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X is a locally compact separable metric space;

Xj = X × · · · ×X (j times)

X = ∪∞j=0Xj,

Csym(X ) = C(SX )

Pairing

(f, ρ) =
∫

f(x)ρ(dx)

= f0ρ0 +
∞∑

n=1

∫
f(x1, ..., xn)ρ(dx1 · · · dxn),

f ∈ Csym(X ), ρ ∈M(X ).

Inclusion SX to M(X):

x = (x1, ..., xl) 7→ δx1 + · · ·+ δxl = δx,

Decomposable measures (states):

(Y ⊗)n(dx1 · · · dxn)

= Y ⊗n(dx1 · · · dxn) = Y (dx1) · · ·Y (dxn)



Decomposable observables (multiplicative or

additive)

(Q⊗)n(x1, ..., xn) = Q⊗n(x1, ..., xn) = Q(x1) · · ·Q(xn)

and

(Q⊕)(x1, ..., xn) = Q(x1) + · · ·+ Q(xn)

Binary particle interaction of pure jump is

specified by a transition kernel

P2(x1, x2; dy) = {P2
m(x1, x2; dy1 · · · dym)}

with the intensity

P2(x1, x2) =
∫

X
P2(x1, x2; dy)

=
∞∑

m=0

∫

Xm
P2

m(x1, x2; dy1 · · · dym).

The generator of interacting system is

(G2f)(x1, ..., xn) =
∑

I⊂{1,...,.n},|I|=2

∫
(f(xĪ ,y)− f(x1, ..., xn))P

2(xI , dy)



=
∞∑

m=0

∑

I⊂{1,...,.n},|I|=2

∫
(f(xĪ , y1, ..., ym)−f(x1, ..., xn))P

k
m(xI; dy1...dym).

Probabilistic description.

Interaction of kth order is specified by a tran-

sition kernel

P k(x1, ..., xk; dy) = {P k
m(x1, ..., xk; dy1 · · · dym)}

leading to the following generator of k-ary

interacting particles:

(Gkf)(x1, ..., xn)

=
∑

I⊂{1,...,n},|I|=k

∫
(f(xĪ ,y)−f(x1, ..., xn))P

k(xI , dy).

Interactions of all orders up to k, are given

by the generator

G≤kf =
k∑

l=1

Glf.



Changing the state space according to map-

ping

x = (x1, ..., xl) 7→ δx1 + · · ·+ δxl = δx,

yields the Markov process on M+
δ (X).

Scaling: empirical measures δx1+· · ·+δxn by a

factor h and the operator of k-ary interactions

by a factor hk−1.

Λh
kF (hδx) = hk−1 ∑

I⊂{1,...,n},|I|=k

∫

X

[F (hδx − hδxI + hδy)− F (hν)]P (xI; dy),

Λh
≤kF (hδx) =

k∑

l=1

Λh
l F (hδx).

Aim: limit h → 0 with hδx converging to a

finite measure (h is the inverse of the number

of particles).



Applying the obvious equation
∑

I⊂{1,...,n},|I|=2

f(xI) =

1

2

∫ ∫
f(z1, z2)δx(dz1)δx(dz2)

−1

2

∫
f(z, z)δx(dz),

which holds for any f ∈ Csym(X2) and x =

(x1, . . . , xn) ∈ Xn:

Λh
2F (hδx) = −1

2

∫

X

∫

X

[F (hδx−2hδz+hδy)−F (hδx)]P (z, z; dy)(hδx)(dz)

+
1

2h

∫

X

∫

X2
[F (hδx−hδz1−hδz2+hδy)−F (hδx)]

P (z1, z2; dy)(hδx)(dz1)(hδx)(dz2).



On the linear functions

Fg(µ) =
∫

g(y)µ(dy) = (g, µ)

this operator acts as

Λh
2Fg(hδx) =

1

2

∫

X

∫

X2
[g⊕(y)− g⊕(z1, z2)]

P (z1, z2; dy)(hδx)(dz1)(hδx)(dz2)

−1

2
h

∫

X

∫

X
[g⊕(y)−g⊕(z, z)]P (z, z; dy)(hδx)(dz).

Hence, h → 0 and hδx → µ (in other words,

that the number of particles tends to infin-

ity, but the ”whole mass” remains finite), the

evolution equation Ḟ = Λh
2F on linear func-

tionals F = Fg tends to the equation

d

dt
(g, µt) = Λ2Fg(µt) =

1

2

∫

X

∫

X2

(g⊕(y)− g⊕(z))P2(z; dy)µ⊗2
t (dz),

which is the general kinetic equation for bi-

nary interactions of pure jump type in weak

form. “Weak” means that it must hold for all

g ∈ C∞(X) (or at least its dense subspace).



A similar procedure with k-ary interactions

leads to the general kinetic equation for k-

ary interactions of pure jump type in weak

form:
d

dt
(g, µt) = ΛkFg(µt)

=
1

k!

∫

X

∫

Xk
(g⊕(y)− g⊕(z))

P k(z; dy)µ⊗k
t (dz), z = (z1, ..., zk).

and more generally:

d

dt
(g, µt) = Λl≤kFg(µt)

=
k∑

l=1

ΛlFg(µt).

Examples.



General Feller generator in SX has the form
B = (B1, B2, ...), where

Bkf(x1, ..., xk) = Akf(x1, ..., xk)+
∫

X
(f(y)− f(x1, ..., xk))P

k(x1, ..., xk, dy),

where P k is a transition kernel from SXk to
SX and Ak generates a symmetric Feller pro-
cess in Xk. However, with this generator,
the interaction of a subsystem of particles de-
pends on the whole system: for the operator
(0, B2,0, ...), say, two particles will interact
only in the absence of any other particle).
To put all subsystems on an equal footing
one should mix the interaction between all
subsystems. Consequently, instead of Bk one
is led to the generator of k-ary interaction of
the form

Ik[P
k, Ak]f(x1, ..., xn) =

∑

I⊂{1,...,n},|I|=k

BIf(x1, ..., xn)

=
∑

I⊂{1,...,n},|I|=k

[
(AIf)(x1, ..., xn)

+
∫

(f(xĪ ,y)− f(x1, ..., xn))P
k(xI , dy)

]
,



where AI (resp. BI) is the operator A|I| (resp.
B|I|) acting on the variables xI. In quan-
tum mechanics, the transformation B1 7→ I1
is called the second quantization of the op-
erator B1. The transformation Bk 7→ Ik for
k > 1 can be interpreted as the tensor power
of the second quantization.

The same limiting procedure as above:

d

dt

∫
g(z)µt(dz) =

k∑

l=1

1

l!

∫

Xl

[
(Ag⊕)(z)

+
∫

X
(g⊕(y)− g⊕(z))P (z; dy)

]
µ⊗l

t (dz).

More compactly it can be written in terms of
the operators Bk as

d

dt

∫
g(z)µt(dz)

=
k∑

l=1

1

l!

∫

Xl
(Blg⊕)(z)µ⊗l

t (dz)

or as
d

dt

∫
g(z)µt(dz) =

∫

X
(Bg⊕)(z)µ⊗̃t (dz),



where the convenient normalized tensor power

of measures are defined by

(Y ⊗̃)n(dx1 · · · dxn) = Y ⊗̃n(dx1 · · · dxn)

=
1

n!
Y (dx1) · · ·Y (dxn).

Finally, one can allow additionally for mean

field interaction:

d

dt
(g, µt) =

∫

X
(B[µt]g

⊕)(z)µ⊗̃l
t (dz),

which is the weak form of the general ki-

netic equation describing the dynamic LLN

for Markov models of interacting particles with

mean field and kth-order interactions.

If the Cauchy problem for this equation is

well posed, its solution µt with a given µ0 = µ

can be considered as a deterministic measure-

valued Markov process. The corresponding

semigroup is defined as TtF (µ) = F (µt). Us-

ing variational derivatives evolution equation

for this semigroup can be written as



d

dt
F (µt) = (ΛF )(µt)

=
∫

X
B[µt]

(
δF

δµt(.)

)⊕
(z)µ⊗̃t (dz)

=
∫

X
A[µt]

(
δF

δµt(.)

)⊕
(z)µ⊗̃t (dz)

+
∫

X2




(
δF

δµt(.)

)⊕
(y)−

(
δF

δµt(.)

)⊕
(z)


 P (µt, z; dy)µ⊗̃t (dz).

Kinetic equation above is nothing but a par-

ticular case of this equation for the linear

functionals F (µ) = Fg(µ) = (g, µ).

One can naturally identify the nonlinear analogs

of the main notions from the theory of Markov

processes and observe how the fundamental

connection between Markov processes, semi-

groups and martingale problems is carried for-

ward into the nonlinear setting.



Let M̃(X) be a dense subset of the space

M(X) of finite (positive Borel) measures on a

metric space X (considered in its weak topol-

ogy). By a nonlinear sub-Markov (resp. Markov)

propagator in M̃(X) we shall mean any prop-

agator V t,r of possibly nonlinear transforma-

tions of M̃(X) that do not increase (resp.

preserve) the norm. If V t,r depends only on

the difference t−r and hence specifies a semi-

group, this semigroup is called nonlinear or

generalized sub-Markov or Markov respectively.

The usual, linear Markov propagators or semi-

groups correspond to the case when all the

transformations are linear contractions in the

whole spaceM(X). In probability theory these

propagators describe the evolution of aver-

ages of Markov processes, i.e. processes whose

evolution after any given time t depends on

the past X≤t only via the present position Xt.

Loosely speaking, to any nonlinear Markov

propagator there corresponds a process whose

behavior after any time t depends on the past

X≤t via the position Xt of the process and its



distribution at t. To be more precise, con-
sider the nonlinear kinetic equation

d

dt
(g, µt) = (B[µt]g, µt)

with a certain family of operators B[µ] in
C(X) depending on µ as on a parameter and
such that each B[µ] generates a Feller semi-
group. (It was shown above that equations
of this kind appear naturally as LLN for in-
teracting particles, they also arise from the
mere assumption of positivity preservation.)

Suppose also that for any weakly continuous
curve µt ∈ P(X) the solutions to the Cauchy
problem of the equation

d

dt
(g, νt) = (B[µt]g, νt)

define a weakly continuous propagator V t,r[µ.],
r ≤ t, of linear transformations in M(X) and
hence a Markov process in X. Then to any
µ ∈ P(X) there corresponds a Markov pro-
cess X

µ
t in X with distributions µt = Tt(µ) for

all times t and with transition probabilities
p
µ
r,t(x, dy) satisfying the condition

∫

X2
f(y)pµ

r,t(x, dy)µr(dx) = (f, V t,rµr) = (f, µt).



We shall call the family of processes X
µ
t a

nonlinear Markov process.

Thus a nonlinear Markov process is a semi-

group of the transformations of distributions

such that to each trajectory is attached a

’tangent’ Markov process with the same marginal

distributions. The structure of these tangent

processes is not intrinsic to the semigroup,

but can be specified by choosing a stochastic

representation for the generator.

As in the linear case the process Xt with

càdlàg paths (or the corresponding probabil-

ity distribution on the Skorohod space) solves

the (B[µ], D)-nonlinear martingale problem with

initial distribution µ, meaning that X0 is dis-

tributed according to µ and the process

M
f
t = f(Xt)−f(X0)−

∫ t

0
B[L(Xs)]f(Xs) ds, t ≥ 0

is a martingale for any f ∈ D, with respect to

the natural filtration of Xt.



LLN and Conditional positivity.

One can show that bounded generators of

measure-valued positivity preserving evolutions

have necessarily a stochastic representation,

leading directly to a probabilistic interpreta-

tion of the corresponding evolution. For a

Borel space X we shall say that a mapping

Ω : M(X) →Msigned(X) is conditionally pos-

itive if the negative part Ω−(µ) of the Hahn

decomposition of the measure Ω(µ) is abso-

lutely continuous with respect to µ for all µ.

One easily deduces that continuous genera-

tors of positivity preserving evolutions should

be conditionally positive in this sense.



Theorem.

Let X be a Borel space and Ω : M(X) →
Msigned(X) be a conditionally positive map-

ping. Then there exists a nonnegative func-

tion a(x, µ) and a family of kernels ν(x, µ, .)

in X such that

Ω(µ) =
∫

X
µ(dz)ν(z, µ, .)− a(., µ)µ. (1)

If moreover
∫
Ω(µ)(dx) = 0 for all µ (condi-

tion of conservativity), then this representa-

tion can be chosen in such a way that a(x, µ) =

‖ν(x, µ, .)‖, in which case

(g,Ω(µ)) =
∫

X
(g(y)− g(x))ν(x, µ, dy).

Proof. One can take a(x, µ) to be the Radon-

Nicodyme derivative of Ω−(µ) with respect to

µ and

ν(x, µ, dy) =
(∫

Ω−(µ)(dz)
)−1

a(x, µ)Ω+(µ)(dy).



CLT Binary interaction

if B2 preserves the number of particles and

hence can be written as

B2f(x, y) =
[1
2
(G(x, y)

∂

∂x
,

∂

∂x
)+

1

2
(G(y, x)

∂

∂y
,

∂

∂y
)

+(γ(x, y)
∂

∂x
,

∂

∂y
)
]
f(x, y)

+

[
(b(x, y),

∂

∂x
) + (b(y, x),

∂

∂y
)f(x, y)

]

+
∫

X2
ν(x, y, dv1dv2)

[
f(x + v1, y + v2)− f(x, y)

−(
∂f

∂x
(x, y), v1)1B1

(v1)−(
∂f

∂y
(x, y), v2)1B1

(v2)
]
,

where G(x, y), γ(x, y) are symmetric matrices

such that γ(x, y) = γ(y, x) and ν(x, y, dv1dv2) =



ν(y, x, dv2dv1), then

OtF (Y ) =

(
B2

(
δF

δY

)⊕
, Y ⊗ µt

)

+
∫ 1

2

(
G(x, y)

∂

∂x
,

∂

∂z

)
δ2F

δY (z)δY (x)
|z=x µt(dx)µt(dy)

+
∫ (

γ(x, y)
∂

∂x
,

∂

∂y

)
δ2F

δY (y)δY (x)
µt(dx)µt(dy)

+
1

4

∫

X4

(
δ2F

δY (.)δY (.)
, (δz1+v1

+ δz2+v2
− δz1 − δz2)

⊗2
)

ν(z1, z2, dv1dv2)µt(dz1)µt(dz2). (2)



CLT k-ary.

Let Bk be a conditionally positive operator
C(SX ) 7→ C(SXk) given by (??), i.e.

Bkf(x1, ..., xk) = Akf(x1, ..., xk) +
∫

Xk

(f(y1, ..., yk)−f(x1, ..., xk))P
l(x1, ..., xk, dy1 · · · dyk),

and specifying the scaled generator of k-ary
interaction:

Λk
hF (hδx) = hk−1 ∑

I⊂{1,...,n},|I|=k

Bk
I F (hδx).

Then the limiting generator of the process of
fluctuation writes down as

OtF (Y ) =

(
Bk

(
δF

δY

)⊕
, Y ⊗ µ

⊗̃(k−1)
t

)

+
(1
2

Bk
k∑

i,j=1

δ2F

δY (yi)δY (yj)

−

Bk

y1,...,yk

k∑

i,j=1

δ2F

δY (zi)δY (yj)


 |∀i zi=yi

, µ⊗̃k
t

)
,

where Bk
y1,...,yk

denotes of course the action
of Bk on the variables y1, . . . , yk.



About the method. Remark: How to prove

the usual functional CLT.

Recall: main result on the convergence of

semigroups.

Using this fact, a functional central limit the-

orem can easily be proved as follows. Let Zt

be a continuous-time random walk on Z mov-

ing in each direction with equal probability. It

is the process specified by the generator

Lf(x) = a[f(x + 1) + f(x− 1)− 2f(x)]

with coefficient a > 0. By scaling we can

define a new random walk Zh
t on hZ by the

generator

Lhf(x) =
a

h2
(f(x + h) + f(x− h)− 2f(x)).

If f is thrice continuously differentiable, then

Lhf(x) = af ′′(x) + O(1) sup
y
|f(3)(y)|.

Hence for f ∈ C3∞(Rd) (invariant cire) the

generators Lhf converge to the generator Lf =

af ′′ of a Brownian motion. Done.



Remark. The process Zh
t = h(S1 + · · ·+ SNt

)

is a random walk with E(Nt) = 2at/h2, so

that h ∼ 1/
√

Nt.

Extension: position dependent, stable-like,

etc.

For interacting particles this method is used

with three NO: (1) no compactness, (2) time

non-homogeneous, (3) infinite dimensions.

One needs to show: (i) the approximating

particle systems converge to the deterministic

limit described by the kinetic equations, (ii)

the fluctuation process converge to a limit-

ing infinite-dimensional Gaussian process. In

both cases we need a core for the limiting

semigroup, and to get the rates of conver-

gence we need an invariant core.



The generators of the LLN limit ΛF is ex-
pressed in variational derivative. But the lim-
iting evolution is deterministic; i.e. it has the
form Ft(µ) = F (µt) with µt being a solution
to kinetic equation. We therefore have

δFt

δµ
=

δF

δµt

δµt

δµ
,

which shows that in order to apply the gen-
eral method outlined above, we need first-
order variational derivatives of the solutions
to the kinetic equation with respect to the
initial data. Similarly, to study for fluctu-
ation processes the second-order variational
derivatives.

In other words: (1) smoothness of nonlinear
Markov semigroups Tt(µ) = µt given by

d

dt
(g, µt) = (Aµtg, µt), µ0 = µ ∈M(S),

with respect to initial data, where Aµ is a
Lévy-Khintchine type operator depending on
µ as on a parameter, and (ii) to identify an
invariant core for the usual (linear) Markov
semigroup ΦtF (µ) = F (µt) of the determin-
istic measure-valued Markov process µt.
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