = min
γ

max[f (dz)− γz(d − ρ), f (uz)− γz(u − ρ)].

Clearly the minimum over γ is attained at

γh = γh(z , [f ]) =
f (uz)− f (dz)

z(u − d)
,

leading to

(Bf )(z) =

[
ρ− d

u − d
f (uz) +

u − ρ

u − d
f (dz)

]
.



Example J=1 completed

Clearly this operator is linear in the space of continuous
functions on the positive half-line and preserves the set of
convex non-decreasing function. Hence one can use this
formula n times to find the hedge Hn = ρ−n(Bnf )(S0) leading
to the following classical CRR formula

Hn = ρ−n
n∑

k=0

C k
n

(
ρ− d

u − d

)k (
u − ρ

u − d

)n−k

f (ukdn−kS0),

where C k
n are the standard binomial coefficients.



Example J=2 (two colors)
A nontrivial moment about this case is the possibility to
calculate the Bellman operator again explicitly, but under
certain additional assumption on f , which are remarkably
satisfied for functions (1), (2) and (3) and with final formula
depending on certain ”coupling coefficient” reflecting the
correlation between possible jumps of the first and second
common stocks prices.
A function f : R2

+ 7→ R+ is called sub-modular if it satisfies
the inequality

f (z1, ω2) + f (ω1, z2)− f (z1, z2)− f (ω1, ω2) ≥ 0

for every z1 < ω1 and z2 < ω2. A function f : Rd
+ 7→ R+ is

sub-modular whenever it is sub-modular with respect to every
two variables.
Remark. If f is twice continuously differentiable, then it is
sub-modular if and only if ∂2f

∂zi∂zj
≤ 0 for all i 6= j .



Example J=2 (two colors) continued

Theorem
Let J = 2, f be convex sub-modular, and denote

κ =
(u1u2 − d1d2)− ρ(u1 − d1 + u2 − d2)

(u1 − d1)(u2 − d2)
. (10)

If κ ≥ 0, then (Bf )(z1, z2) equals

ρ− d1

u1 − d1
f (u1z1, d2z2) +

ρ− d2

u2 − d2
f (d1z1, u2z2) + κf (d1z1, d2z2),

If κ ≤ 0, the (Bf )(z1, z2) equals

u1 − ρ

u1 − d1
f (d1z1, u2z2) +

u2 − ρ

u2 − d2
f (u1z1, d2z2) + |κ|f (u1z1, u2z2),



Example J=2 (two colors) completed

The corresponding minimax strategies γh1, γh2 can be also
written explicitly.
Again by linearity, the powers of B can be found. Say, if κ = 0,

Ch = ρ−n
n∑

k=0

C k
n

(
ρ− d1

u1 − d1

)k (
ρ− d2

u2 − d2

)n−k

f (uk
1dn−k

1 S1
0 , dk

2 un−k
2 S2

0 ).



Example J=3 (three colors): setting I

In case J > 2 quite new qualitative effects can be observed.
Namely the correspondent Bellman operator may turn out to
be not linear, as above, but become a Bellman operator of a
controlled Markov chain.
Denote vectors by bold letters , i.e. z = (z1, z2..., zJ).
For a set I ⊂ {1, 2, ..., J} let us denote by fI (z) the value of
f (ξ1z1,ξ

2z2, ..., ξ
JzJ) with ξi = di for i ∈ I and ξi = ui for

i /∈ I . For example, f{1,3}(z) = f (d1z1, u2z2, d3z3).
Suppose 0 < di < r < ui for all i ∈ {1, 2, ..., J} (otherwise
trivial).



Example J=3 (three colors): setting II

Introduce the following coefficients:

αI = 1−
∑

j∈I

uj − r

uj − dj
, where I ⊂ {1, 2, ..., J}.

In particular, in case J = 3

α123 =
(
1− u1−r

u1−d1
− u2−r

u2−d2
− u3−r

u3−d3

)

α12 =
(
1− u1−r

u1−d1
− u2−r

u2−d2

)

α13 =
(
1− u1−r

u1−d1
− u3−r

u3−d3

)

α23 =
(
1− u2−r

u2−d2
− u3−r

u3−d3

)
.

(11)



Example J=3 (three colors): main result I

Theorem
Let J = 3 and f be convex and sub-modular.
(i) If α123 ≥ 0, then

(Bf )(z) =
1

r
(α123f∅(z)

+
u1 − r

u1 − d1
f{1}(z) +

u2 − r

u2 − d2
f{2}(z) +

u3 − r

u3 − d3
f{3}(z)). (12)

(ii) If α123 ≤ −1, then

(Bf )(z) =
1

r
(−(α123 + 1)f{1,2,3}(z)

−d1 − r

u1−d1
f{2,3}(z)− d2 − r

u2−d2
f{1,3}(z)− d3 − r

u3−d3
f{1,2}(z)). (13)



Example J=3 (three colors): main result II

Theorem
As above, but now 0 ≥ α123 ≥ −1.
If α12 ≥ 0, α13 ≥ 0 and α23 ≥ 0, then

(Bf )(z) =
1

r
max(I , II , II ),

I = −α123f{1,2}(z) + α13f{2}(z) + α23f{1}(z) +
u3 − r

u3 − d3
f{3}(z),

II = −α123f{1,3}(z) + α12f{3}(z) + α23f{1}(z) +
u2 − r

u2 − d2
f{2}(z),

III = −α123f{2,3}(z) + α12f{3}(z) + α13f{2}(z) +
u1 − r

u1 − d1
f{1}(z).

For the cases (i) αij ≤ 0, αjk ≥ 0, αik ≥ 0, and (ii) αij ≥ 0,
αjk ≤ 0, αik ≤ 0, where {i , j , k} is an arbitrary permutation of
the set {1, 2, 3}, similar explicit formulae are available.



Example J=3 (three colors): recursion
Denote by C ijk

n the coefficient in the polynomial expansion

(ε1 + ε2 + ε3 + ε4)
n =

∑

i+j+k≤n

C ijk
n εn−i−j−k

1 εi
2ε

j
3ε

k
4 .

Corollary
If α123 ≥ 0, the hedge price is equal to:

Ch = 1
ρn

∑
i ,j ,k∈Pn

C ijk
n (α123)

n−i−j−k( u1−r
u1−d1

)i( u2−r
u2−d2

)j( u3−r
u3−d3

)k

f (d i
1u

n−i
1 S1

0 , d j
2u

n−j
2 S2

0 , dk
3 un−k

3 S3
0 ),

(14)
and if α123 ≤ −1,

Ch = 1
rn

∑
i ,j ,k∈Pn

C ijk
n (−α123 − 1)n−j−i−k( r−d1

u1−d1
)i( r−d2

u2−d2
)j( r−d3

u3−d3
)k

f (dn−i
1 ui

1S
1
0 , dn−j

2 uj
2S

2
0 , dn−k

3 uk
3S3

0 ),
(15)

where Pn = {i , j , k ≥ 0 : i + j + k ≤ n}.



Probabilistic interpretation I
Define a Markov process Z t , t = 0, 1, 2..., on Rd

+: for
Z t = z ∈ Rd

+ there are four possible positions of the process at
the next time t + 1, namely (u1z1, u2z2, u3z3),
(d1z1, u2z2, u3z3), (u1z1, d2z2, u3z3), (u1z1, u2z2, d3z3), and
they can occur with probabilities

Pu1z1,u2z2,u3z3
z = α123, P

d1z1,u2z2,u3z3
z =

u1 − r

u1 − d1
,

Pu1z1,d2z2,u3z3
z =

u2 − r

u2 − d2
, Pu1z1,u2z2,d3z3

z =
u3 − r

u3 − d3
,

respectively. Since there are only finite number of possible
jumps this Markov process is in fact a Markov chain.

Theorem
If α123 ≥ 0 then

(Bnf )(z) =Ezf (zn), (16)

where Ez is the expectation of the process starting at z.



Risk neutral probability selector

The probabilities

(
u1 − r

u1 − d1
,

u2 − r

u2 − d2
,

u3 − r

u3 − d3
, α123)

are called risk-neutral probabilities, as with these probabilities
discounted stock prices become martingales.
Important:
Our method yields a unique selector among the
(J − 1)-parameter family of the risk -neutral probabilities for
the incomplete market specified by our interval model.



Probabilistic interpretation II
In the case when 0 ≥ α123 ≥ −1, our Bellman operator (8)
can be written in the form of the Bellman operator of a
controlled Markov process, namely

(Bf )(z) = max
i=1,2,3

4∑
j=1

P
I i
j (z)

z f (I i
j (z)). (17)

For example, for i = 1, I 1
j (z), j = 1, 2, 3, 4, could be the points

I 1
1 (z) = (d1z1, d2z2, u3z3), I

1
2 (z) =(d1z1, u2z2, u3z3),

I 1
3 (z) = (u1z1, d2z2, u3z3), I

1
4 (z) =(u1z1, u2z2, d3z3)

and the corresponding probabilities of transitions from z to
I 1
j (z) are given by

P
I 1
1 (z)

z = −α123, P
I 1
2 (z)

z = α23, P
I 1
3 (z)

z = α13, P
I 1
4 (z)

z =
u3 − r

u3 − d3
.



Concluding remarks
Representation (17) shows in particular that in this case the
solution can not be written in form (16) and hence the
obtained formula differs from what one can expect from the
usual stochastic analysis approach to option pricing.
Problems. From a surprisingly simple linear form (12 ) and
(13) of min-max Bellman operator (8) arises the question
whether it can be generalized to other options, for example,
those depending on J > 3 common stocks.
Another point to notice is an unexpectedly long and technical
proof of the Theorems above resulting from a number of
strange coincidence and cancelations. This leads to the
following question for the theory of multistep dynamic games.
What is the general justification for these cancelations and/or
what is the class of game theoretic Bellman operators that can
be reduced to a simpler Bellman operator of a controlled
Markov chain?
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