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The main characteristics of a long-time opti-

mal process are determined by the solutions

(λ, h) (where λ is a number and h a function

on the state space) of the equation Bh =

λ+h, where B is the Bellman operator of the

optimization problem. Namely, λ is the mean

income per step of the process, whereas h

specifies stationary optimal strategies or even

turnpike control modes. For deterministic

control problems, in which B is linear in the

sense of the operations ⊕ = min or ⊕ = max

and ¯ = +, this equation is the idempotent

analog of an eigenvector equation in standard

linear algebra. Lots of authors have studied

this equation.



We develop results from V.N. Kolokoltsov.

The stochastic Bellman equation as a nonlin-

ear equation in Maslov spaces. Perturbation

theory. Sov. Math. Dokl. 45:2 (1992), 294-

300, (see also further publications, e.g. the

book V.N.Kolokoltsov, V.P. Maslov. Idem-

potent Analysis and its Applications. Kluwer

Academic, 1997) in order to show that:

if the influence of stochastic factors is small,

it can be considered as nearly linear and per-

turbation theory can be developed. This kind

of small stochasticity arises in some mod-

els of control over quantum systems that are

presently subject to intensive research.



Stochastic perturbations of discrete opti-

mization

Let X be a finite or countable set, and b =

(bij)|i,j∈X a matrix with values in R. Let a

subset J ⊂ X and a bounded set {qi
j}i∈X,j∈J

of nonnegative numbers be given, and the

family of operators {Bε}ε≥0 in RX be defined

by the formula

(Bεh)i = max
k:(i,k)∈E

(b(i, k) + hk)

(
1− ε

∑

j∈J

qi
j

)

+ε
∑

j∈J

qi
j(b(i, j) + hj).

For ε small enough, the operator Bε is the

Bellman operator corresponding to a controlled

Markov process on X. In this process, the

transition from i ∈ X to j ∈ J has probabil-

ity εqi
j, and the transition to a chosen point

k from the set {k : (i, k) ∈ E} occurs with

probability 1− ε
∑

j∈J qi
j.



Theorem 1. Let the maximum of b be at-

tained at a unique point (V, V ) ∈ E, where

b(V, V ) = 0, V /∈ J and there exists a j ∈ J

such that the probability qi
j is nonzero for all

i. Then for each sufficiently small ε > 0, ∃
unique λε ∈ R, hε ∈ RX such that

Bεh
ε = λε + hε, hε

V = 0, (1)

and λε and hε are differentiable with respect

to ε at ε = 0:

λε = ελ′ + o(ε), hε = h0 + εh′ + o(ε),

λ′ =
∑

j∈J

qV
j (b(V, j) + h0

j ),

hi = (I −B′h)
−1

({ ∑

j∈J

qi
j(b(i, j) + h0

j − h0
i )

})
,

(2)

(B′hg)i = max{gk : k ∈ Γh(i)}; (3)

here Γh(i) is the set of vertices where bij +h0
j

attains the maximal value.



Extension to continuous state space

Let the state space X be locally compact and

the control set U be compact, and let v and V

be two distinct points of X. Suppose that the

process dynamics is determined by a bounded

continuous mapping y : X × U × [0, ε0] → X

and a bounded continuous function q : X →
R+ as follows. If a control u ∈ U is chosen

when the process is in a state x ∈ X, then at

the current step the transition into the state

y(x, u, ε) takes place with probability 1−εq(x),

whereas with probability εq(x) the transition

is into v. The income from residing in a state

x ∈ X is specified by a Lipschitz continuous

function b ∈ C∞(R). The Bellman operator

Bε acts in the space of continuous functions

on X according to the formula

(Bεh)(x) = b(x) + εq(x)h(v)

+(1− εq(x))max
u∈U

h(y(x, u, ε)).



Theorem 2. Suppose that for each ε the de-

terministic dynamics is controllable in the sense

that by moving successively from x to y(x, u, ε)

one can reach any point from any other point

in a fixed number of steps independent of

the initial point. Suppose also that b at-

tains its maximum at a unique point V , where

b(V ) = 0 and moreover,

V ∈ {y(V, u, ε) : u ∈ U}.
Then the equation

Bh = λ + h (4)

is solvable, and the solution satisfies

hε − h0 = O(ε), (5)

λε = q(V )h0(v)ε + o(ε), (6)

where λ0 = 0 and h0 is the unique solution

of (4) at ε = 0.

The proof is a generalization of that of The-

orem 1.



Generalized solutions of the HJB equa-

tion for jump controlled processes on a

manifold

Let X be a smooth compact manifold, and

let f(x, u, ε) be a vector field on X depend-

ing on the parameters u ∈ U and ε ∈ [0, ε0]

and Lipschitz continuous with respect to all

arguments. Consider a special case of the

process described above, in which y(x, u, ε) is

the point reached at time τ by the trajectory

of the differential equation ż = f(z, u, ε) issu-

ing from x and the probability of the transi-

tion into v in one step of the process is equal

to τεq(x). As τ → 0, this process becomes

a jump process in continuous time; this pro-

cess is described by a stochastic differential

equation with stochastic differential of Pois-

son type.



Let Sε
n(t, x) be the mathematical expectation

of the maximal income per n steps of the

cited discrete process with time increment

τ = (T − t)/n beginning at time t at a point

x and with terminal income specified by a

Lipschitz continuous function ST (x). Then

Sε
n = (Bτ

ε )
n, where Bτ

ε is the Bellman oper-

ator corresponding to the discrete problem

with step τ .

Theorem 3.The sequence of continuous func-

tions Sε
n is uniformly convergent with respect

to x and ε to a Lipschitz continuous (and

hence, almost everywhere smooth) function

Sε(t, x), which satisfies the functional-differential

Bellman equation

∂S

∂t
+ b(x) + εq(x)(S(v)− S(x))

+max
u∈U

(
∂S

∂x
, f(x, u, ε)

)
= 0 (7)

at each point of differentiability.



The limit function Sε may be called a general-

ized solution of the Cauchy problem for equa-

tion (7). This function specifies the mathe-

matical expectation of the optimal income for

the limit (as t → 0) jump process in contin-

uous time. For ε = 0, this solution coincides

with that obtained in the framework of idem-

potent analysis. The proof of this theorem is

quite lengthy and technical.

Theorems 2 and 3 imply the following result.

Theorem 4. There exists a continuous func-

tion Rε and a unique λε such that the gen-

eralized solution of the Cauchy problem for

equation (7) with terminal function Sε
T = hε

has the form

Sε(t, x) = λε(T − t) + hε(x), (8)

χε satisfies the asymptotic formula (6), and

the generalized solution Sε(t, x) of (7) with

an arbitrary Lipschitz continuous terminal func-

tion Sε
T satisfies the limit equation

lim
t→−∞

1

T − t
Sε(t, x) = λε. (9)



Example from quantum control

Dynamics will be given by a stochastic equa-

tion of Poisson type. A similar example of dif-

fusive type can be found in V.N. Kolokoltsov.

Long time behavior of continuously observed

and controlled quantum systems (a study of

the Belavkin quantum filtering equation). In:

Quantum Probability Communications, QP-

PQ, V. 10, Ed. R.L. Hudson, J.M. Lind-

say, World Scientific, Singapore (1998), 229-

243..



Consider a model of continuously observed
quantum system interacting with an instru-
ment (boson reservoir) by exchanging pho-
tons. The a posteriori dynamics (i.e., dy-
namics taking into account the measurement
results) of this system can be described by
Belavkin’s quantum filtering equation

dΦ+

(
i[E,Φ]+ε

(
1

2
(R∗RΦ+ΦR∗R)−(Φ, R∗R)Φ

))
dt

=

(
RΦR∗

(Φ, R∗R)
−Φ

)
dN. (10)

Here N(t) is a counting Poisson process; its
spectrum is the set of positive integers, and
the result of measurement by time t is a ran-
dom tuple τ = {t1 < · · · < tn} of time mo-
ments at which the photon emission occurs.
Furthermore, E and R are closed operators
in the Hilbert state space H of the quantum
system in question; the self-adjoint energy
operator E specifies the free (nonobserved)
dynamics, whereas R corresponds to the ob-
served (measured) physical variable. The un-
known density matrix Φ specifies the a poste-
riori state in H, and the intensity of the jump
process at the state Φ is equal to ε(Φ, R∗R).



Now suppose that the system is controllable;

specifically, let the energy E be a function of

a parameter u ∈ U whose value at each time

can be chosen on the basis of the informa-

tion τ available by this time. The opportunity

to evaluate a posteriori states from equation

(10) permits one to construct control strate-

gies as functions of state, u = u(t,Φ(t)).

Suppose that we intend to maximize some

operator-valued criterion of the form
∫ T

t
(Φ(s), A) ds + (Φ(T ), G), (11)

where A and G are self-adjoint operators in

H. Let S(t,Φ) denote the Bellman function,

that is, the mathematical expectation (over

all realizations of τ) of the maximum income

of a process that starts at time t in a state

Φ and terminates at time T .



Bellman equation for the optimal income func-

tion S(t,Φ):

∂S

∂t
+ε

(
Φ, R∗R,

(
S

(
RΦR∗

(Φ, R∗R)

)
−S(Φ)

)
+(Φ, A)

+max
u∈U

(
gradΦS, i[E(u),Φ]

+
ε

2
(R∗RΦ+ΦR∗R)−ε(Φ, R∗R)Φ

)
= 0. (12)

However, the solution of this equation with

the terminal condition ST (Φ) = (Φ(T ), G) is

not uniquely determined in the class of func-

tions smooth almost everywhere; hence, a

well-grounded theory of generalized solutions

should employ additional considerations so as

to yield the Bellman function. For example,

generalized solutions can be defined as limits

of discrete approximations.



Consider the special case modeling the in-

teraction of an atom with a Bose field by

exchanging photons with simultaneous tran-

sitions of the atom from one level to another.

In this model, R is the annihilation operator

in the atom.

Let H = C2 (two-level atom) and

E =

(
ε1 u1 + iu2

u1 − iu2 ε2

)
, R =

(
0 1

0 0

)

(13)

(u1 ∈ [−A1, A1] and u2 ∈ [−A2, A2] specify

external force (magnetic field)).

Let ε2 > ε1, and let v = (1,0) and V = (0,1)

be, respectively, the lower (vacuum) and the

excited eigenstates of the energy E(0,0).

Objective: to keep the atom maximally ex-

cited (as close as possible to the state V ) on

a long observation interval. Then the oper-

ator A in equation (11) must be chosen as

the operator R∗R of projection on V . This

model can be regarded as the simplest model

of laser pumping.



The density matrix of vector states of a two-

dimensional atom is usually represented by

the polarization vector P = (p1, p2, p3) ∈ S

according to the formulas

Φ =
1

2
(I + Pσ) =

1

2
(I + p1σ1 + p2σ2 + p3σ3),

where

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 − i

i 0

)
, σ3 =

(
1 0

0 − 1

)

are the Pauli matrices.



The filtering equation (10) in terms of P has
the form

dP+(u1Ku1+u2Ku2+∆K∆+εKε)P dt = (v−P ) dN,

where v = {p1 = p2 = 0, p3 = 1}, dN is
the differential of the Poisson process with
density ε

2(1− p3) at the state P , ∆ = ε2 − ε1
is the difference between the energy levels of
E(0,0), and the vector fields K on the sphere
are determined by the formulas

Ku1(P ) = (0,−2p3,2p2),

Ku2(P ) = (2p3,0,−2p1),

K∆(P ) = (p2,−p1,0),

Kε(P ) = (1
2p1p3, 1

2p2p3,−1
2(1− p2

3)).

The Bellman equation (12) acquires the form

∂S

∂t
+

ε

2
(1− p3)(S(v)− S(p))

+
1

2
(1− p3) +

(
∂S

∂p
,∆K∆ + εKε

)

+ max
u1,u2

(
∂S

∂p
, u1Ku1 + u2Ku2

)
= 0.



It is easy to see that we are just in the situ-

ation of Theorems 3 and 4. Hence, one can

find the average income Aε per unit time in

this process under a permanent optimal con-

trol in the first approximation. It is equal to

1 + εh0(v), where h0(v) is the income pro-

vided by the optimal transition from v to V

neglecting the interaction; this income can

be evaluated according to Pontryagin’s max-

imum principle.


